Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37629099

RESUMEN

An oil palm (Elaeis guineensis Jacq.) bud rod disorder of unknown etiology, named Fatal Yellowing (FY) disease, is regarded as one of the top constraints with respect to the growth of the palm oil industry in Brazil. FY etiology has been a challenge embraced by several research groups in plant pathology throughout the last 50 years in Brazil, with no success in completing Koch's postulates. Most recently, the hypothesis of having an abiotic stressor as the initial cause of FY has gained ground, and oxygen deficiency (hypoxia) damaging the root system has become a candidate for stress. Here, a comprehensive, large-scale, single- and multi-omics integration analysis of the metabolome and transcriptome profiles on the leaves of oil palm plants contrasting in terms of FY symptomatology-asymptomatic and symptomatic-and collected in two distinct seasons-dry and rainy-is reported. The changes observed in the physicochemical attributes of the soil and the chemical attributes and metabolome profiles of the leaves did not allow the discrimination of plants which were asymptomatic or symptomatic for this disease, not even in the rainy season, when the soil became waterlogged. However, the multi-omics integration analysis of enzymes and metabolites differentially expressed in asymptomatic and/or symptomatic plants in the rainy season compared to the dry season allowed the identification of the metabolic pathways most affected by the changes in the environment, opening an opportunity for additional characterization of the role of hypoxia in FY symptom intensification. Finally, the initial analysis of a set of 56 proteins/genes differentially expressed in symptomatic plants compared to the asymptomatic ones, independent of the season, has presented pieces of evidence suggesting that breaks in the non-host resistance to non-adapted pathogens and the basal immunity to adapted pathogens, caused by the anaerobic conditions experienced by the plants, might be linked to the onset of this disease. This set of genes might offer the opportunity to develop biomarkers for selecting oil palm plants resistant to this disease and to help pave the way to employing strategies to keep the safety barriers raised and strong.


Asunto(s)
Arecaceae , Olea , Arecaceae/genética , Brasil , Hipoxia , Industrias , Metaboloma
2.
Molecules ; 27(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36364139

RESUMEN

Elaeis guineensis Jacq. has gained a reputation in the food industry as an incredible crop capable of supplying the world's largest edible oil production. In Ecuador, an important oil palm-producing country, this crop is affected in a high percentage by the bud rot disease, which is responsible for palm death. The main objective of the investigation was dedicated to understanding the palm defense mechanism facing bud rot disease, translated in the induction of reactive oxygen species, activation of defensive machinery comprising enzymatic and non-enzymatic antioxidative components, secondary metabolites, carotenoids accumulation in the palm during all stages of disease infection. For this, a survey was conducted in different oil palm plantations in the Esmeraldas province, one of the most representative for its highest incidence of bud rot disease. The survey completed DPPH, FRAP, ABTS, and other spectrophotometric analyses to underline the biochemical, biological, and physiological palm response front of bud rot incidence. The palm defense strategy in each disease stage could be represented by the phenolic compound's involvement, an increment of antioxidant activity, and the high enzymatic activity of phenylalanine ammonia-lyase (PAL). The results of the investigation made understandable the palm defense strategy front of this disease, respectively, the antioxidative defense and the palm secondary compounds involved.


Asunto(s)
Antioxidantes , Arecaceae , Antioxidantes/metabolismo , Ecuador , Arecaceae/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo
3.
World J Microbiol Biotechnol ; 35(3): 44, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30810828

RESUMEN

Bud rot disease is a damaging disease of oil palm in Colombia. The pathogen responsible for this disease is a species of oomyctes, Phytophthora palmivora which is also the causal pathogen of several tropical crop diseases such as fruit rot and stem canker of cocoa, rubber, durian and jackfruit. No outbreaks of bud rot have been reported in oil palm in Malaysia or other Southeast Asian countries, despite this particular species being present in the region. Analysis of the genomic sequences of several genetic markers; the internal transcribe spacer regions (ITS) of the ribosomal RNA gene cluster, beta-tubulin gene, translation elongation factor 1 alpha gene (EF-1α), cytochrome c oxidase subunit I & II (COXI and COXII) gene cluster along with amplified fragment length polymorphism (AFLP) analyses have been carried out to investigate the genetic diversity and variation of P. palmivora isolates from around the world and from different hosts in comparison to Colombian oil palm isolates, as one of the steps in understanding why this species of oomycetes causes devastating damage to oil palm in Latin America but not in other regions. Phylogenetic analyses of these regions showed that the Colombian oil palm isolates were not separated from Malaysian isolates. AFLP analysis and a new marker PPHPAV, targeting an unclassified hypothetical protein, was found to be able to differentiate Malaysian and Colombian isolates and showed a clear clade separations. Despite this, pathogenicity studies did not show any significant differences in the level of aggressiveness of different isolates against oil palm in glasshouse tests.


Asunto(s)
Arecaceae/microbiología , Filogenia , Phytophthora/clasificación , Phytophthora/genética , Phytophthora/patogenicidad , Enfermedades de las Plantas/microbiología , Colombia , ADN/aislamiento & purificación , Complejo IV de Transporte de Electrones/genética , Genes Microbianos/genética , Genes de ARNr/genética , Variación Genética , Familia de Multigenes , Oomicetos/patogenicidad , Aceite de Palma , Factor 1 de Elongación Peptídica/genética , Phytophthora/aislamiento & purificación , Análisis de Secuencia , Tubulina (Proteína)/genética
4.
J Fungi (Basel) ; 10(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39057331

RESUMEN

Phytophthora palmivora, a hemibiotrophic oomycete, causes diseases in several economically important tropical crops, such as oil palm, which it is responsible for a devastating disease called bud rot (BR). Despite recent progress in understanding host resistance and virulence mechanisms, many aspects remain unknown in P. palmivora isolates from oil palm. Model pathosystems are useful for understanding the molecular interactions between pathogens and hosts. In this study, we utilized detached leaves and whole seedlings of Arabidopsis thaliana Col-0 to describe and evaluate the infection process of three P. palmivora isolates (CPPhZC-05, CPPhZC-04, CPPhZOC-01) that cause BR in oil palm. Two compatible isolates (CPPhZC-05 and CPPhZOC-01) induced aqueous lesions at 72 h post-inoculation (hpi), with microscopic visualization revealing zoospore encysting and appressorium penetration at 3 hpi, followed by sporangia generation at 72 hpi. In contrast, an incompatible isolate (CPPhZC-04) exhibited cysts that could not penetrate tissue, resulting in low leaf colonization. Gene expression of ten P. palmivora infection-related genes was quantified by RT-qPCR, revealing overexpression in compatible isolates, but not in the incompatible isolate. Additionally, key genes associated with salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) in Arabidopsis exhibited regulation during interaction with the three isolates. These findings demonstrate that P. palmivora can infect Arabidopsis Col-0, and variability is observed in the interaction between Arabidopsis-Col-0 and P. palmivora isolates. Establishing this pathosystem is expected to enhance our understanding of P. palmivora's pathology and physiology.

5.
Plants (Basel) ; 13(6)2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38592798

RESUMEN

The increased cultivation of high THC-containing Cannabis sativa L. (cannabis), particularly in greenhouses, has resulted in a greater incidence of diseases and molds that can negatively affect the growth and quality of the crop. Among them, the most important diseases are root rots (Fusarium and Pythium spp.), bud rot (Botrytis cinerea), powdery mildew (Golovinomyces ambrosiae), cannabis stunt disease (caused by hop latent viroid), and a range of microbes that reduce post-harvest quality. An integrated management approach to reduce the impact of these diseases/microbes requires combining different approaches that target the reproduction, spread, and survival of the associated pathogens, many of which can occur on the same plant simultaneously. These approaches will be discussed in the context of developing an integrated plan to manage the important pathogens of greenhouse-grown cannabis at different stages of plant development. These stages include the maintenance of stock plants, propagation through cuttings, vegetative growth of plants, and flowering. The cultivation of cannabis genotypes with tolerance or resistance to various pathogens is a very important approach, as well as the maintenance of pathogen-free stock plants. When combined with cultural approaches (sanitation, management of irrigation, and monitoring for diseases) and environmental approaches (greenhouse climate modification), a significant reduction in pathogen development and spread can be achieved. The use of preventive applications of microbial biological control agents and reduced-risk biorational products can also reduce disease development at all stages of production in jurisdictions where they are registered for use. The combined use of promising strategies for integrated disease management in cannabis plants during greenhouse production will be reviewed. Future areas for research are identified.

6.
J Fungi (Basel) ; 9(9)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37755060

RESUMEN

The oil palm Elaeis guineensis represents one of the most important crops in Ecuador. Considering that bud rot disease is deadly in Ecuador, more attention has been given to identifying possible causes for palm debility from this disease. We studied the involvement of fungi and nutrients in triggering bud rot disease in E. guineensis. Special emphasis was given to the molecules synthesized by the plant to protect against this devastating disease. Techniques like Diagnosis and Recommendation Integrated System (DRIS) and metagenomic analysis were used to understand the possible implications of biotic and abiotic factors in the development of bud rot disease in oil palm in Ecuador. Liquid chromatography-mass spectrometry (LC-MS) analysis was used to identify the phenolic protection barrier of the palm facing the disease. Our results indicate that fungi from Ascomyceta phylum were found in the tested samples. The species directly involved are different in soil compared with plants. The results indicate a deficiency of chemical elements, such as Ca, Mn, Mg, and Fe, which are responsible for palm debility from bud rot disease. More than 30 compounds with protective roles were identified in the leaves of symptomatic plants from the first stage of the infection.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda