Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Cell ; 179(2): 514-526.e13, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31585085

RESUMEN

Sleep has been implicated in both memory consolidation and forgetting of experiences. However, it is unclear what governs the balance between consolidation and forgetting. Here, we tested how activity-dependent processing during sleep might differentially regulate these two processes. We specifically examined how neural reactivations during non-rapid eye movement (NREM) sleep were causally linked to consolidation versus weakening of the neural correlates of neuroprosthetic skill. Strikingly, we found that slow oscillations (SOs) and delta (δ) waves have dissociable and competing roles in consolidation versus forgetting. By modulating cortical spiking linked to SOs or δ waves using closed-loop optogenetic methods, we could, respectively, weaken or strengthen consolidation and thereby bidirectionally modulate sleep-dependent performance gains. We further found that changes in the temporal coupling of spindles to SOs relative to δ waves could account for such effects. Thus, our results indicate that neural activity driven by SOs and δ waves have competing roles in sleep-dependent memory consolidation.


Asunto(s)
Encéfalo/fisiología , Ritmo Delta , Consolidación de la Memoria/fisiología , Sueño/fisiología , Animales , Masculino , Ratas , Ratas Long-Evans
2.
Physiol Rev ; 102(2): 551-604, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34541898

RESUMEN

Advances in our understanding of brain function, along with the development of neural interfaces that allow for the monitoring and activation of neurons, have paved the way for brain-machine interfaces (BMIs), which harness neural signals to reanimate the limbs via electrical activation of the muscles or to control extracorporeal devices, thereby bypassing the muscles and senses altogether. BMIs consist of reading out motor intent from the neuronal responses monitored in motor regions of the brain and executing intended movements with bionic limbs, reanimated limbs, or exoskeletons. BMIs also allow for the restoration of the sense of touch by electrically activating neurons in somatosensory regions of the brain, thereby evoking vivid tactile sensations and conveying feedback about object interactions. In this review, we discuss the neural mechanisms of motor control and somatosensation in able-bodied individuals and describe approaches to use neuronal responses as control signals for movement restoration and to activate residual sensory pathways to restore touch. Although the focus of the review is on intracortical approaches, we also describe alternative signal sources for control and noninvasive strategies for sensory restoration.


Asunto(s)
Biónica , Interfaces Cerebro-Computador , Retroalimentación Sensorial/fisiología , Mano/fisiología , Movimiento/fisiología , Animales , Encéfalo/fisiología , Humanos , Percepción del Tacto/fisiología
3.
J Manuf Process ; 126: 185-207, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39185373

RESUMEN

Invasive Microelectrode Arrays (MEAs) have been a significant and useful tool for us to gain a fundamental understanding of how the brain works through high spatiotemporal resolution neuron-level recordings and/or stimulations. Through decades of research, various types of microwire, silicon, and flexible substrate-based MEAs have been developed using the evolving new materials, novel design concepts, and cutting-edge advanced manufacturing capabilities. Surgical implantation of the latest minimal damaging flexible MEAs through the hard-to-penetrate brain membranes introduces new challenges and thus the development of implantation strategies and instruments for the latest MEAs. In this paper, studies on the design considerations and enabling manufacturing processes of various invasive MEAs as in vivo brain-machine interfaces have been reviewed to facilitate the development as well as the state-of-art of such brain-machine interfaces from an engineering perspective. The challenges and solution strategies developed for surgically implanting such interfaces into the brain have also been evaluated and summarized. Finally, the research gaps have been identified in the design, manufacturing, and implantation perspectives, and future research prospects in invasive MEA development have been proposed.

4.
Brain ; 144(12): 3651-3663, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34623400

RESUMEN

Brain-machine interfaces allow neuroscientists to causally link specific neural activity patterns to a particular behaviour. Thus, in addition to their current clinical applications, brain-machine interfaces can also be used as a tool to investigate neural mechanisms of learning and plasticity in the brain. Decades of research using such brain-machine interfaces have shown that animals (non-human primates and rodents) can be operantly conditioned to self-regulate neural activity in various motor-related structures of the brain. Here, we ask whether the human brain, a complex interconnected structure of over 80 billion neurons, can learn to control itself at the most elemental scale-a single neuron. We used the unique opportunity to record single units in 11 individuals with epilepsy to explore whether the firing rate of a single (direct) neuron in limbic and other memory-related brain structures can be brought under volitional control. To do this, we developed a visual neurofeedback task in which participants were trained to move a block on a screen by modulating the activity of an arbitrarily selected neuron from their brain. Remarkably, participants were able to volitionally modulate the firing rate of the direct neuron in these previously uninvestigated structures. We found that a subset of participants (learners), were able to improve their performance within a single training session. Successful learning was characterized by (i) highly specific modulation of the direct neuron (demonstrated by significantly increased firing rates and burst frequency); (ii) a simultaneous decorrelation of the activity of the direct neuron from the neighbouring neurons; and (iii) robust phase-locking of the direct neuron to local alpha/beta-frequency oscillations, which may provide some insights in to the potential neural mechanisms that facilitate this type of learning. Volitional control of neuronal activity in mnemonic structures may provide new ways of probing the function and plasticity of human memory without exogenous stimulation. Furthermore, self-regulation of neural activity in these brain regions may provide an avenue for the development of novel neuroprosthetics for the treatment of neurological conditions that are commonly associated with pathological activity in these brain structures, such as medically refractory epilepsy.


Asunto(s)
Encéfalo/fisiología , Aprendizaje/fisiología , Neurorretroalimentación/métodos , Neuronas/fisiología , Volición/fisiología , Adulto , Interfaces Cerebro-Computador , Electrocorticografía , Femenino , Humanos , Masculino , Persona de Mediana Edad
5.
Sensors (Basel) ; 22(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35891029

RESUMEN

Brain-machine interfaces (BMIs) have become increasingly popular in restoring the lost motor function in individuals with disabilities. Several research studies suggest that the CNS may employ synergies or movement primitives to reduce the complexity of control rather than controlling each DoF independently, and the synergies can be used as an optimal control mechanism by the CNS in simplifying and achieving complex movements. Our group has previously demonstrated neural decoding of synergy-based hand movements and used synergies effectively in driving hand exoskeletons. In this study, ten healthy right-handed participants were asked to perform six types of hand grasps representative of the activities of daily living while their neural activities were recorded using electroencephalography (EEG). From half of the participants, hand kinematic synergies were derived, and a neural decoder was developed, based on the correlation between hand synergies and corresponding cortical activity, using multivariate linear regression. Using the synergies and the neural decoder derived from the first half of the participants and only cortical activities from the remaining half of the participants, their hand kinematics were reconstructed with an average accuracy above 70%. Potential applications of synergy-based BMIs for controlling assistive devices in individuals with upper limb motor deficits, implications of the results in individuals with stroke and the limitations of the study were discussed.


Asunto(s)
Actividades Cotidianas , Interfaces Cerebro-Computador , Fenómenos Biomecánicos , Electroencefalografía/métodos , Mano , Fuerza de la Mano , Humanos , Movimiento
6.
J Physiol ; 599(9): 2419-2434, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-31647122

RESUMEN

KEY POINTS: Embodiment of a virtual body was induced and its movements were controlled by two different brain-computer interface (BCI) paradigms - one based on signals from sensorimotor versus one from visual cortical areas. BCI-control of movements engenders agency, but not equally for all paradigms. Cortical sensorimotor activation correlates with agency and responsibility. This has significant implications for neurological rehabilitation and neuroethics. ABSTRACT: Agency is the attribution of an action to the self and is a prerequisite for experiencing responsibility over its consequences. Here we investigated agency and responsibility by studying the control of movements of an embodied avatar, via brain-computer interface (BCI) technology, in immersive virtual reality. After induction of virtual body ownership by visuomotor correlations, healthy participants performed a motor task with their virtual body. We compared the passive observation of the subject's 'own' virtual arm performing the task with (1) the control of the movement through activation of sensorimotor areas (motor imagery) and (2) the control of the movement through activation of visual areas (steady-state visually evoked potentials). The latter two conditions were carried out using a BCI and both shared the intention and the resulting action. We found that BCI-control of movements engenders the sense of agency, which is strongest for sensorimotor area activation. Furthermore, increased activity of sensorimotor areas, as measured using EEG, correlates with levels of agency and responsibility. We discuss the implications of these results for the neural basis of agency.


Asunto(s)
Interfaces Cerebro-Computador , Corteza Sensoriomotora , Electroencefalografía , Potenciales Evocados , Humanos , Movimiento
7.
Rev Neurol (Paris) ; 177(9): 1133-1144, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34674879

RESUMEN

In recent years, neurofeedback has been used as a cognitive training tool to improve brain functions for clinical or recreational purposes. It is based on providing participants with feedback about their brain activity and training them to control it, initiating directional changes. The overarching hypothesis behind this method is that this control results in an enhancement of the cognitive abilities associated with this brain activity, and triggers specific structural and functional changes in the brain, promoted by learning and neuronal plasticity effects. Here, we review the general methodological principles behind neurofeedback and we describe its behavioural benefits in clinical and experimental contexts. We review the non-specific effects of neurofeedback on the reinforcement learning striato-frontal networks as well as the more specific changes in the cortical networks on which the neurofeedback control is exerted. Last, we analyse the current challenges faces by neurofeedback studies, including the quantification of the temporal dynamics of neurofeedback effects, the generalisation of its behavioural outcomes to everyday life situations, the design of appropriate controls to disambiguate placebo from true neurofeedback effects and the development of more advanced cortical signal processing to achieve a finer-grained real-time modelling of cognitive functions.


Asunto(s)
Neurorretroalimentación , Encéfalo , Mapeo Encefálico , Cognición , Humanos , Imagen por Resonancia Magnética , Plasticidad Neuronal
8.
Muscle Nerve ; 61(6): 708-718, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32413247

RESUMEN

The loss of upper limb motor function can have a devastating effect on people's lives. To restore upper limb control and functionality, researchers and clinicians have developed interfaces to interact directly with the human body's motor system. In this invited review, we aim to provide details on the peripheral nerve interfaces and brain-machine interfaces that have been developed in the past 30 years for upper extremity control, and we highlight the challenges that still remain to transition the technology into the clinical market. The findings show that peripheral nerve interfaces and brain-machine interfaces have many similar characteristics that enable them to be concurrently developed. Decoding neural information from both interfaces may lead to novel physiological models that may one day fully restore upper limb motor function for a growing patient population.


Asunto(s)
Amputados/rehabilitación , Investigación Biomédica/tendencias , Robótica/tendencias , Traumatismos de la Médula Espinal/rehabilitación , Extremidad Superior/fisiología , Investigación Biomédica/métodos , Interfaces Cerebro-Computador/tendencias , Predicción , Humanos , Robótica/métodos , Traumatismos de la Médula Espinal/fisiopatología
9.
J Microelectromech Syst ; 29(5): 1054-1058, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33746477

RESUMEN

We present for the first time the design, fabrication, and preliminary bench-top characterization of a high-density, polymer-based penetrating microelectrode array, developed for chronic, large-scale recording in the cortices and hippocampi of behaving rats. We present two architectures for these targeted brain regions, both featuring 512 Pt recording electrodes patterned front-and-back on micromachined eight-shank arrays of thin-film Parylene C. These devices represent an order of magnitude improvement in both number and density of recording electrodes compared with prior work on polymer-based microelectrode arrays. We present enabling advances in polymer micro-machining related to lithographic resolution and a new method for back-side patterning of electrodes. In vitro electrochemical data verifies suitable electrode function and surface properties. Finally, we describe next steps toward the implementation of these arrays in chronic, large-scale recording studies in free-moving animal models.

10.
J Neurosci ; 38(44): 9390-9401, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30381431

RESUMEN

In the 1960s, Evarts first recorded the activity of single neurons in motor cortex of behaving monkeys (Evarts, 1968). In the 50 years since, great effort has been devoted to understanding how single neuron activity relates to movement. Yet these single neurons exist within a vast network, the nature of which has been largely inaccessible. With advances in recording technologies, algorithms, and computational power, the ability to study these networks is increasing exponentially. Recent experimental results suggest that the dynamical properties of these networks are critical to movement planning and execution. Here we discuss this dynamical systems perspective and how it is reshaping our understanding of the motor cortices. Following an overview of key studies in motor cortex, we discuss techniques to uncover the "latent factors" underlying observed neural population activity. Finally, we discuss efforts to use these factors to improve the performance of brain-machine interfaces, promising to make these findings broadly relevant to neuroengineering as well as systems neuroscience.


Asunto(s)
Interfaces Cerebro-Computador/tendencias , Corteza Motora/fisiología , Movimiento/fisiología , Neuronas/fisiología , Animales , Humanos , Corteza Motora/citología , Factores de Tiempo
11.
Adv Exp Med Biol ; 1101: 67-89, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31729672

RESUMEN

Because of high spatial-temporal resolution of neural signals obtained by invasive recording, the invasive brain-machine interfaces (BMI) have achieved great progress in the past two decades. With success in animal research, BMI technology is transferring to clinical trials for helping paralyzed people to restore their lost motor functions. This chapter gives a brief review of BMI development from animal experiments to human clinical studies in the following aspects: (1) BMIs based on rodent animals; (2) BMI based on non-human primates; and (3) pilot BMIs studies in clinical trials. In the end, the chapter concludes with a summary of potential opportunities and future challenges in BMI technology.


Asunto(s)
Interfaces Cerebro-Computador , Animales , Interfaces Cerebro-Computador/normas , Interfaces Cerebro-Computador/tendencias , Ensayos Clínicos como Asunto , Humanos
12.
J Med Internet Res ; 21(11): e16344, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31692449

RESUMEN

Decades of technological developments have populated the field of brain-machine interfaces and neuroprosthetics with several replacement strategies, neural modulation treatments, and rehabilitation techniques to improve the quality of life for patients affected by sensory and motor disabilities. This field is now quickly expanding thanks to advances in neural interfaces, machine learning techniques, and robotics. Despite many clinical successes, and multiple innovations in animal models, brain-machine interfaces remain mainly confined to sophisticated laboratory environments indicating a necessary step forward in the used technology. Interestingly, Elon Musk and Neuralink have recently presented a new brain-machine interface platform with thousands of channels, fast implantation, and advanced signal processing. Here, how their work takes part in the context of the restoration of sensory-motor functions through neuroprostheses is commented.


Asunto(s)
Interfaces Cerebro-Computador , Robótica , Animales , Encéfalo , Humanos , Calidad de Vida , Interfaz Usuario-Computador
13.
Sci Eng Ethics ; 25(1): 83-96, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29129011

RESUMEN

While new generations of implantable brain computer interface (BCI) devices are being developed, evidence in the literature about their impact on the patient experience is lagging. In this article, we address this knowledge gap by analysing data from the first-in-human clinical trial to study patients with implanted BCI advisory devices. We explored perceptions of self-change across six patients who volunteered to be implanted with artificially intelligent BCI devices. We used qualitative methodological tools grounded in phenomenology to conduct in-depth, semi-structured interviews. Results show that, on the one hand, BCIs can positively increase a sense of the self and control; on the other hand, they can induce radical distress, feelings of loss of control, and a rupture of patient identity. We conclude by offering suggestions for the proactive creation of preparedness protocols specific to intelligent-predictive and advisory-BCI technologies essential to prevent potential iatrogenic harms.


Asunto(s)
Inteligencia Artificial , Interfaces Cerebro-Computador/efectos adversos , Prótesis e Implantes/efectos adversos , Autoimagen , Estrés Psicológico/etiología , Tecnología , Encéfalo , Humanos , Inteligencia , Conocimiento , Investigación Cualitativa , Encuestas y Cuestionarios
14.
Neuroimage ; 181: 635-644, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30056196

RESUMEN

Hand grasping is a sophisticated motor task that has received much attention by the neuroscientific community, which demonstrated how grasping activates a network involving parietal, pre-motor and motor cortices using fMRI, ECoG, LFPs and spiking activity. Yet, there is a need for a more precise spatio-temporal analysis as it is still unclear how these brain activations over large cortical areas evolve at the sub-second level. In this study, we recorded ten human participants (1 female) performing visually-guided, self-paced reaching and grasping with precision or power grips. Following the results, we demonstrate the existence of neural correlates of grasping from broadband EEG in self-paced conditions and show how neural correlates of precision and power grasps differentially evolve as grasps unfold. 100 ms before the grasp is secured, bilateral parietal regions showed increasingly differential patterns. Afterwards, sustained differences between both grasps occurred over the bilateral motor and parietal regions, and medial pre-frontal cortex. Furthermore, these differences were sufficiently discriminable to allow single-trial decoding with 70% decoding performance. Functional connectivity revealed differences at the network level between grasps in fronto-parietal networks, in terms of upper-alpha cortical oscillatory power with a strong involvement of ipsilateral hemisphere. Our results supported the existence of fronto-parietal recurrent feedback loops, with stronger interactions for precision grips due to the finer motor control required for this grasping type.


Asunto(s)
Electroencefalografía/métodos , Neuroimagen Funcional/métodos , Mano/fisiología , Actividad Motora/fisiología , Corteza Motora/fisiología , Red Nerviosa/fisiología , Lóbulo Parietal/fisiología , Corteza Prefrontal/fisiología , Desempeño Psicomotor/fisiología , Adulto , Interfaces Cerebro-Computador , Electromiografía/métodos , Electrooculografía/métodos , Femenino , Fuerza de la Mano/fisiología , Humanos , Masculino , Adulto Joven
15.
J Neurophysiol ; 119(4): 1291-1304, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357477

RESUMEN

The development of coordinated reach-to-grasp movement has been well studied in infants and children. However, the role of motor cortex during this development is unclear because it is difficult to study in humans. We took the approach of using a brain-machine interface (BMI) paradigm in rhesus macaques with prior therapeutic amputations to examine the emergence of novel, coordinated reach to grasp. Previous research has shown that after amputation, the cortical area previously involved in the control of the lost limb undergoes reorganization, but prior BMI work has largely relied on finding neurons that already encode specific movement-related information. In this study, we taught macaques to cortically control a robotic arm and hand through operant conditioning, using neurons that were not explicitly reach or grasp related. Over the course of training, stereotypical patterns emerged and stabilized in the cross-covariance between the reaching and grasping velocity profiles, between pairs of neurons involved in controlling reach and grasp, and to a comparable, but lesser, extent between other stable neurons in the network. In fact, we found evidence of this structured coordination between pairs composed of all combinations of neurons decoding reach or grasp and other stable neurons in the network. The degree of and participation in coordination was highly correlated across all pair types. Our approach provides a unique model for studying the development of novel, coordinated reach-to-grasp movement at the behavioral and cortical levels. NEW & NOTEWORTHY Given that motor cortex undergoes reorganization after amputation, our work focuses on training nonhuman primates with chronic amputations to use neurons that are not reach or grasp related to control a robotic arm to reach to grasp through the use of operant conditioning, mimicking early development. We studied the development of a novel, coordinated behavior at the behavioral and cortical level, and the neural plasticity in M1 associated with learning to use a brain-machine interface.


Asunto(s)
Brazo/fisiopatología , Miembros Artificiales , Interfaces Cerebro-Computador , Condicionamiento Operante/fisiología , Actividad Motora/fisiología , Corteza Motora/fisiología , Neuronas/fisiología , Desempeño Psicomotor/fisiología , Robótica , Amputación Quirúrgica , Animales , Conducta Animal/fisiología , Femenino , Macaca mulatta
16.
Eur J Neurosci ; 48(12): 3583-3596, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30345590

RESUMEN

Synchronous spiking of multiple neurons is a key phenomenon in normal brain function and pathologies. Recently, approaches to record spikes from the intact cortical surface using small high-density arrays of microelectrodes have been reported. It remained unaddressed how epicortical spiking relates to intracortical unit activity. We introduced a mesoscale approach using an array of 64 electrodes with intermediate diameter (250 µm) and combined large-coverage epicortical recordings in ferrets with intracortical recordings via laminar probes. Empirical data and modelling strongly suggest that our epicortical electrodes selectively captured synchronized spiking of neurons in the cortex beneath. As a result, responses to sensory stimulation were more robust and less noisy compared to intracortical activity, and receptive field properties were well preserved in epicortical recordings. This should promote insights into assembly-coding beyond the informative value of subdural EEG or single-unit spiking, and be advantageous to real-time applications in brain-machine interfacing.


Asunto(s)
Potenciales de Acción/fisiología , Encéfalo/fisiología , Neuronas/fisiología , Corteza Visual/fisiología , Animales , Estimulación Eléctrica , Electrodos Implantados , Femenino , Hurones , Microelectrodos
17.
Proc Natl Acad Sci U S A ; 112(49): 15202-7, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26504211

RESUMEN

Intracortical microstimulation (ICMS) is a powerful tool to investigate the functional role of neural circuits and may provide a means to restore sensation for patients for whom peripheral stimulation is not an option. In a series of psychophysical experiments with nonhuman primates, we investigate how stimulation parameters affect behavioral sensitivity to ICMS. Specifically, we deliver ICMS to primary somatosensory cortex through chronically implanted electrode arrays across a wide range of stimulation regimes. First, we investigate how the detectability of ICMS depends on stimulation parameters, including pulse width, frequency, amplitude, and pulse train duration. Then, we characterize the degree to which ICMS pulse trains that differ in amplitude lead to discriminable percepts across the range of perceptible and safe amplitudes. We also investigate how discriminability of pulse amplitude is modulated by other stimulation parameters-namely, frequency and duration. Perceptual judgments obtained across these various conditions will inform the design of stimulation regimes for neuroscience and neuroengineering applications.


Asunto(s)
Estimulación Eléctrica , Macaca mulatta/fisiología , Corteza Somatosensorial/fisiología , Animales
18.
Sensors (Basel) ; 16(10)2016 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-27669264

RESUMEN

All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time.


Asunto(s)
Técnicas Biosensibles/métodos , Tecnología Inalámbrica , Interfaces Cerebro-Computador , Humanos , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido
19.
J Comput Neurosci ; 39(2): 107-18, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26142906

RESUMEN

With the goal of improving the quality of life for people suffering from various motor control disorders, brain-machine interfaces provide direct neural control of prosthetic devices by translating neural signals into control signals. These systems act by reading motor intent signals directly from the brain and using them to control, for example, the movement of a cursor on a computer screen. Over the past two decades, much attention has been devoted to the decoding problem: how should recorded neural activity be translated into the movement of the cursor? Most approaches have focused on this problem from an estimation standpoint, i.e., decoders are designed to return the best estimate of motor intent possible, under various sets of assumptions about how the recorded neural signals represent motor intent. Here we recast the decoder design problem from a physical control system perspective, and investigate how various classes of decoders lead to different types of physical systems for the subject to control. This framework leads to new interpretations of why certain types of decoders have been shown to perform better than others. These results have implications for understanding how motor neurons are recruited to perform various tasks, and may lend insight into the brain's ability to conceptualize artificial systems.


Asunto(s)
Interfaces Cerebro-Computador , Corteza Motora/fisiología , Movimiento/fisiología , Neuronas/fisiología , Algoritmos , Electrodos Implantados , Humanos , Modelos Lineales
20.
Exp Brain Res ; 233(12): 3335-47, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26319545

RESUMEN

In this review, we examine the importance of having a body as essential for the brain to transfer information about the outside world to generate appropriate motor responses. We discuss the context-dependent conditioning of the motor control neural circuits and its dependence on the completion of feedback loops, which is in close agreement with the insights of Hebb and colleagues, who have stressed that for learning to occur the body must be intact and able to interact with the outside world. Finally, we apply information theory to data from published studies to evaluate the robustness of the neuronal signals obtained by bypassing the body (as used for brain-machine interfaces) versus via the body to move in the world. We show that recording from a group of neurons that bypasses the body exhibits a vastly degraded level of transfer of information as compared to that of an entire brain using the body to engage in the normal execution of behaviour. We conclude that body sensations provide more than just feedback for movements; they sustain the necessary transfer of information as animals explore their environment, thereby creating associations through learning. This work has implications for the development of brain-machine interfaces used to move external devices.


Asunto(s)
Interfaces Cerebro-Computador , Encéfalo/fisiología , Retroalimentación Sensorial/fisiología , Teoría de la Información , Actividad Motora/fisiología , Volición/fisiología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda