Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 7.682
Filtrar
Más filtros

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(11): e2313594121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442182

RESUMEN

The specific roles that different types of neurons play in recovery from injury is poorly understood. Here, we show that increasing the excitability of ipsilaterally projecting, excitatory V2a neurons using designer receptors exclusively activated by designer drugs (DREADDs) restores rhythmic bursting activity to a previously paralyzed diaphragm within hours, days, or weeks following a C2 hemisection injury. Further, decreasing the excitability of V2a neurons impairs tonic diaphragm activity after injury as well as activation of inspiratory activity by chemosensory stimulation, but does not impact breathing at rest in healthy animals. By examining the patterns of muscle activity produced by modulating the excitability of V2a neurons, we provide evidence that V2a neurons supply tonic drive to phrenic circuits rather than increase rhythmic inspiratory drive at the level of the brainstem. Our results demonstrate that the V2a class of neurons contribute to recovery of respiratory function following injury. We propose that altering V2a excitability is a potential strategy to prevent respiratory motor failure and promote recovery of breathing following spinal cord injury.


Asunto(s)
Diafragma , Traumatismos de la Médula Espinal , Animales , Ratones , Tronco Encefálico , Cafeína , Neuronas , Niacinamida
2.
Annu Rev Physiol ; 85: 93-113, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36323001

RESUMEN

The rhythmicity of breath is vital for normal physiology. Even so, breathing is enriched with multifunctionality. External signals constantly change breathing, stopping it when under water or deepening it during exertion. Internal cues utilize breath to express emotions such as sighs of frustration and yawns of boredom. Breathing harmonizes with other actions that use our mouth and throat, including speech, chewing, and swallowing. In addition, our perception of breathing intensity can dictate how we feel, such as during the slow breathing of calming meditation and anxiety-inducing hyperventilation. Heartbeat originates from a peripheral pacemaker in the heart, but the automation of breathing arises from neural clusters within the brainstem, enabling interaction with other brain areas and thus multifunctionality. Here, we document how the recent transformation of cellular and molecular tools has contributed to our appreciation of the diversity of neuronal types in the breathing control circuit and how they confer the multifunctionality of breathing.


Asunto(s)
Neuronas , Respiración , Humanos , Neuronas/fisiología
3.
Annu Rev Neurosci ; 41: 475-499, 2018 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-29709210

RESUMEN

Rhythmicity is a universal timing mechanism in the brain, and the rhythmogenic mechanisms are generally dynamic. This is illustrated for the neuronal control of breathing, a behavior that occurs as a one-, two-, or three-phase rhythm. Each breath is assembled stochastically, and increasing evidence suggests that each phase can be generated independently by a dedicated excitatory microcircuit. Within each microcircuit, rhythmicity emerges through three entangled mechanisms: ( a) glutamatergic transmission, which is amplified by ( b) intrinsic bursting and opposed by ( c) concurrent inhibition. This rhythmogenic triangle is dynamically tuned by neuromodulators and other network interactions. The ability of coupled oscillators to reconfigure and recombine may allow breathing to remain robust yet plastic enough to conform to nonventilatory behaviors such as vocalization, swallowing, and coughing. Lessons learned from the respiratory network may translate to other highly dynamic and integrated rhythmic systems, if approached one breath at a time.


Asunto(s)
Encéfalo/fisiología , Modelos Neurológicos , Periodicidad , Respiración , Animales , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Humanos , Red Nerviosa/fisiología , Dinámicas no Lineales
4.
Proc Natl Acad Sci U S A ; 120(33): e2302756120, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549272

RESUMEN

The mutual coupling of spin and lattice degrees of freedom is ubiquitous in magnetic materials and potentially creates exotic magnetic states in response to the external magnetic field. Particularly, geometrically frustrated magnets serve as a fertile playground for realizing magnetic superstructure phases. Here, we observe an unconventional two-step magnetostructural transition prior to a half-magnetization plateau in a breathing pyrochlore chromium spinel by means of state-of-the-art magnetization and magnetostriction measurements in ultrahigh magnetic fields available up to 600 T. Considering a microscopic magnetoelastic theory, the intermediate-field phase can be assigned to a magnetic superstructure with a three-dimensional periodic array of 3-up-1-down and canted 2-up-2-down spin molecules. We attribute the emergence of the magnetic superstructure to a unique combination of the strong spin-lattice coupling and large breathing anisotropy.

5.
J Neurosci ; 44(25)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38729762

RESUMEN

Inhibitory neurons embedded within mammalian neural circuits shape breathing, walking, and other rhythmic motor behaviors. At the core of the neural circuit controlling breathing is the preBötzinger Complex (preBötC), where GABAergic (GAD1/2+) and glycinergic (GlyT2+) neurons are functionally and anatomically intercalated among glutamatergic Dbx1-derived (Dbx1+) neurons that generate rhythmic inspiratory drive. The roles of these preBötC inhibitory neurons in breathing remain unclear. We first characterized the spatial distribution of molecularly defined preBötC inhibitory subpopulations in male and female neonatal double reporter mice expressing either tdTomato or EGFP in GlyT2+, GAD1+, or GAD2+ neurons. We found that the majority of preBötC inhibitory neurons expressed both GlyT2 and GAD2 while a much smaller subpopulation also expressed GAD1. To determine the functional role of these subpopulations, we used holographic photostimulation, a patterned illumination technique, in rhythmically active medullary slices from neonatal Dbx1tdTomato;GlyT2EGFP and Dbx1tdTomato;GAD1EGFP double reporter mice of either sex. Stimulation of 4 or 8 preBötC GlyT2+ neurons during endogenous rhythm prolonged the interburst interval in a phase-dependent manner and increased the latency to burst initiation when bursts were evoked by stimulation of Dbx1+ neurons. In contrast, stimulation of 4 or 8 preBötC GAD1+ neurons did not affect interburst interval or latency to burst initiation. Instead, photoactivation of GAD1+ neurons during the inspiratory burst prolonged endogenous and evoked burst duration and decreased evoked burst amplitude. We conclude that GlyT2+/GAD2+ neurons modulate breathing rhythm by delaying burst initiation while a smaller GAD1+ subpopulation shapes inspiratory patterning by altering burst duration and amplitude.


Asunto(s)
Inhalación , Animales , Ratones , Femenino , Masculino , Inhalación/fisiología , Inhibición Neural/fisiología , Bulbo Raquídeo/fisiología , Bulbo Raquídeo/citología , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Ratones Transgénicos , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Centro Respiratorio/fisiología , Centro Respiratorio/citología , Neuronas/fisiología , Periodicidad , Animales Recién Nacidos
6.
J Neurosci ; 44(27)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38789262

RESUMEN

We previously showed that orexin neurons are activated by hypoxia and facilitate the peripheral chemoreflex (PCR)-mediated hypoxic ventilatory response (HVR), mostly by promoting the respiratory frequency response. Orexin neurons project to the nucleus of the solitary tract (nTS) and the paraventricular nucleus of the hypothalamus (PVN). The PVN contributes significantly to the PCR and contains nTS-projecting corticotropin-releasing hormone (CRH) neurons. We hypothesized that in male rats, orexin neurons contribute to the PCR by activating nTS-projecting CRH neurons. We used neuronal tract tracing and immunohistochemistry (IHC) to quantify the degree that hypoxia activates PVN-projecting orexin neurons. We coupled this with orexin receptor (OxR) blockade with suvorexant (Suvo, 20 mg/kg, i.p.) to assess the degree that orexin facilitates the hypoxia-induced activation of CRH neurons in the PVN, including those projecting to the nTS. In separate groups of rats, we measured the PCR following systemic orexin 1 receptor (Ox1R) blockade (SB-334867; 1 mg/kg) and specific Ox1R knockdown in PVN. OxR blockade with Suvo reduced the number of nTS and PVN neurons activated by hypoxia, including those CRH neurons projecting to nTS. Hypoxia increased the number of activated PVN-projecting orexin neurons but had no effect on the number of activated nTS-projecting orexin neurons. Global Ox1R blockade and partial Ox1R knockdown in the PVN significantly reduced the PCR. Ox1R knockdown also reduced the number of activated PVN neurons and the number of activated tyrosine hydroxylase neurons in the nTS. Our findings suggest orexin facilitates the PCR via nTS-projecting CRH neurons expressing Ox1R.


Asunto(s)
Hormona Liberadora de Corticotropina , Neuronas , Antagonistas de los Receptores de Orexina , Receptores de Orexina , Orexinas , Ratas Sprague-Dawley , Núcleo Solitario , Animales , Masculino , Hormona Liberadora de Corticotropina/metabolismo , Orexinas/metabolismo , Ratas , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/efectos de los fármacos , Núcleo Solitario/metabolismo , Núcleo Solitario/fisiología , Núcleo Solitario/efectos de los fármacos , Antagonistas de los Receptores de Orexina/farmacología , Receptores de Orexina/metabolismo , Hipoxia/metabolismo , Triazoles/farmacología , Azepinas/farmacología , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/fisiología
7.
Am J Respir Crit Care Med ; 209(6): 738-747, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38032260

RESUMEN

Rationale: The respiratory mechanisms of a successful transition of preterm infants after birth are largely unknown. Objectives: To describe intrapulmonary gas flows during different breathing patterns directly after birth. Methods: Analysis of electrical impedance tomography data from a previous randomized trial in preterm infants at 26-32 weeks gestational age. Electrical impedance tomography data for individual breaths were extracted, and lung volumes as well as ventilation distribution were calculated for end of inspiration, end of expiratory braking and/or holding maneuver, and end of expiration. Measurements and Main Results: Overall, 10,348 breaths from 33 infants were analyzed. We identified three distinct breath types within the first 10 minutes after birth: tidal breathing (44% of all breaths; sinusoidal breathing without expiratory disruption), braking (50%; expiratory brake with a short duration), and holding (6%; expiratory brake with a long duration). Only after holding breaths did end-expiratory lung volume increase: Median (interquartile range [IQR]) = 2.0 AU/kg (0.6 to 4.3), 0.0 (-1.0 to 1.1), and 0.0 (-1.1 to 0.4), respectively; P < 0.001]. This was mediated by intrathoracic air redistribution to the left and non-gravity-dependent parts of the lung through pendelluft gas flows during braking and/or holding maneuvers. Conclusions: Respiratory transition in preterm infants is characterized by unique breathing patterns. Holding breaths contribute to early lung aeration after birth in preterm infants. This is facilitated by air redistribution during braking/holding maneuvers through pendelluft flow, which may prevent lung liquid reflux in this highly adaptive situation. This study deciphers mechanisms for a successful fetal-to-neonatal transition and increases our pathophysiological understanding of this unique moment in life. Clinical trial registered with www.clinicaltrials.gov (NCT04315636).


Asunto(s)
Recien Nacido Prematuro , Respiración , Humanos , Recién Nacido , Espiración , Edad Gestacional , Recien Nacido Prematuro/fisiología , Pulmón , Ensayos Clínicos Controlados Aleatorios como Asunto
8.
J Neurosci ; 43(27): 4959-4971, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37160367

RESUMEN

Sudden unexpected death in epilepsy (SUDEP) has been linked to respiratory dysfunction, but the mechanisms underlying this association remain unclear. Here we found that both focal and generalized convulsive seizures (GCSs) in epilepsy patients caused a prolonged decrease in the hypercapnic ventilatory response (HCVR; a measure of respiratory CO2 chemoreception). We then studied Scn1a R1407X/+ (Dravet syndrome; DS) and Scn8a N1768D/+ (D/+) mice of both sexes, two models of SUDEP, and found that convulsive seizures caused a postictal decrease in ventilation and severely depressed the HCVR in a subset of animals. Those mice with severe postictal depression of the HCVR also exhibited transient postictal hypothermia. A combination of blunted HCVR and abnormal thermoregulation is known to occur with dysfunction of the serotonin (5-hydroxytryptamine; 5-HT) system in mice. Depleting 5-HT with para-chlorophenylalanine (PCPA) mimicked seizure-induced hypoventilation, partially occluded the postictal decrease in the HCVR, exacerbated hypothermia, and increased postictal mortality in DS mice. Conversely, pretreatment with the 5-HT agonist fenfluramine reduced postictal inhibition of the HCVR and hypothermia. These results are consistent with the previous observation that seizures cause transient impairment of serotonergic neuron function, which would be expected to inhibit the many aspects of respiratory control dependent on 5-HT, including baseline ventilation and the HCVR. These results provide a scientific rationale to investigate the interictal and/or postictal HCVR as noninvasive biomarkers for those at high risk of seizure-induced death, and to prevent SUDEP by enhancing postictal 5-HT tone.SIGNIFICANCE STATEMENT There is increasing evidence that seizure-induced respiratory dysfunction contributes to the pathophysiology of sudden unexpected death in epilepsy (SUDEP). However, the cellular basis of this dysfunction has not been defined. Here, we show that seizures impair CO2 chemoreception in some epilepsy patients. In two mouse models of SUDEP we found that generalized convulsive seizures impaired CO2 chemoreception, and induced hypothermia, two effects reported with serotonergic neuron dysfunction. The defects in chemoreception and thermoregulation were exacerbated by chemical depletion of serotonin and reduced with fenfluramine, suggesting that seizure-induced respiratory dysfunction may be due to impairment of serotonin neuron function. These findings suggest that impaired chemoreception because of transient inhibition of serotonergic neurons may contribute to the pathophysiology of SUDEP.


Asunto(s)
Epilepsia , Hipotermia , Trastornos Respiratorios , Muerte Súbita e Inesperada en la Epilepsia , Masculino , Femenino , Ratones , Animales , Serotonina/farmacología , Dióxido de Carbono/farmacología , Hipotermia/complicaciones , Convulsiones , Respiración , Muerte Súbita/etiología , Fenfluramina/farmacología , Neuronas Serotoninérgicas/fisiología , Regulación de la Temperatura Corporal , Canal de Sodio Activado por Voltaje NAV1.6
9.
J Neurosci ; 43(30): 5501-5520, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37290937

RESUMEN

Respiratory chemoreceptor activity encoding arterial Pco2 and Po2 is a critical determinant of ventilation. Currently, the relative importance of several putative chemoreceptor mechanisms for maintaining eupneic breathing and respiratory homeostasis is debated. Transcriptomic and anatomic evidence suggests that bombesin-related peptide Neuromedin-B (Nmb) expression identifies chemoreceptor neurons in the retrotrapezoid nucleus (RTN) that mediate the hypercapnic ventilatory response, but functional support is missing. In this study, we generated a transgenic Nmb-Cre mouse and used Cre-dependent cell ablation and optogenetics to test the hypothesis that RTN Nmb neurons are necessary for the CO2-dependent drive to breathe in adult male and female mice. Selective ablation of ∼95% of RTN Nmb neurons causes compensated respiratory acidosis because of alveolar hypoventilation, as well as profound breathing instability and respiratory-related sleep disruption. Following RTN Nmb lesion, mice were hypoxemic at rest and were prone to severe apneas during hyperoxia, suggesting that oxygen-sensitive mechanisms, presumably the peripheral chemoreceptors, compensate for the loss of RTN Nmb neurons. Interestingly, ventilation following RTN Nmb -lesion was unresponsive to hypercapnia, but behavioral responses to CO2 (freezing and avoidance) and the hypoxia ventilatory response were preserved. Neuroanatomical mapping shows that RTN Nmb neurons are highly collateralized and innervate the respiratory-related centers in the pons and medulla with a strong ipsilateral preference. Together, this evidence suggests that RTN Nmb neurons are dedicated to the respiratory effects of arterial Pco2/pH and maintain respiratory homeostasis in intact conditions and suggest that malfunction of these neurons could underlie the etiology of certain forms of sleep-disordered breathing in humans.SIGNIFICANCE STATEMENT Respiratory chemoreceptors stimulate neural respiratory motor output to regulate arterial Pco2 and Po2, thereby maintaining optimal gas exchange. Neurons in the retrotrapezoid nucleus (RTN) that express the bombesin-related peptide Neuromedin-B are proposed to be important in this process, but functional evidence has not been established. Here, we developed a transgenic mouse model and demonstrated that RTN neurons are fundamental for respiratory homeostasis and mediate the stimulatory effects of CO2 on breathing. Our functional and anatomic data indicate that Nmb-expressing RTN neurons are an integral component of the neural mechanisms that mediate CO2-dependent drive to breathe and maintain alveolar ventilation. This work highlights the importance of the interdependent and dynamic integration of CO2- and O2-sensing mechanisms in respiratory homeostasis of mammals.


Asunto(s)
Bombesina , Dióxido de Carbono , Humanos , Ratones , Masculino , Femenino , Animales , Bombesina/metabolismo , Respiración , Células Quimiorreceptoras/fisiología , Hipercapnia , Homeostasis , Ratones Transgénicos , Oxígeno/metabolismo , Neuronas/fisiología , Centro Respiratorio , Mamíferos
10.
J Neurosci ; 43(2): 240-260, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36400528

RESUMEN

The preBötzinger Complex (preBötC) encodes inspiratory time as rhythmic bursts of activity underlying each breath. Spike synchronization throughout a sparsely connected preBötC microcircuit initiates bursts that ultimately drive the inspiratory motor patterns. Using minimal microcircuit models to explore burst initiation dynamics, we examined the variability in probability and latency to burst following exogenous stimulation of a small subset of neurons, mimicking experiments. Among various physiologically plausible graphs of 1000 excitatory neurons constructed using experimentally determined synaptic and connectivity parameters, directed Erdos-Rényi graphs with a broad (lognormal) distribution of synaptic weights best captured the experimentally observed dynamics. preBötC synchronization leading to bursts was regulated by the efferent connectivity of spiking neurons that are optimally tuned to amplify modest preinspiratory activity through input convergence. Using graph-theoretic and machine learning-based analyses, we found that input convergence of efferent connectivity at the next-nearest neighbor order was a strong predictor of incipient synchronization. Our analyses revealed a crucial role of synaptic heterogeneity in imparting exceptionally robust yet flexible preBötC attractor dynamics. Given the pervasiveness of lognormally distributed synaptic strengths throughout the nervous system, we postulate that these mechanisms represent a ubiquitous template for temporal processing and decision-making computational motifs.SIGNIFICANCE STATEMENT Mammalian breathing is robust, virtually continuous throughout life, yet is inherently labile: to adapt to rapid metabolic shifts (e.g., fleeing a predator or chasing prey); for airway reflexes; and to enable nonventilatory behaviors (e.g., vocalization, breathholding, laughing). Canonical theoretical frameworks-based on pacemakers and intrinsic bursting-cannot account for the observed robustness and flexibility of the preBötzinger Complex rhythm. Experiments reveal that network synchronization is the key to initiate inspiratory bursts in each breathing cycle. We investigated preBötC synchronization dynamics using network models constructed with experimentally determined neuronal and synaptic parameters. We discovered that a fat-tailed (non-Gaussian) synaptic weight distribution-a manifestation of synaptic heterogeneity-augments neuronal synchronization and attractor dynamics in this vital rhythmogenic network, contributing to its extraordinary reliability and responsiveness.


Asunto(s)
Neuronas , Centro Respiratorio , Animales , Centro Respiratorio/fisiología , Reproducibilidad de los Resultados , Neuronas/fisiología , Respiración , Mamíferos
11.
Am J Respir Cell Mol Biol ; 71(2): 195-206, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38597725

RESUMEN

Extreme heat caused by climate change is increasing the transmission of infectious diseases, resulting in a sharp rise in heat-related illness and mortality. Understanding the mechanistic link between heat, inflammation, and disease is thus important for public health. Thermal hyperpnea, and consequent respiratory alkalosis, is crucial in febrile seizures and convulsions induced by heat stress in humans. Here, we address what causes thermal hyperpnea in neonates and how it is affected by inflammation. Transient receptor potential cation channel subfamily V member 1 (TRPV1), a heat-activated channel, is sensitized by inflammation and modulates breathing and thus may play a key role. To investigate whether inflammatory sensitization of TRPV1 modifies neonatal ventilatory responses to heat stress, leading to respiratory alkalosis and an increased susceptibility to hyperthermic seizures, we treated neonatal rats with bacterial LPS, and breathing, arterial pH, in vitro vagus nerve activity, and seizure susceptibility were assessed during heat stress in the presence or absence of a TRPV1 antagonist (AMG-9810) or shRNA-mediated TRPV1 suppression. LPS-induced inflammatory preconditioning lowered the threshold temperature and latency of hyperthermic seizures. This was accompanied by increased tidal volume, minute ventilation, expired CO2, and arterial pH (alkalosis). LPS exposure also elevated vagal spiking and intracellular calcium concentrations in response to hyperthermia. TRPV1 inhibition with AMG-9810 or shRNA reduced the LPS-induced susceptibility to hyperthermic seizures and altered the breathing pattern to fast shallow breaths (tachypnea), making each breath less efficient and restoring arterial pH. These results indicate that inflammation exacerbates thermal hyperpnea-induced respiratory alkalosis associated with increased susceptibility to hyperthermic seizures, primarily mediated by TRPV1 localized to vagus neurons.


Asunto(s)
Inflamación , Convulsiones Febriles , Canales Catiónicos TRPV , Convulsiones Febriles/fisiopatología , Convulsiones Febriles/metabolismo , Animales , Canales Catiónicos TRPV/metabolismo , Inflamación/metabolismo , Ratas , Respuesta al Choque Térmico , Animales Recién Nacidos , Lipopolisacáridos/farmacología , Nervio Vago/fisiopatología , Ratas Sprague-Dawley , Alcalosis Respiratoria/metabolismo , Alcalosis Respiratoria/fisiopatología , Hipertermia/metabolismo , Hipertermia/fisiopatología
12.
Dev Biol ; 500: 10-21, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37230380

RESUMEN

Laryngeal birth defects are considered rare, but they can be life-threatening conditions. The BMP4 gene plays an important role in organ development and tissue remodeling throughout life. Here we examined its role in laryngeal development complementing similar efforts for the lung, pharynx, and cranial base. Our goal was to determine how different imaging techniques contribute to a better understanding of the embryonic anatomy of the normal and diseased larynx in small specimens. Contrast-enhanced micro CT images of embryonic larynx tissue from a mouse model with Bmp4 deletion informed by histology and whole-mount immunofluorescence were used to reconstruct the laryngeal cartilaginous framework in three dimensions. Laryngeal defects included laryngeal cleft, laryngeal asymmetry, ankylosis and atresia. Results implicate BMP4 in laryngeal development and show that the 3D reconstruction of laryngeal elements provides a powerful approach to visualize laryngeal defects and thereby overcoming shortcomings of 2D histological sectioning and whole mount immunofluorescence.


Asunto(s)
Laringe , Animales , Ratones , Faringe , Transducción de Señal
13.
J Physiol ; 602(1): 93-112, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38063489

RESUMEN

The Kölliker-Fuse nucleus (KF), which is part of the parabrachial complex, participates in the generation of eupnoea under resting conditions and the control of active abdominal expiration when increased ventilation is required. Moreover, dysfunctions in KF neuronal activity are believed to play a role in the emergence of respiratory abnormalities seen in Rett syndrome (RTT), a progressive neurodevelopmental disorder associated with an irregular breathing pattern and frequent apnoeas. Relatively little is known, however, about the intrinsic dynamics of neurons within the KF and how their synaptic connections affect breathing pattern control and contribute to breathing irregularities. In this study, we use a reduced computational model to consider several dynamical regimes of KF activity paired with different input sources to determine which combinations are compatible with known experimental observations. We further build on these findings to identify possible interactions between the KF and other components of the respiratory neural circuitry. Specifically, we present two models that both simulate eupnoeic as well as RTT-like breathing phenotypes. Using nullcline analysis, we identify the types of inhibitory inputs to the KF leading to RTT-like respiratory patterns and suggest possible KF local circuit organizations. When the identified properties are present, the two models also exhibit quantal acceleration of late-expiratory activity, a hallmark of active expiration featuring forced exhalation, with increasing inhibition to KF, as reported experimentally. Hence, these models instantiate plausible hypotheses about possible KF dynamics and forms of local network interactions, thus providing a general framework as well as specific predictions for future experimental testing. KEY POINTS: The Kölliker-Fuse nucleus (KF), a part of the parabrachial complex, is involved in regulating normal breathing and controlling active abdominal expiration during increased ventilation. Dysfunction in KF neuronal activity is thought to contribute to respiratory abnormalities seen in Rett syndrome (RTT). This study utilizes computational modelling to explore different dynamical regimes of KF activity and their compatibility with experimental observations. By analysing different model configurations, the study identifies inhibitory inputs to the KF that lead to RTT-like respiratory patterns and proposes potential KF local circuit organizations. Two models are presented that simulate both normal breathing and RTT-like breathing patterns. These models provide testable hypotheses and specific predictions for future experimental investigations, offering a general framework for understanding KF dynamics and potential network interactions.


Asunto(s)
Núcleo de Kölliker-Fuse , Síndrome de Rett , Humanos , Núcleo de Kölliker-Fuse/fisiología , Respiración , Neuronas , Simulación por Computador
14.
J Physiol ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38534039

RESUMEN

Periodic breathing during sleep at high altitude is almost universal among sojourners. Here, in the context of acclimatization and adaptation, we provide a contemporary review on periodic breathing at high altitude, and explore whether this is an adaptive or maladaptive process. The mechanism(s), prevalence and role of periodic breathing in acclimatized lowlanders at high altitude are contrasted with the available data from adapted indigenous populations (e.g. Andean and Tibetan highlanders). It is concluded that (1) periodic breathing persists with acclimatization in lowlanders and the severity is proportional to sleeping altitude; (2) periodic breathing does not seem to coalesce with poor sleep quality such that, with acclimatization, there appears to be a lengthening of cycle length and minimal impact on the average sleeping oxygen saturation; and (3) high altitude adapted highlanders appear to demonstrate a blunting of periodic breathing, compared to lowlanders, comprising a feature that withstands the negative influences of chronic mountain sickness. These observations indicate that periodic breathing persists with high altitude acclimatization with no obvious negative consequences; however, periodic breathing is attenuated with high altitude adaptation and therefore potentially reflects an adaptive trait to this environment.

15.
Pflugers Arch ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150501

RESUMEN

Aging invariably decreases sensory and motor stimuli and affects several neuronal systems and their connectivity to key brain regions, including those involved in breathing. Nevertheless, further investigation is needed to fully comprehend the link between senescence and respiratory function. Here, we investigate whether a mouse model of accelerated senescence could develop central and peripheral respiratory abnormalities. Adult male Senescence Accelerated Mouse Prone 8 (SAMP8) and the control SAMR1 mice (10 months old) were used. Ventilatory parameters were assessed by whole-body plethysmography, and measurements of respiratory input impedance were performed. SAMP8 mice exhibited a reduction in the density of neurokinin-1 receptor immunoreactivity in the entire ventral respiratory column. Physiological experiments showed that SAMP8 mice exhibited a decreased tachypneic response to hypoxia (FiO2 = 0.08; 10 min) or hypercapnia (FiCO2 = 0.07; 10 min). Additionally, the ventilatory response to hypercapnia increased further due to higher tidal volume. Measurements of respiratory mechanics in SAMP8 mice showed decreased static compliance (Cstat), inspiratory capacity (IC), resistance (Rn), and elastance (H) at different ages (3, 6, and 10 months old). SAMP8 mice also have a decrease in contractile response to methacholine compared to SAMR1. In conclusion, our findings indicate that SAMP8 mice display a loss of the NK1-expressing neurons in the respiratory brainstem centers, along with impairments in both central and peripheral respiratory mechanisms. These observations suggest a potential impact on breathing in a senescence animal model.

16.
Artículo en Inglés | MEDLINE | ID: mdl-39104318

RESUMEN

Considering that the retrotrapezoid nucleus/respiratory parafacial region (RTN/pFRG) would be an important center in the central nervous system involved in the maintenance and modulation of respiratory activity, we hypothesized that neurons in this nucleus would also be involved in the postinspiratory phase of the respiratory cycle through a connection with the pontine Kölliker-Fuse (KF) region. Here we performed pharmacogenetic manipulation (AAV-hM3D(Gq)-mCherry or AAV-hM4D(Gi)-mCherry) in VGlut2-cre, Ai6 conscious mice to evaluate breathing parameters through whole body plethysmography under baseline conditions (normoxia: FiO2 = 0.21) or under hypercapnia or hypoxia challenges (FiCO2 = 0.07 or FiO2 = 0.08). Under normoxia, selective stimulation of RTN/pFRG resulted in a smaller increase in VE (1,272 ± 102.5, vs. RTN/pFRG stimulation: 1,878 ± 122.1 ml/kg/min), due to a smaller increase in VT (5.4 ± 0.35, vs. RTN/pFRG stimulation: 7.77 ± 0.21 ml/kg) without changing fR in a condition of KF inhibition. However, inhibition of the VGlut2 neurons in the KF did affect the TE1 produced by selective activation of RTN/pFRG (119.9 ± 2.53, vs. RTN/pFRG stimulation: 104 ± 2.46 ms). Both the hypercapnia and hypoxia ventilatory response were reduced after inhibition of VGlut2-expressing KF neurons. Therefore, consistent with anatomical projections RTN/pFRG neurons regulate lung ventilation by controlling all aspects of breathing, i.e breathing frequency, inspiration, postinspiration and active expiration. All the modulation seems to be dependent on the integrity of the glutamatergic neurons in the KF region.

17.
Am J Physiol Endocrinol Metab ; 327(1): E111-E120, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38836780

RESUMEN

The master circadian clock, located in the suprachiasmatic nuclei (SCN), organizes the daily rhythm in minute ventilation (V̇e). However, the extent that the daily rhythm in V̇e is secondary to SCN-imposed O2 and CO2 cycles (i.e., metabolic rate) or driven by other clock mechanisms remains unknown. Here, we experimentally shifted metabolic rate using time-restricted feeding (without affecting light-induced synchronization of the SCN) to determine the influence of metabolic rate in orchestrating the daily V̇e rhythm. Mice eating predominantly at night exhibited robust daily rhythms in O2 consumption (V̇o2), CO2 production (V̇co2), and V̇e with similar peak times (approximately ZT18) that were consistent with SCN organization. However, feeding mice exclusively during the day separated the relative timing of metabolic and ventilatory rhythms, resulting in an approximately 8.5-h advance in V̇co2 and a disruption of the V̇e rhythm, suggesting opposing circadian and metabolic influences on V̇e. To determine if the molecular clock of cells involved in the neural control of breathing contributes to the daily V̇e rhythm, we examined V̇e in mice lacking BMAL1 in Phox2b-expressing respiratory cells (i.e., BKOP mice). The ventilatory and metabolic rhythms of predominantly night-fed BKOP mice did not differ from wild-type mice. However, in contrast to wild-type mice, exclusive day feeding of BKOP mice led to an unfettered daily V̇e rhythm with a peak time aligning closely with the daily V̇co2 rhythm. Taken together, these results indicate that both daily V̇co2 changes and intrinsic circadian time-keeping within Phox2b respiratory cells are predominant orchestrators of the daily rhythm in ventilation.NEW & NOTEWORTHY The master circadian clock organizes the daily rhythm in ventilation; however, the extent that this rhythm is driven by SCN regulation of metabolic rate versus other clock mechanisms remains unknown. We report that metabolic rate alone is insufficient to explain the daily oscillation in ventilation and that neural respiratory clocks within Phox2b-expressing cells additionally optimize breathing. Collectively, these findings advance our mechanistic understanding of the circadian rhythm in ventilatory control.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Ratones Endogámicos C57BL , Núcleo Supraquiasmático , Animales , Ratones , Ritmo Circadiano/fisiología , Relojes Circadianos/fisiología , Masculino , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiología , Consumo de Oxígeno/fisiología , Dióxido de Carbono/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Conducta Alimentaria/fisiología , Respiración , Ventilación Pulmonar/fisiología , Metabolismo Energético/fisiología
18.
J Neurophysiol ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052237

RESUMEN

The diaphragm muscle (DIAm) is unique to mammals and the primary muscle involved in breathing. In awake animals, considerable heterogeneity in DIAm electromyographic (EMG) activity reflects varied ventilatory and non-ventilatory behaviors. Experiments in awake animals are an essential component to understanding the neuromotor control of breathing; thus, it is paramount to unambiguously identify DIAm EMG activity that in fact reflects breathing. Current strategies for doing so in a reproducible, reliable, and efficient fashion are lacking. The present study used machine learning to evaluate DIAm EMG from awake rats using hierarchical clustering across four-dimensional feature space to classify eupneic breathing. Our model, which can be implemented with automated threshold of the clustering dendrogram, successfully identified eupneic breathing with high F1 score (0.92), specificity (0.70), and accuracy (0.88), indicating that it is a robust and reliable tool for investigating the neural control of breathing.

19.
J Neurophysiol ; 132(1): 23-33, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38748407

RESUMEN

The apolipoprotein E (APOE) gene has been studied due to its influence on Alzheimer's disease (AD) development and work in an APOE mouse model recently demonstrated impaired respiratory motor plasticity following spinal cord injury (SCI). Individuals with AD often copresent with obstructive sleep apnea (OSA) characterized by cessations in breathing during sleep. Despite the prominence of APOE genotype and sex as factors in AD progression, little is known about the impact of these variables on respiratory control. Ventilation is tightly regulated across many systems, with respiratory rhythm formation occurring in the brainstem but modulated in response to chemoreception. Alterations within these modulatory systems may result in disruptions of appropriate respiratory control and ultimately, disease. Using mice expressing two different humanized APOE alleles, we characterized how sex and the presence of APOE3 or APOE4 influences ventilation during baseline breathing (normoxia) and during respiratory challenges. We show that sex and APOE genotype influence breathing during hypoxic challenge, which may have clinical implications in the context of AD and OSA. In addition, female mice, while responding robustly to hypoxia, were unable to recover to baseline respiratory levels, emphasizing sex differences in disordered breathing.NEW & NOTEWORTHY This study is the first to use whole body plethysmography (WBP) to measure the impact of APOE alleles on breathing under normoxia and during adverse respiratory challenges in a targeted replacement Alzheimer's model. Both sex and genotype were shown to affect breathing under normoxia, hypoxic challenge, and hypoxic-hypercapnic challenge. This work has important implications regarding the impact of genetics on respiratory control as well as applications pertaining to conditions of disordered breathing including sleep apnea and neurotrauma.


Asunto(s)
Hipoxia , Animales , Femenino , Masculino , Ratones , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Genotipo , Hipercapnia/fisiopatología , Hipoxia/fisiopatología , Ratones Endogámicos C57BL , Ratones Transgénicos , Respiración , Caracteres Sexuales , Factores Sexuales
20.
J Neurophysiol ; 131(6): 1188-1199, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691529

RESUMEN

Prolonged inhibition of respiratory neural activity elicits a long-lasting increase in phrenic nerve amplitude once respiratory neural activity is restored. Such long-lasting facilitation represents a form of respiratory motor plasticity known as inactivity-induced phrenic motor facilitation (iPMF). Although facilitation also occurs in inspiratory intercostal nerve activity after diminished respiratory neural activity (iIMF), it is of shorter duration. Atypical PKC activity in the cervical spinal cord is necessary for iPMF and iIMF, but the site and specific isoform of the relevant atypical PKC are unknown. Here, we used RNA interference to test the hypothesis that the zeta atypical PKC isoform (PKCζ) within phrenic motor neurons is necessary for iPMF but PKCζ within intercostal motor neurons is unnecessary for transient iIMF. Intrapleural injections of siRNAs targeting PKCζ (siPKCζ) to knock down PKCζ mRNA within phrenic and intercostal motor neurons were made in rats. Control rats received a nontargeting siRNA (NTsi) or an active siRNA pool targeting a novel PKC isoform, PKCθ (siPKCθ), which is required for other forms of respiratory motor plasticity. Phrenic nerve burst amplitude and external intercostal (T2) electromyographic (EMG) activity were measured in anesthetized and mechanically ventilated rats exposed to 30 min of respiratory neural inactivity (i.e., neural apnea) created by modest hypocapnia (20 min) or a similar recording duration without neural apnea (time control). Phrenic burst amplitude was increased in rats treated with NTsi (68 ± 10% baseline) and siPKCθ (57 ± 8% baseline) 60 min after neural apnea vs. time control rats (-3 ± 3% baseline), demonstrating iPMF. In contrast, intrapleural siPKCζ virtually abolished iPMF (5 ± 4% baseline). iIMF was transient in all groups exposed to neural apnea; however, intrapleural siPKCζ attenuated iIMF 5 min after neural apnea (50 ± 21% baseline) vs. NTsi (97 ± 22% baseline) and siPKCθ (103 ± 20% baseline). Neural inactivity elevated the phrenic, but not intercostal, responses to hypercapnia, an effect that was blocked by siPKCζ. We conclude that PKCζ within phrenic motor neurons is necessary for long-lasting iPMF, whereas intercostal motor neuron PKCζ contributes to, but is not necessary for, transient iIMF.NEW & NOTEWORTHY We report important new findings concerning the mechanisms regulating a form of spinal neuroplasticity elicited by prolonged inhibition of respiratory neural activity, inactivity-induced phrenic motor facilitation (iPMF). We demonstrate that the atypical PKC isoform PKCζ within phrenic motor neurons is necessary for long-lasting iPMF, whereas intercostal motor neuron PKCζ contributes to, but is not necessary for, transient inspiratory intercostal facilitation. Our findings are novel and advance our understanding of mechanisms contributing to phrenic motor plasticity.


Asunto(s)
Neuronas Motoras , Nervio Frénico , Proteína Quinasa C , Ratas Sprague-Dawley , Animales , Nervio Frénico/fisiología , Proteína Quinasa C/metabolismo , Proteína Quinasa C/fisiología , Neuronas Motoras/fisiología , Masculino , Ratas , Plasticidad Neuronal/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda