Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Publication year range
1.
Small ; 17(39): e2102596, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34411423

RESUMEN

Enhancing light-matter interactions is fundamental to the advancement of nanophotonics and optoelectronics. Yet, light diffraction on dielectric platforms and energy loss on plasmonic metallic systems present an undesirable trade-off between coherent energy exchange and incoherent energy damping. Through judicious structural design, both light confinement and energy loss issues could be potentially and simultaneously addressed by creating bound states in the continuum (BICs) where light is ideally decoupled from the radiative continuum. Herein, the authors present a general framework based on the two-coupled resonances to first conceptualize and then numerically demonstrate a type of quasi-BICs that can be achieved through the interference between two bare resonance modes and is characterized by the considerably narrowed spectral line shape even on lossy metallic nanostructures. The ubiquity of the proposed framework further allows the paradigm to be extended for the realization of plexcitonic quasi-BICs on the same metallic systems. Owing to the topological nature, both plasmonic and plexcitonic quasi-BICs display strong mode robustness against parameters variation, thereby providing an attractive platform to unlock the potential of the coupled plasmon-exciton systems for manipulation of the photophysical properties of condensed phases.


Asunto(s)
Nanoestructuras , Fenómenos Físicos
2.
Nanomaterials (Basel) ; 13(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686930

RESUMEN

The effects of resonance interaction of plasmonic and photonic modes in hybrid metal-dielectric structures with square Al nanodisk lattices coupled with a Si waveguide layer were investigated using micro-photoluminescence (micro-PL) spectroscopy. As radiation sources, GeSi quantum dots were embedded in the waveguide. A set of narrow PL peaks superimposed on the broad bands were observed in the range of quantum dot emissions. At optimal parameters of Al nanodisks lattices, almost one order increasing of PL intensity was obtained. The experimental PL spectra are in good agreement with results of theoretical calculations. The realization of high-quality bound states in the continuum was confirmed by a comparative analysis of the experimental spectra and theoretical dispersion dependences. The results demonstrated the perspectives of these type structures for a flat band realization and supporting the slow light.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda