Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Plant Biotechnol J ; 22(4): 960-969, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38059318

RESUMEN

Inducible expression systems can overcome the trade-off between high-level transgene expression and its pleiotropic effects on plant growth. In addition, they can facilitate the expression of biochemical pathways that produce toxic metabolites. Although a few inducible expression systems for the control of transgene expression in plastids have been developed, they all depend on chemical inducers and/or nuclear transgenes. Here we report a temperature-inducible expression system for plastids that is based on the bacteriophage λ leftward and rightward promoters (pL/pR) and the temperature-sensitive repressor cI857. We show that the expression of green fluorescent protein (GFP) in plastids can be efficiently repressed by cI857 under normal growth conditions, and becomes induced over time upon exposure to elevated temperatures in a light-dependent process. We further demonstrate that by introducing into plastids an expression system based on the bacteriophage T7 RNA polymerase, the temperature-dependent accumulation of GFP increased further and was ~24 times higher than expression driven by the pL/pR promoter alone, reaching ~0.48% of the total soluble protein. In conclusion, our heat-inducible expression system provides a new tool for the external control of plastid (trans) gene expression that is cost-effective and does not depend on chemical inducers.


Asunto(s)
Calor , Plastidios , Regiones Promotoras Genéticas/genética , Transgenes/genética , Expresión Génica , Plastidios/genética , Plastidios/metabolismo
2.
Metab Eng ; 81: 100-109, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000548

RESUMEN

Tyrian purple (6,6'-Dibromoindigo) is an ancient precious dye, which possesses remarkable properties as a biocompatible semiconductor material. Recently, biosynthesis has emerged as an alternative for the sustainable production of Tyrian purple from a natural substrate. However, the selectivity issue in enzymatic tryptophan (Trp) and bromotryptophan (6-Br-Trp) degradation was an obstacle for obtaining high-purity Tyrian purple in a single cell biosynthesis. In this study, we present a simplified one-pot process for the production of Tyrian purple from Trp in Escherichia coli (E. coli) using Trp 6-halogenase from Streptomyces toxytricini (SttH), tryptophanase from E. coli (TnaA) and a two-component indole oxygenase from Providencia Rettgeri GS-2 (GS-C and GS-D). To enhance the in vivo solubility and activity of SttH and flavin reductase (Fre) fusion enzyme (Fre-L3-SttH), a chaperone system of GroEL/GroES (pGro7) was introduced in addition to the implementation of a set of optimization strategies, including fine-tuning the expression vector, medium, concentration of bromide salt and inducer. To overcome the selectivity issue and achieve a higher conversion yield of Tyrian purple with minimal indigo formation, we applied the λpL/pR-cI857 thermoinducible system to temporally control the bifunctional fusion enzyme of TnaA and monooxygenase GS-C (TnaA-L3-GS-C). Through optimization of the fermentation process, we were able to achieve a Tyrian purple titer of 44.5 mg L-1 with minimal indigo byproduct from 500 µM Trp. To the best of our knowledge, this is the first report of the selective production of Tyrian purple in E. colivia a one-pot process.


Asunto(s)
Escherichia coli , Carmin de Índigo , Carmin de Índigo/metabolismo , Escherichia coli/metabolismo , Indoles/metabolismo , Oxigenasas de Función Mixta/metabolismo
3.
J Appl Microbiol ; 130(6): 2008-2017, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32358825

RESUMEN

AIMS: To identify a lambda promoter pL mutant that could extend the thermal stability of the thermo-inducible λcI857-pR/pL system and to evaluate the effects of the modified system for the controlled expression of lysis gene E during the production of bacterial ghosts (BGs). METHODS AND RESULTS: The promoter pL mutant was identified by random mutagenesis and site-directed mutagenesis. The results showed that a T â†’ 35C mutation in the pL promoter was responsible for the phenotype alteration. Under the same induction conditions, the lysis rates of the modified lytic system on Escherichia coli and Salmonella enteritidis were significantly lower than that of the control, while the lysis rates of Escherichia coli with the thermo-inducible lytic system were significantly higher than that of S. enteritidis with the corresponding plasmid (P < 0·05). CONCLUSIONS: Increasing the heat stability of the thermo-inducible lytic systems decreased lysis efficiency during the production of BGs. There exist differences in the lysis efficiency of thermo-inducible lytic systems between different bacterial strains. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings enrich current knowledge about modifications to thermo-inducible systems and provide a reference for the application of these modified systems for the production of BGs and controlled gene expression in bacteria.


Asunto(s)
Bacteriófago lambda/fisiología , Regulación Viral de la Expresión Génica , Regiones Promotoras Genéticas/genética , Proteínas Virales/genética , Bacteriólisis , Bacteriófago lambda/genética , Escherichia coli/fisiología , Escherichia coli/virología , Mutación , Plásmidos/genética , Plásmidos/fisiología , Salmonella enteritidis/fisiología , Salmonella enteritidis/virología , Temperatura
4.
Biotechnol Lett ; 39(6): 905-909, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28251389

RESUMEN

OBJECTIVES: To establish a positive cloning system with a zero background for high-throughput DNA cloning purpose. RESULTS: The cloning vector, pRI857, and the genomic-library construction vector, pRI857-BAC, were constructed based on the mechanism of expression of the thermo-sensitive cI857 repressor gene that can stringently repress the PR promoter and kanamycin resistance gene (PR-kan R ) at 30 °C, but have no effect on PR-kan R gene at 37 °C or at higher temperatures. When the pRI857 vectors were transformed into E. coli with or without a target foreign DNA fragment inserted at the BfrBI site of the cI857 gene, only colonies with the foreign DNA fragment survive. We extended this method to construct a pRI857-BAC vector for genomic library cloning which displays an efficiency of ~107 cfu per µg of genomic DNA, with no empty vectors detected. CONCLUSIONS: Cloning by indirect activation of resistance marker gene represents a novel DNA-capturing system, which can be widely applied for high-throughput DNA cloning.


Asunto(s)
Clonación Molecular/métodos , Escherichia coli/genética , Vectores Genéticos/genética , Regiones Promotoras Genéticas/genética , Proteínas Bacterianas/genética , ADN/genética , ADN/metabolismo , Calor , Reacción en Cadena de la Polimerasa , Proteínas Represoras/genética
5.
J Agric Food Chem ; 72(13): 7318-7325, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38506339

RESUMEN

The pET system is commonly used for producing foreign proteins in Escherichia coli, but its reliance on the costly and metabolically demanding inducer IPTG limits its industrial use. This study engineered a low-temperature inducible system (LTIS) in E. coli Nissle 1917 (EcN) by combining the T7 expression system with the thermal inducible mechanism CI857-λPRPL to generate the new LTIS strain, ENL7P. The strain ENL7P-sfGFP-Km underwent overnight culture at 37 °C for 14-16 h, followed by subculturing at 30 °C for 24 h. This resulted in a notable 5.53-fold increase in the sfGFP induction rate when the strain was cultivated under 37-30 °C conditions. Moreover, gene expression was induced using a two-stage strategy. Initially, the strain was cultured overnight at 39 °C for 14-16 h, followed by a subculture at 30 °C for 6 h, and finally, another subculture at 30 °C for 24 h. This cultivation strategy led to an impressive 158.37-fold induction rate for sfGFP. Similar effects could be achieved through utilization of the LTIS system for inducing the production of thermophilic trehalose synthase from Thermus antranikianii (TaTS). The results of this study proved that the LTIS system has the potential for industrial applications.


Asunto(s)
Frío , Escherichia coli , Escherichia coli/metabolismo , Temperatura , Proteínas Recombinantes/metabolismo
6.
Methods Mol Biol ; 2617: 17-30, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36656514

RESUMEN

The temperature-inducible λpL/pR-cI857 expression system has been widely used to produce recombinant proteins (RPs), especially when it is necessary to avoid the addition of exogenous materials to induce the expression of recombinant genes, preventing contamination of bioprocesses. The temperature increase favors the formation of inclusion bodies (IBs). The temperature upshift could change the metabolism, productivities, cell viability, IBs architecture, and the host cell proteins inside IBs, affecting downstream to obtain the final product. In this contribution, we focus on the relationship between the bioprocesses using temperature increase as inducer, the heat shock response associated with temperature up-shift, the RP accumulation, and the formation of IBs. Here, we describe how to produce IBs and how culture conditions can modulate the composition and architecture of IBs by modifying the induction temperature in RP production.


Asunto(s)
Escherichia coli , Cuerpos de Inclusión , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Cuerpos de Inclusión/metabolismo , Proteínas Recombinantes/biosíntesis , Temperatura
7.
Biotechnol J ; 14(1): e1800483, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30417965

RESUMEN

The higher intracellular ATP levels of genome-edited strains of P. putida that result from deleting various energy-consuming functions has been exploited for expanding the window of thermal tolerance of this bacterium. Unlike instant growth halt and eventual death of the naturally occurring strain P. putida KT2440 at 42 °C, the EM42 variant maintained growth and viability of most of the population at the higher temperature for at least 6 h. The authors took advantage of this quality for implementing a robust thermo-inducible heterologous expression device in this species. To this end, the cI857/PL pair of the lambda phage of Escherichia coli was reshaped as a functional cargo that followed the SEVA (Standard European Vector Architecture) format. Quantitation of the transcriptional output of the resulting expression device with GFP reporter technology in various gene dosages identified conditions of unprecedented induced/uninduced ratios (>300 folds) and very high total transcriptional capacity in this bacterial host. The broad-host range nature of the cognate replication origins makes expression vectors pSEVA2214 (low plasmid copy number), pSEVA2314 (medium), and pSEVA2514 (high) to cover a wide range of heterologous expression needs in P. putida and possibly other Gram-negative species.


Asunto(s)
Plásmidos/genética , Pseudomonas putida/genética , Termotolerancia/fisiología , Escherichia coli/genética , Escherichia coli/fisiología , Vectores Genéticos/genética , Pseudomonas putida/fisiología , Termotolerancia/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda