Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Nano Lett ; 24(26): 8171-8178, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38912705

RESUMEN

Orientation engineering is a crucial aspect of thin film growth, and it is rather challenging to engineer film epitaxy beyond the substrate constraint. Guided by density functional theory calculations, we use SrRuO3 (SRO) as a buffer layer and successfully deposit [111]-oriented CoFe2O4 (CFO) on [001]-, [110]-, and [111]-oriented SrTiO3 (STO) substrates. This enables subsequent growth of [111]-oriented functional oxides, such as PbTiO3 (PTO), overcoming the constraint of the substrate. This strategy is quite general and applicable to lanthanum aluminate and yttria-stabilized zirconia substrates as well. X-ray Φ scans and atomic resolution aberration-corrected scanning transmission electron microscopy (AC-STEM) reveal detailed epitaxial relations in each of the cases, with four variants of [111]-CFO found on [001]-STO and two variants found on [110]-STO, formed to mitigate the large lattice misfit strain between the film and substrate. Our strategy thus provides a general pathway for orientation engineering of oxide epitaxy beyond substrate constraint.

2.
Small ; 20(4): e2305732, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37712165

RESUMEN

With excellent homogeneity, compactness and controllable thickness, atomic layer deposition (ALD) technology is widely used in perovskite solar cells (PSCs). However, residual organic sources and undesired reactions pose serious challenges to device performance as well as stability. Here, ester groups of poly(ethylene-co-vinyl acetate) are introduced as a reaction medium to promote the nucleation and complete conversion of tetrakis(dimethylamino)tin(IV) (TDMA-Sn). Through simulations and experiments, it is verified that ester groups as Lewis bases can coordinate with TDMA-Sn to facilitate homogeneous deposition of ALD-SnOx , which acts as self-encapsulated interface with blocking properties against external moisture as well as internal ion migration. Meanwhile, a comprehensive evaluation of the self-encapsulated interface reveals that the energy level alignment is optimized to improve the carrier transport. Finally, the self-encapsulated device obtains a champion photovoltaic conversion efficiency (PCE) of 22.06% and retains 85% of the initial PCE after being stored at 85 °C with relative humidity of 85% for more than 800 h.

3.
Small ; : e2404199, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949393

RESUMEN

The performance of perovskite solar cells has been continuously improving. However, humidity stability has become a key problem that hinders its promotion in the process of commercialization. A buffer layer deposited by atomic layer deposition is a very helpful method to solve this problem. In this work, MgO film is deposited between Spiro-OMeTAD and electrode by low-temperature atomic layer deposition at 80 °C, which resists the erosion of water vapor, inhibits the migration of electrode metal ions and the decomposition products of perovskite, then finally improves the stability of the device. At the same time, the MgO buffer layer can passivate the defects of porous Spiro, thus enhancing carrier transport efficiency and device performance. The Cs0.05(FAPbI3)0.85(MAPbBr3)0.15 perovskite device with a MgO buffer layer has displayed PCE of 22.74%, also with a high Voc of 1.223 V which is an excellent performance in devices with same perovskite component. Moreover, the device with a MgO buffer layer can maintain 80% of the initial efficiency after 7200 h of storage at 35% relative humidity under room temperature. This is a major achievement for humidity stability in the world, providing more ideas for further improving the stability of perovskite devices.

4.
Sensors (Basel) ; 24(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38793921

RESUMEN

In recent years, the occurrence of high-voltage cable buffer layer ablation faults has become frequent, posing a serious threat to the safe and stable operation of cables. Failure to promptly detect and address such faults may lead to cable breakdowns, impacting the normal operation of the power system. To overcome the limitations of existing methods for identifying buffer layer ablation faults in high-voltage cables, a method for identifying buffer layer ablation faults based on frequency domain impedance spectroscopy and artificial intelligence is proposed. Firstly, based on the cable distributed parameter model and frequency domain impedance spectroscopy, a mathematical model of the input impedance of a cable containing buffer layer ablation faults is derived. Through a simulation, the input impedance spectroscopy at the first end of the cables under normal conditions, buffer layer ablation, local aging, and inductive faults is performed, enabling the identification of inductive and capacitive faults through a comparative analysis. Secondly, the frequency domain amplitude spectroscopy of the buffer layer ablation and local aging faults are used as datasets and are input into a neural network model for training and validation to identify buffer layer ablation and local aging faults. Finally, using multiple evaluation metrics to assess the neural network model validates the superiority of the MLP neural network in cable fault identification models and experimentally confirms the effectiveness of the proposed method.

5.
Angew Chem Int Ed Engl ; 63(29): e202405878, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38713005

RESUMEN

Lattice mismatch significantly influences microscopic transport in semiconducting devices, affecting interfacial charge behavior and device efficacy. This atomic-level disordering, often overlooked in previous research, is crucial for device efficiency and lifetime. Recent studies have highlighted emerging challenges related to lattice mismatch in perovskite solar cells, especially at heterojunctions, revealing issues like severe tensile stress, increased ion migration, and reduced carrier mobility. This review systematically discusses the effects of lattice mismatch on strain, material stability, and carrier dynamics. It also includes detailed characterizations of these phenomena and summarizes current strategies including epitaxial growth and buffer layer, as well as explores future solutions to mitigate mismatch-induced issues. We also provide the challenges and prospects for lattice mismatch, aiming to enhance the efficiency and stability of perovskite solar cells, and contribute to renewable energy technology advancements.

6.
Angew Chem Int Ed Engl ; 62(46): e202311786, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37735097

RESUMEN

The conversion of CO2 into ethanol with renewable H2 has attracted tremendous attention due to its integrated functions of carbon elimination and chemical synthesis, but remains challenging. The electronic properties of a catalyst are essential to determine the adsorption strength and configuration of the key intermediates, therefore altering the reaction network for targeted synthesis. Herein, we describe a catalytic system in which a carbon buffer layer is employed to tailor the electronic properties of the ternary ZnOx -Fe5 C2 -Fe3 O4 , in which the electron-transfer pathway (ZnOx →Fe species or carbon layer) ensures the appropriate adsorption strength of -CO* on the catalytic interface, facilitating C-C coupling between -CHx * and -CO* for ethanol synthesis. Benefiting from this unique electron-transfer buffering effect, an extremely high ethanol yield of 366.6 gEtOH kgcat -1 h-1 (with CO of 10 vol % co-feeding) is achieved from CO2 hydrogenation. This work provides a powerful electronic modulation strategy for catalyst design in terms of highly oriented synthesis.

7.
Small ; 18(9): e2106604, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34921583

RESUMEN

Rechargeable alkaline Zn-air batteries (ZABs) are attracting extensive attention owing to their high energy density and environmental friendliness. However, the dilemma of Zn anode, composed of ineluctable passivation and dissolution problems, severely hinders the discharge and cycling performance of the battery. Herein, the authors propose a chemical buffer layer coated on Zn metal (CBL@Zn) anode, in which ZnO nanorods are uniformly dispersed in graphene oxide (GO), to improve the reversibility of Zn↔ZnO electrochemical conversion process. Benefiting from the cooperative effect of ZnO nanorods' nuclei role and GO's adsorption affinity, the electrochemical precipitation-dissolution behavior of insulated ZnO is chemically regulated and the Zn(OH)4 2- ions are effectively confined in the chemical buffer layer. Therefore, the symmetrical CBL@Zn-CBL@Zn coin cell achieves a superior stability of 100 cycles with quite low overpotential (30 mv). When paired with commercial catalysts to assemble alkaline ZABs for practical use, an ultra high depth of discharge (DODZn ) >98% and excellent 450-h long-term cycling performance are realized. This chemical buffer strategy can potentially provide a new insight for developing other highly reversible alkaline Zn-metal batteries.

8.
Nano Lett ; 21(9): 4013-4020, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33900785

RESUMEN

Free-standing crystalline membranes are highly desirable owing to recent developments in heterogeneous integration of dissimilar materials. Van der Waals (vdW) epitaxy enables the release of crystalline membranes from their substrates. However, suppressed nucleation density due to low surface energy has been a challenge for crystallization; reactive materials synthesis environments can induce detrimental damage to vdW surfaces, often leading to failures in membrane release. This work demonstrates a novel platform based on graphitized SiC for fabricating high-quality free-standing membranes. After mechanically removing epitaxial graphene on a graphitized SiC wafer, the quasi-two-dimensional graphene buffer layer (GBL) surface remains intact for epitaxial growth. The reduced vdW gap between the epilayer and substrate enhances epitaxial interaction, promoting remote epitaxy. Significantly improved nucleation and convergent quality of GaN are achieved on the GBL, resulting in the best quality GaN ever grown on two-dimensional materials. The GBL surface exhibits excellent resistance to harsh growth environments, enabling substrate reuse by repeated growth and exfoliation.


Asunto(s)
Grafito , Cristalización , Semiconductores
9.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499724

RESUMEN

Light emission from the M-type enantiomer of a helicene derivative (2,13-bis(hydroxymethyl)[7]-thiaheterohelicene) adsorbed on the clean Au(111) and the C60-covered Au(111) surfaces were investigated by tunneling-current-induced light-emission technique. Plasmon-originated light emission was observed on the helicence/Au(111) surface and it was strongly suppressed on the area where the helicene molecules were adsorbed at the edges of the Au(111) terraces. To avoid luminescence quenching of excited helicene molecules and to suppress strong plasmon light emission from the Au(111) surface, C60 layers were used as decoupling buffer layers between helicene molecules and the Au(111) surface. Helicene molecules were adsorbed preferentially on the Au(111) surface rather than on the C60 buffer layers due to the small interaction of the molecules and C60 islands. This fact motivated us to deposit a multilayer of helicene molecules onto the C60 layers grown on the Au(111) surface, leading to the fact that the helicene/C60 multilayer showed strong luminescence with the molecules character. We consider that such strong light emission from the multilayer of helicene molecules has a plasmon origin strongly modulated by the molecular electronic states of (M)-[7]TH-diol molecules.


Asunto(s)
Fulerenos , Oro , Estereoisomerismo , Luminiscencia
10.
Nano Lett ; 20(4): 2493-2499, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32134679

RESUMEN

Using interlayer interaction to control functional heterostructures with atomic-scale designs has become one of the most effective interface-engineering strategies nowadays. Here, we demonstrate the effect of a crystalline LaFeO3 buffer layer on amorphous and crystalline LaAlO3/SrTiO3 heterostructures. The LaFeO3 buffer layer acts as an energetically favored electron acceptor in both LaAlO3/SrTiO3 systems, resulting in modulation of interfacial carrier density and hence metal-to-insulator transition. For amorphous and crystalline LaAlO3/SrTiO3 heterostructures, the metal-to-insulator transition is found when the LaFeO3 layer thickness crosses 3 and 6 unit cells, respectively. Such different critical LaFeO3 thicknesses are explained in terms of distinct characteristic lengths of the redox-reaction-mediated and polar-catastrophe-dominated charge transfer, controlled by the interfacial atomic contact and Thomas-Fermi screening effect, respectively. Our results not only shed light on the complex interlayer charge transfer across oxide heterostructures but also provide a new route to precisely tailor the charge-transfer process at a functional interface.

11.
Small ; 15(7): e1804671, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30637957

RESUMEN

High efficiency, excellent stability, and air processability are all important factors to consider in endeavoring to push forward the real-world application of organic solar cells. Herein, an air-processed inverted photovoltaic device built upon a low-bandgap, air-stable, phenanthridinone-based ter-polymer (C150 H218 N6 O6 S4 )n (PDPPPTD) and [6,6]-phenyl-C61 -butyric acid methyl ester (PC61 BM) without involving any additive engineering processes yields a high efficiency of 6.34%. The PDPPPTD/PC61 BM devices also exhibit superior thermal stability and photo-stability as well as long-term stability in ambient atmosphere without any device encapsulation, which show less performance decay as compared to most of the reported organic solar cells. In view of their great potential, solvent additive engineering via adding p-anisaldehyde (AA) is attempted, leading to a further improved efficiency of 7.41%, one of the highest efficiencies for all air-processed and stable organic photovoltaic devices. Moreover, the device stability under different ambient conditions is also further improved with the AA additive engineering. Various characterizations are conducted to probe the structural, morphology, and chemical information in order to correlate the structure with photovoltaic performance. This work paves a way for developing a new generation of air-processable organic solar cells for possible commercial application.

12.
Entropy (Basel) ; 21(8)2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-33267516

RESUMEN

Mathematical modeling of the heat and mass transfer processes in the evaporating droplet-high-temperature gas medium system is difficult due to the need to describe the dynamics of the formation of the quasi-steady temperature field of evaporating droplets, as well as of a gas-vapor buffer layer around them and in their trace during evaporation in high-temperature gas flows. We used planar laser-induced fluorescence (PLIF) and laser-induced phosphorescence (LIP). The experiments were conducted with water droplets (initial radius 1-2 mm) heated in a hot air flow (temperature 20-500 °C, velocity 0.5-6 m/s). Unsteady temperature fields of water droplets and the gas-vapor mixture around them were recorded. High inhomogeneity of temperature fields under study has been validated. To determine the temperature in the so called dead zones, we solved the problem of heat transfer, in which the temperature in boundary conditions was set on the basis of experimental values.

13.
Small ; 14(15): e1704310, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29498203

RESUMEN

Cathode buffer layers (CBLs) can effectively further the efficiency of polymer solar cells (PSCs), after optimization of the active layer. Hidden between the active layer and cathode of the inverted PSC device configuration is the critical yet often unattended vertical diffusion of the active layer components across CBL. Here, a novel methodology of contrast variation with neutron and anomalous X-ray reflectivity to map the multicomponent depth compositions of inverted PSCs, covering from the active layer surface down to the bottom of the ZnO-based CBL, is developed. Uniquely revealed for a high-performance model PSC are the often overlooked porosity distributions of the ZnO-based CBL and the differential diffusions of the polymer PTB7-Th and fullerene derivative PC71 BM of the active layer into the CBL. Interface modification of the ZnO-based CBL with fullerene derivative PCBEOH for size-selective nanochannels can selectively improve the diffusion of PC71 BM more than that of the polymer. The deeper penetration of PC71 BM establishes a gradient distribution of fullerene derivatives over the ZnO/PCBE-OH CBL, resulting in markedly improved electron mobility and device efficiency of the inverted PSC. The result suggests a new CBL design concept of progressive matching of the conduction bands.

14.
Nano Lett ; 17(4): 2681-2689, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28345926

RESUMEN

The epitaxial graphene buffer layer on the Si face of hexagonal SiC shows a promising band gap, of which the precise origin remains to be understood. In this work, we correlate the electronic to the atomic structure of the buffer layer by combining angle resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), and high-resolution scanning transmission electron microscopy (HR-STEM). We show that the band structure in the buffer has an electronic periodicity related to the structural periodicity observed in STM images and published X-ray diffraction. Our HR-STEM measurements show the bonding of the buffer layer to the SiC at specific locations separated by 1.5 nm. This is consistent with the quasi 6 × 6 periodic corrugation observed in the STM images. The distance between buffer C and SiC is 1.9 Å in the bonded regions and up to 2.8 Å in the decoupled regions, corresponding to a 0.9 Å corrugation of the buffer layer. The decoupled regions are sp2 hybridized. Density functional tight binding (DFTB) calculations demonstrate the presence of a gap at the Dirac point everywhere in the buffer layer, even in the decoupled regions where the buffer layer has an atomic structure close to that of graphene. The surface periodicity also promotes band in the superperiodic Brillouin zone edges as seen by photoemission and confirmed by our calculations.

15.
Sensors (Basel) ; 17(7)2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28753989

RESUMEN

The UV-to-visible rejection ratio is one of the important figure of merits of GaN-based UV photodetectors. For cost-effectiveness and large-scale fabrication of GaN devices, we tried to grow a GaN epitaxial layer on silicon substrate with complicated buffer layers for a stress-release. It is known that the structure of the buffer layers affects the performance of devices fabricated on the GaN epitaxial layers. In this study, we show that the design of a buffer layer structure can make effect on the UV-to-visible rejection ratio of GaN UV photodetectors. The GaN photodetector fabricated on GaN-on-silicon substrate with a step-graded AlxGa-xN buffer layer has a highly-selective photoresponse at 365-nm wavelength. The UV-to-visible rejection ratio of the GaN UV photodetector with the step-graded AlxGa1-xN buffer layer was an order-of-magnitude higher than that of a photodetector with a conventional GaN/AlN multi buffer layer. The maximum photoresponsivity was as high as 5 × 10-² A/W. This result implies that the design of buffer layer is important for photoresponse characteristics of GaN UV photodetectors as well as the crystal quality of the GaN epitaxial layers.

16.
Nano Lett ; 15(6): 3994-9, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25942074

RESUMEN

We find that mixtures of C60 with the wide energy gap, small molecular weight semiconductor bathophenanthroline (BPhen) exhibit a combination of surprisingly high electron conductivity and efficient exciton blocking when employed as buffer layers in organic photovoltaic cells. Photoluminescence quenching measurements show that a 1:1 BPhen/C60 mixed layer has an exciton blocking efficiency of 84 ± 5% compared to that of 100% for a neat BPhen layer. This high blocking efficiency is accompanied by a 100-fold increase in electron conductivity compared with neat BPhen. Transient photocurrent measurements show that charge transport through a neat BPhen buffer is dispersive, in contrast to nondispersive transport in the compound buffer. Interestingly, although the conductivity is high, there is no clearly defined insulating-to-conducting phase transition with increased insulating BPhen fraction. Thus, we infer that C60 undergoes nanoscale (<10 nm domain size) phase segregation even at very high (>80%) BPhen fractions.

17.
Small ; 10(11): 2293-9, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24599538

RESUMEN

As a two-dimensional material, graphene is highly susceptible to environmental influences. It is therefore challenging to deposit dielectrics on graphene without affecting its electronic properties. It is demonstrated that the effect of the dielectric deposition on graphene can be reduced by using a multilayer hexagonal boron nitride film as a buffer layer. Particularly, the boron nitride layer provides significant protection in magnetron sputtering deposition. It also enables growth of uniform and charge trapping free high-k dielectrics by atomic layer deposition. The doping effect of various deposition methods on graphene has been discussed.

18.
Small ; 10(15): 3153-61, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-24700510

RESUMEN

Hierarchical TiO2 /ln2 S3 /AgInS2 trilaminar core-shell branched nanorod arrays (T-CS BNRs) have been fabricated directly on conducting glass substrates (FTO) via a facile, versatile and low-cost hydrothermal and successive ionic layer adsorption and reaction (SILAR) for photoelectrochemical (PEC) water splitting. On the basis of optimal thickness of AgInS2 shell, such TiO2 /ln2 S3 /AgInS2 T-CS BNRs exhibit a higher photocatalytic activity, the photocurrent density and efficiency for hydrogen generation are up to 22.13 mA·cm(-2) and 14.83%, which is, to the best of our knowledge, the highest value ever reported for similar nanostructures. The trilaminar architecture is able to suppress carrier recombination and increase electron collection efficiency via (i) increasing the photon absorption through the lager specific surface area of TiO2 BNRs and a sensitizer layer (AgInS2 ), (ii) a buffer layer (ln2 S3 ), (iii) a better energy level alignment.

19.
Chemphyschem ; 15(6): 1190-3, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24615987

RESUMEN

A plastic substrate-based dye-sensitized photoelectrode was fabricated with a thin mesoporous titania film prepared on a TiO(x)-coated indium tin oxide-polyethylene naphthalate (ITO-PEN) substrate by a low-temperature process. The 3.5 µm-thick titania film sensitized with an indoline dye (D205) yielded a power conversion efficiency of 5.2%, with the internal quantum efficiency reaching 100%.

20.
Polymers (Basel) ; 16(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38794628

RESUMEN

With the progress of the power grid system, the coverage area of cables is widening, and the problem of cable faults is gradually coming to affect people's daily lives. While the vast majority of cable faults are caused by the ablation of the cable buffer layer, polypropylene (PP), as a common cable buffer material, has pyrolysis properties that critically impact cable faults. Studying the semiconductive buffer layer of polypropylene (PP) and its pyrolysis properties allows us to obtain a clearer picture of the pyrolysis products formed during PP ablation. This understanding aids in the accurate diagnosis of cable faults and the identification of ablation events. In this study, the effects of temperature and catalyst (H-Zeolite Standard Oil Corporation Of New York (Socony) Mobil-Five (HZSM-5)) content on the PP thermolysis product distribution were studied by using an online tubular pyrolysis furnace-mass spectrometry (MS) experimental platform. The results showed that PP/40% HZSM-5 presented the highest thermolytic efficiency and relative yield of the main products at 400 °C.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda