Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
Genes Dev ; 33(19-20): 1361-1366, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31488580

RESUMEN

The ubiquitin-specific protease (USP) family is the largest group of cysteine proteases. Cancer genomic analysis identified frequent amplification of USP21 (22%) in human pancreatic ductal adenocarcinoma (PDAC). USP21 overexpression correlates with human PDAC progression, and enforced expression of USP21 accelerates murine PDAC tumor growth and drives PanIN to PDAC progression in immortalized human pancreatic ductal cells. Conversely, depletion of USP21 impairs PDAC tumor growth. Mechanistically, USP21 deubiquitinates and stabilizes the TCF/LEF transcription factor TCF7, which promotes cancer cell stemness. Our work identifies and validates USP21 as a PDAC oncogene, providing a potential druggable target for this intractable disease.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pancreáticas/enzimología , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Vía de Señalización Wnt/genética , Animales , Línea Celular Tumoral , Humanos , Ratones , Células Madre Neoplásicas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/fisiopatología , Factor 1 de Transcripción de Linfocitos T , Ubiquitinación , Neoplasias Pancreáticas
2.
EMBO J ; 41(15): e110218, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35775648

RESUMEN

Carnitine metabolism is thought to be negatively correlated with the progression of hepatocellular carcinoma (HCC) and the specific molecular mechanism is yet to be fully elucidated. Here, we report that little characterized cysteine-rich protein 1 (CRIP1) is upregulated in HCC and associated with poor prognosis. Moreover, CRIP1 promoted HCC cancer stem-like properties by downregulating carnitine energy metabolism. Mechanistically, CRIP1 interacted with BBOX1 and the E3 ligase STUB1, promoting BBOX1 ubiquitination and proteasomal degradation, and leading to the downregulation of carnitine. BBOX1 ubiquitination at lysine 240 is required for CRIP1-mediated control of carnitine metabolism and cancer stem-like properties. Further, our data showed that acetylcarnitine downregulation in CRIP1-overexpressing cells decreased beta-catenin acetylation and promoted nuclear accumulation of beta-catenin, thus facilitating cancer stem-like properties. Clinically, patients with higher CRIP1 protein levels had lower BBOX1 levels but higher nuclear beta-catenin levels in HCC tissues. Together, our findings identify CRIP1 as novel upstream control factor for carnitine metabolism and cancer stem-like properties, suggesting targeting of the CRIP1/BBOX1/ß-catenin axis as a promising strategy for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Proteínas Portadoras/metabolismo , Proteínas con Dominio LIM/metabolismo , Neoplasias Hepáticas , gamma-Butirobetaína Dioxigenasa/metabolismo , Carcinoma Hepatocelular/metabolismo , Carnitina , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
3.
EMBO J ; 40(4): e105450, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33347625

RESUMEN

Wnt/ß-catenin signaling is frequently activated in advanced prostate cancer and contributes to therapy resistance and metastasis. However, activating mutations in the Wnt/ß-catenin pathway are not common in prostate cancer, suggesting alternative regulations may exist. Here, we report that the expression of endothelial cell-specific molecule 1 (ESM1), a secretory proteoglycan, is positively associated with prostate cancer stemness and progression by promoting Wnt/ß-catenin signaling. Elevated ESM1 expression correlates with poor overall survival and metastasis. Accumulation of nuclear ESM1, instead of cytosolic or secretory ESM1, supports prostate cancer stemness by interacting with the ARM domain of ß-catenin to stabilize ß-catenin-TCF4 complex and facilitate the transactivation of Wnt/ß-catenin signaling targets. Accordingly, activated ß-catenin in turn mediates the nuclear entry of ESM1. Our results establish the significance of mislocalized ESM1 in driving metastasis in prostate cancer by coordinating the Wnt/ß-catenin pathway, with implications for its potential use as a diagnostic or prognostic biomarker and as a candidate therapeutic target in prostate cancer.


Asunto(s)
Núcleo Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/secundario , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/patología , Neoplasias de la Próstata/patología , Proteoglicanos/metabolismo , beta Catenina/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/metabolismo , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteoglicanos/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/genética
4.
J Cell Biochem ; 125(7): e30574, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38704688

RESUMEN

Altered energy metabolism is an emerging hallmark of cancer and plays a pivotal in cell survival, proliferation, and biosynthesis. In a rapidly proliferating cancer, energy metabolism acts in synergism with epithelial-to-mesenchymal transition (EMT), enabling cancer stemness, dissemination, and metastasis. In this study, an interconnected functional network governing energy metabolism and EMT signaling pathways was targeted through the concurrent inhibition of IR, ITGB1, and CD36 activity. A novel multicomponent MD simulation approach was employed to portray the simultaneous inhibition of IR, ITGB1, and CD36 by a 2:1 combination of Pimozide and Ponatinib. Further, in-vitro studies revealed the synergistic anticancer efficacy of drugs against monolayer as well as tumor spheroids of breast cancer cell lines (MCF-7 and MDA-MB-231). In addition, the combination therapy exerted approximately 40% of the apoptotic population and more than 1.5- to 3-fold reduction in the expression of ITGB1, IR, p-IR, IRS-1, and p-AKT in MCF-7 and MDA-MB-231 cell lines. Moreover, the reduction in fatty acid uptake, lipid droplet accumulation, cancer stemness, and migration properties were also observed. Thus, targeting IR, ITGB1, and CD36 in the interconnected network with the combination of Pimozide and Ponatinib represents a promising therapeutic approach for breast cancer.


Asunto(s)
Neoplasias de la Mama , Antígenos CD36 , Metabolismo Energético , Transición Epitelial-Mesenquimal , Integrina beta1 , Humanos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Integrina beta1/metabolismo , Antígenos CD36/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Metabolismo Energético/efectos de los fármacos , Células MCF-7 , Imidazoles/farmacología , Piridazinas/farmacología , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
5.
Prostate ; 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39154281

RESUMEN

BACKGROUND: A specific type of prostate cancer (PC) that exhibits neuroendocrine (NE) differentiation is known as NEPC. NEPC has little to no response to androgen deprivation therapy and is associated with the development of metastatic castration-resistant PC (CRPC), which has an extremely poor prognosis. Our understanding of genetic drivers and activated pathways in NEPC is limited, which hinders precision medicine approaches. L1 cell adhesion molecule (L1CAM) is known to play an oncogenic role in metastatic cancers, including CRPC. However, the impact of L1CAM on NEPC progression remains elusive. METHODS: L1CAM expression level was investigated using public gene expression databases of PC cohorts and patient-derived xenograft models. L1CAM knockdown was performed in different PC cells to study in vitro cell functions. A subline of CRPC cell line CWR22Rv1 was established after long-term exposure to abiraterone to induce NE differentiation. The androgen receptor-negative cell line PC3 was cultured under the tumor sphere-forming condition to enrich cancer stemness features. Several oxidative stress inducers were tested on PC cells to observe L1CAM-mediated gene expression and cell death. RESULTS: L1CAM expression was remarkably high in NEPC compared to CRPC or adenocarcinoma tumors. L1CAM was also correlated with NE marker expressions and associated with the adenocarcinoma-to-NEPC progression in gene expression databases and CRPC cells with NE differentiation. L1CAM also promoted cancer stemness and NE phenotypes in PC3 cells under cancer stemness enrichment. L1CAM was also identified as a reactive oxygen species-induced gene, by which L1CAM counteracted CRPC cell death triggered by ionizing radiation. CONCLUSIONS: Our results unveiled a new role of L1CAM in the acquisition of the NE phenotype in PC, contributing to the NE differentiation-related therapeutic resistance of CRPC.

6.
J Transl Med ; 22(1): 12, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166947

RESUMEN

BACKGROUND: Prostate cancer (PCa) is the second leading cause of cancer-related mortality among men worldwide, and its incidence has risen substantially in recent years. Therefore, there is an urgent need to identify novel biomarkers and precise therapeutic targets for managing PCa progression and recurrence. METHODS: We investigated the clinical significance of NCAPG2 in PCa by exploring public datasets and our tissue microarray. Receiver operating characteristic (ROC) curve and survival analyses were performed to evaluate the correlation between NCAPG2 and PCa progression. Cell proliferation, wound healing, transwell, flow cytometry, cell cycle, tumor sphere formation, immunofluorescence (IF), co-immunoprecipitation (co-IP), and chromatin immunoprecipitation (ChIP) assays were conducted to further elucidate the molecular mechanism of NCAPG2 in PCa. Subcutaneous and orthotopic xenograft models were applied to investigate the effects of NCAPG2 on PCa proliferation in vivo. Tandem mass tag (TMT) quantitative proteomics was utilized to detect proteomic changes under NCAPG2 overexpression. RESULTS: NCAPG2 was significantly upregulated in PCa, and its overexpression was associated with PCa progression and unfavorable prognosis. Knockdown of NCAPG2 inhibited the malignant behavior of PCa cells, whereas its overexpression promoted PCa aggressiveness. NCAPG2 depletion attenuated the development and growth of PCa in vivo. TMT quantitative proteomics analyses indicated that c-MYC activity was strongly correlated with NCAPG2 expression. The malignancy-promoting effect of NCAPG2 in PCa was mediated via c-MYC. NCAPG2 could directly bind to STAT3 and induce STAT3 occupancy on the MYC promoter, thus to transcriptionally activate c-MYC expression. Finally, we identified that NCAPG2 was positively correlated with cancer stem cell (CSC) markers and enhanced self-renewal capacity of PCa cells. CONCLUSIONS: NCAPG2 is highly expressed in PCa, and its level is significantly associated with PCa prognosis. NCAPG2 promotes PCa malignancy and drives cancer stemness via the STAT3/c-MYC signaling axis, highlighting its potential as a therapeutic target for PCa.


Asunto(s)
Proteínas Cromosómicas no Histona , Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-myc , Humanos , Masculino , Línea Celular Tumoral , Proliferación Celular , Proteínas Cromosómicas no Histona/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteómica , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Factor de Transcripción STAT3/metabolismo
7.
Cancer Cell Int ; 24(1): 130, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38584256

RESUMEN

BACKGROUND: Fatty acids synthesis and metabolism (FASM)-driven lipid mobilization is essential for energy production during nutrient shortages. However, the molecular characteristics, physiological function and clinical prognosis value of FASM-associated gene signatures in hepatocellular carcinoma (HCC) remain elusive. METHODS: The Gene Expression Omnibus database (GEO), the Cancer Genome Atlas (TCGA), and International Cancer Genome Consortium (ICGC) database were utilized to acquire transcriptome data and clinical information of HCC patients. The ConsensusClusterPlus was employed for unsupervised clustering. Subsequently, immune cell infiltration, stemness index and therapeutic response among distinct clusters were decoded. The tumor immune dysfunction and exclusion (TIDE) algorithm was utilized to anticipate the response of patients towards immunotherapy, and the genomics of drug sensitivity in cancer (GDSC) tool was employed to predict their response to antineoplastic medications. Least absolute shrinkage and selection operator (LASSO) regression analysis and protein-protein interaction (PPI) network were employed to construct prognostic model and identity hub gene. Single cell RNA sequencing (scRNA-seq) and CellChat were used to analyze cellular interactions. The hub gene of FASM effect on promoting tumor progression was confirmed through a series of functional experiments. RESULTS: Twenty-six FASM-related genes showed differential expression in HCC. Based on these FASM-related differential genes, two molecular subtypes were established, including Cluster1 and Cluster2 subtype. Compared with cluster2, Cluster1 subtype exhibited a worse prognosis, higher risk, higher immunosuppressive cells infiltrations, higher immune escape, higher cancer stemness and enhanced treatment-resistant. PPI network identified Acetyl-CoA carboxylase1 (ACACA) as central gene of FASM and predicted a poor prognosis. A strong interaction between cancer stem cells (CSCs) with high expression of ACACA and macrophages through CD74 molecule (CD74) and integrin subunit beta 1 (ITGB1) signaling was identified. Finally, increased ACACA expression was observed in HCC cells and patients, whereas depleted ACACA inhibited the stemness straits and drug resistance of HCC cells. CONCLUSIONS: This study provides a resource for understanding FASM heterogeneity in HCC. Evaluating the FASM patterns can help predict the prognosis and provide new insights into treatment response in HCC patients.

8.
Cell Commun Signal ; 22(1): 375, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054537

RESUMEN

BACKGROUND: Olanzapine (OLZ) reverses chronic stress-induced anxiety. Chronic stress promotes cancer development via abnormal neuro-endocrine activation. However, how intervention of brain-body interaction reverses chronic stress-induced tumorigenesis remains elusive. METHODS: KrasLSL-G12D/WT lung cancer model and LLC1 syngeneic tumor model were used to study the effect of OLZ on cancer stemness and anxiety-like behaviors. Cancer stemness was evaluated by qPCR, western-blotting, immunohistology staining and flow-cytometry analysis of stemness markers, and cancer stem-like function was assessed by serial dilution tumorigenesis in mice and extreme limiting dilution analysis in primary tumor cells. Anxiety-like behaviors in mice were detected by elevated plus maze and open field test. Depression-like behaviors in mice were detected by tail suspension test. Anxiety and depression states in human were assessed by Hospital Anxiety and Depression Scale (HADS). Chemo-sensitivity of lung cancer was assessed by in vivo syngeneic tumor model and in vitro CCK-8 assay in lung cancer cell lines. RESULTS: In this study, we found that OLZ reversed chronic stress-enhanced lung tumorigenesis in both KrasLSL-G12D/WT lung cancer model and LLC1 syngeneic tumor model. OLZ relieved anxiety and depression-like behaviors by suppressing neuro-activity in the mPFC and reducing norepinephrine (NE) releasing under chronic stress. NE activated ADRB2-cAMP-PKA-CREB pathway to promote CLOCK transcription, leading to cancer stem-like traits. As such, CLOCK-deficiency or OLZ reverses NE/chronic stress-induced gemcitabine (GEM) resistance in lung cancer. Of note, tumoral CLOCK expression is positively associated with stress status, serum NE level and poor prognosis in lung cancer patients. CONCLUSION: We identify a new mechanism by which OLZ ameliorates chronic stress-enhanced tumorigenesis and chemoresistance. OLZ suppresses mPFC-NE-CLOCK axis to reverse chronic stress-induced anxiety-like behaviors and lung cancer stemness. Decreased NE-releasing prevents activation of ADRB2-cAMP-PKA-CREB pathway to inhibit CLOCK transcription, thus reversing lung cancer stem-like traits and chemoresistance under chronic stress.


Asunto(s)
Células Madre Neoplásicas , Norepinefrina , Olanzapina , Animales , Olanzapina/farmacología , Ratones , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Norepinefrina/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Línea Celular Tumoral , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/complicaciones , Ratones Endogámicos C57BL , Ansiedad/tratamiento farmacológico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Carcinogénesis/efectos de los fármacos , Depresión/tratamiento farmacológico
9.
EMBO Rep ; 23(2): e51287, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34897944

RESUMEN

RASSF1A promoter methylation has been correlated with tumor dedifferentiation and aggressive oncogenic behavior. Nevertheless, the underlying mechanism of RASSF1A-dependent tumor dedifferentiation remains elusive. Here, we show that RASSF1A directly uncouples the NOTCH-HES1 axis, a key suppressor of differentiation. Interestingly, the crosstalk of RASSF1A with HES1 occurs independently from the signaling route connecting RASSF1A with the Hippo pathway. At the molecular level, we demonstrate that RASSF1A acts as a scaffold essential for the SUMO-targeted E3 ligase SNURF/RNF4 to target HES1 for degradation. The reciprocal relationship between RASSF1A and HES1 is evident across a wide range of human tumors, highlighting the clinical significance of the identified pathway. We show that HES1 upregulation in a RASSF1A-depleted environment renders cells non-responsive to the downstream effects of γ-secretase inhibitors (GSIs) which restrict signaling at the level of the NOTCH receptor. Taken together, we report a mechanism through which RASSF1A exerts autonomous regulation of the critical Notch effector HES1, thus classifying RASSF1A expression as an integral determinant of the clinical effectiveness of Notch inhibitors.


Asunto(s)
Receptores Notch , Transducción de Señal , Factor de Transcripción HES-1 , Proteínas Supresoras de Tumor , Humanos , Proteínas Nucleares/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
10.
Mol Biol Rep ; 51(1): 341, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38400867

RESUMEN

INTRODUCTION: Oral Squamous Cell Carcinoma (OSCC) is one of the leading cancers worldwide, significantly impacting developing nations. This study aimed to explore the diagnostic and prognostic potential of miR-155-5p and miR-1246 in OSCC in the Indian population, as their comparative roles in this context remain unexplored. MATERIAL AND METHODS: The present cross-sectional study comprised 50 histopathologically confirmed OSCC cases, with adjacent normal mucosa as controls. MiRNA expression was assessed via qRT-PCR and correlated with clinicopathological factors. MiRwalk and miRTargetlink were used for miRNA:mRNA interaction prediction, and gprofiler was employed to analyze validated targets for functional insights. RESULTS: The expression analysis showed a significant upregulation of miR-155-5p and miR-1246 in OSCC tissues compared to adjacent controls. Receiver operating curve analysis revealed that miR-1246 exhibited excellent diagnostic accuracy (AUC = 0.94) compared to miR-155-5p (AUC = 0.69). Higher miRNA levels were associated with age and extracapsular extension while overexpression of miR-1246 was correlated significantly with increased tumor size, tumor grade, TNM staging, and depth of invasion. The analysis for target prediction unveiled a set of validated targets, among which were WNT5A, TP53INP1, STAT3, CTNNB1, PRKAR1A, and NFIB. CONCLUSION: miR-155-5p and miR-1246 may be used as potential prognostic biomarkers in OSCC, with miR-1246 demonstrating superior diagnostic accuracy.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , MicroARNs , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Pronóstico , Estudios Transversales , MicroARNs/metabolismo , Neoplasias de Cabeza y Cuello/genética , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Movimiento Celular/genética , Proteínas Portadoras/genética , Proteínas de Choque Térmico/metabolismo
11.
Cell Biochem Funct ; 42(4): e4055, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38856033

RESUMEN

The heterogeneity of the solid tumor microenvironment (TME) impairs the therapeutic efficacy of standard therapies and also reduces the infiltration of antitumor immune cells, all of which lead to tumor progression and invasion. In addition, self-renewing cancer stem cells (CSCs) support tumor dormancy, drug resistance, and recurrence, all of which might pose challenges to the eradication of malignant tumor masses with current therapies. Natural forms of oncolytic viruses (OVs) or engineered OVs are known for their potential to directly target and kill tumor cells or indirectly eradicate tumor cells by involving antitumor immune responses, including enhancement of infiltrating antitumor immune cells, induction of immunogenic cell death, and reprogramming of cold TME to an immune-sensitive hot state. More importantly, OVs can target stemness factors that promote tumor progression, which subsequently enhances the efficacy of immunotherapies targeting solid tumors, particularly the CSC subpopulation. Herein, we describe the role of CSCs in tumor heterogeneity and resistance and then highlight the potential and remaining challenges of immunotherapies targeting CSCs. We then review the potential of OVs to improve tumor immunogenicity and target CSCs and finally summarize the challenges within the therapeutic application of OVs in preclinical and clinical trials.


Asunto(s)
Inmunoterapia , Neoplasias , Células Madre Neoplásicas , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Células Madre Neoplásicas/inmunología , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Neoplasias/terapia , Neoplasias/inmunología , Microambiente Tumoral/inmunología , Animales
12.
Oral Dis ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039738

RESUMEN

OBJECTIVE: Chemoresistance is a common event after chemotherapy, including oral squamous cell carcinoma (OSCC). Accumulated evidence suggests that the cancer stemness significantly contributes to therapy resistance. An unresolved question remains regarding how to effectively overcome OSCC chemoresistance by targeting stemness. This study aims to investigate the antitumor effect of metformin and clarify the potential molecular mechanisms. METHODS: Cellular models resistant to chemotherapy were established, and their viability and sphere-forming ability were assessed using CCK-8 and soft agar formation assays, respectively. RNA-seq and Western blotting analyses were employed to delve into the molecular pathways. Furthermore, to corroborate the inhibitory effects of metformin and cisplatin at an animal level, a subcutaneous tumor transplantation model was instituted. RESULTS: Metformin as a monotherapy exhibited inhibition of stemness traits via Krüppel-like factor 4 (KLF4). Metformin and cisplatin can synergically inhibit cell proliferation and induce cell apoptosis. Animal experiments confirmed the inhibitory effect of cisplatin and metformin on tumor in mice. CONCLUSION: Our study proposes a potential therapeutic approach of combining chemotherapy with metformin to overcome chemoresistance in OSCC.

13.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203816

RESUMEN

We recently demonstrated that a small subset of cells in FLT3-mutated acute myeloid leukemia (AML) cell lines exhibit SORE6 reporter activity and cancer stem-like features including chemoresistance. To study why SORE6+ cells are more chemoresistant than SORE6- cells, we hypothesized that these cells carry higher autophagy, a mechanism linked to chemoresistance. We found that cytarabine (Ara-C) induced a substantially higher protein level of LC3B-II in SORE6+ compared to SORE6- cells. Similar observations were made using a fluorescence signal-based autophagy assay. Furthermore, chloroquine (an autophagy inhibitor) sensitized SORE6+ but not SORE6- cells to Ara-C. To decipher the molecular mechanisms underlying the high autophagic flux in SORE6+ cells, we employed an autophagy oligonucleotide array comparing gene expression between SORE6+ and SORE6- cells before and after Ara-C treatment. ULK2 was the most differentially expressed gene between the two cell subsets. To demonstrate the role of ULK2 in conferring higher chemoresistance in SORE6+ cells, we treated the two cell subsets with a ULK1/2 inhibitor, MRT68921. MRT68921 significantly sensitized SORE6+ but not SORE6- cells to Ara-C. Using our in vitro model for AML relapse, we found that regenerated AML cells contained higher ULK2 expression compared to pretreated cells. Importantly, inhibition of ULK2 using MRT68921 prevented in vitro AML relapse. Lastly, using pretreatment and relapsed AML patient bone marrow samples, we found that ULK2 expression was higher in relapsed AML. To conclude, our results supported the importance of autophagy in the relapse of FLT3-mutated AML and highlighted ULK2 in this context.


Asunto(s)
Resistencia a Antineoplásicos , Leucemia Mieloide Aguda , Proteínas Serina-Treonina Quinasas , Humanos , Autofagia/genética , Bioensayo , Enfermedad Crónica , Citarabina/farmacología , Resistencia a Antineoplásicos/genética , Tirosina Quinasa 3 Similar a fms/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas Serina-Treonina Quinasas/genética
14.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063083

RESUMEN

Dysregulation of histone deacetylases (HDACs) is closely associated with cancer development and progression. Here, we comprehensively analyzed the association between all HDAC family members and several clinicopathological and molecular traits of solid tumors across 22 distinct tumor types, focusing primarily on cancer stemness and immunity. To this end, we used publicly available TCGA data and several bioinformatic tools (i.e., GEPIA2, TISIDB, GSCA, Enrichr, GSEA). Our analyses revealed that class I and class II HDAC proteins are associated with distinct cancer phenotypes. The transcriptomic profiling indicated that class I HDAC members, including HDAC2, are positively associated with cancer stemness, while class IIA HDAC proteins, represented by HDAC7, show a negative correlation to cancer stem cell-like phenotypes in solid tumors. In contrast to tumors with high amounts of HDAC7 proteins, the transcriptome signatures of HDAC2-overexpressing cancers are significantly enriched with biological terms previously determined as stemness-associated genes. Moreover, high HDAC2-expressing tumors are depleted with immune-related processes, and HDAC2 expression correlates with tumor immunosuppressive microenvironments. On the contrary, HDAC7 upregulation is significantly associated with enhanced immune responses, followed by enriched infiltration of CD4+ and CD8+ T cells. This is the first comprehensive report demonstrating robust and versatile associations between specific HDAC family members, cancer dedifferentiation, and anti-tumor immune statuses in solid tumors.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasa 2 , Histona Desacetilasas , Neoplasias , Células Madre Neoplásicas , Humanos , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Neoplasias/genética , Neoplasias/patología , Neoplasias/inmunología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Perfilación de la Expresión Génica , Transcriptoma
15.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612653

RESUMEN

To understand chemoresistance in the context of cancer stem cells (CSC), a cisplatin resistance model was developed using a high-grade serous ovarian cancer patient-derived, cisplatin-sensitive sample, PDX4. As a molecular subtype-specific stem-like cell line, PDX4 was selected for its representative features, including its histopathological and BRCA2 mutation status, and exposed to cisplatin in vitro. In the cisplatin-resistant cells, transcriptomics were carried out, and cell morphology, protein expression, and functional status were characterized. Additionally, potential signaling pathways involved in cisplatin resistance were explored. Our findings reveal the presence of distinct molecular signatures and phenotypic changes in cisplatin-resistant PDX4 compared to their sensitive counterparts. Surprisingly, we observed that chemoresistance was not inherently linked with increased stemness. In fact, although resistant cells expressed a combination of EMT and stemness markers, functional assays revealed that they were less proliferative, migratory, and clonogenic-features indicative of an underlying complex mechanism for cell survival. Furthermore, DNA damage tolerance and cellular stress management pathways were enriched. This novel, syngeneic model provides a valuable platform for investigating the underlying mechanisms of cisplatin resistance in a clinically relevant context, contributing to the development of targeted therapies tailored to combat resistance in stem-like ovarian cancer.


Asunto(s)
Neoplasias Ováricas , Platino (Metal) , Humanos , Femenino , Platino (Metal)/farmacología , Cisplatino/farmacología , Cisplatino/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Carcinoma Epitelial de Ovario
16.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892210

RESUMEN

The tumor suppressor gene F-box and WD repeat domain-containing (FBXW) 7 reduces cancer stemness properties by promoting the protein degradation of pluripotent stem cell markers. We recently demonstrated the transcriptional repression of FBXW7 by the three-dimensional (3D) spheroid formation of several cancer cells. In the present study, we found that the transcriptional activity of FBXW7 was promoted by the inhibition of the Ca2+-activated K+ channel, KCa1.1, in a 3D spheroid model of human prostate cancer LNCaP cells through the Akt-Nrf2 signaling pathway. The transcriptional activity of FBXW7 was reduced by the siRNA-mediated inhibition of the CCAAT-enhancer-binding protein C/EBP δ (CEBPD) after the transfection of miR223 mimics in the LNCaP spheroid model, suggesting the transcriptional regulation of FBXW7 through the Akt-Nrf2-CEBPD-miR223 transcriptional axis in the LNCaP spheroid model. Furthermore, the KCa1.1 inhibition-induced activation of FBXW7 reduced (1) KCa1.1 activity and protein levels in the plasma membrane and (2) the protein level of the cancer stem cell (CSC) markers, c-Myc, which is a molecule degraded by FBXW7, in the LNCaP spheroid model, indicating that KCa1.1 inhibition-induced FBXW7 activation suppressed CSC conversion in KCa1.1-positive cancer cells.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Regulación Neoplásica de la Expresión Génica , Factor 2 Relacionado con NF-E2 , Neoplasias de la Próstata , Transducción de Señal , Esferoides Celulares , Humanos , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Esferoides Celulares/metabolismo , Línea Celular Tumoral , Regulación hacia Arriba , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
17.
Semin Cancer Biol ; 87: 98-116, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36372325

RESUMEN

The skin is the largest organ of the human body and prone to various diseases, including cancer; thus, provides the first line of defense against exogenous biological and non-biological agents. Skin cancer, a complex and heterogenic process, with steep incidence rate often metastasizes due to poor understanding of the underlying mechanisms of pathogenesis and clinical challenges. Indeed, accumulating evidence indicates that deregulation of transcription factors (TFs) due to genetic, epigenetic and signaling distortions plays essential role in the development of cutaneous malignancies and therapeutic challenges including cancer stemness features and reprogramming. This review highlights the recent developments exploring underlying mechanisms how deregulated TFs (e.g., NF-κB, AP-1, STAT etc.,) orchestrates cutaneous onco-pathogenesis, reprogramming, stemness and poor clinical outcomes. Along this line, bioactive drugs, and their derivatives from natural and or synthetic origin has gained attention due to their multitargeting potential, potentially safer and effective therapeutic outcome for human malignancies. We also discussed therapeutic importance of targeting aberrantly expressed TFs in skin cancers with bioactive natural products and or synthetic agents.


Asunto(s)
Neoplasias Cutáneas , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Carcinogénesis , Oncogenes , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/genética , Resultado del Tratamiento
18.
Curr Issues Mol Biol ; 45(6): 4908-4922, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37367061

RESUMEN

BACKGROUND/AIM: Colorectal cancer (CRC) is the third most common cancer with a high mortality rate worldwide. Although gallic acid and hesperidin exert anticancer activity, synergistic effects of gallic acid and hesperidin against CRC remain elusive. This study aims to investigate the therapeutic mechanism of a novel combination of gallic acid and hesperidin against CRC cell growth, including cell viability, cell-cycle-associated proteins, spheroid formation, and stemness. METHODS: Gallic acid and hesperidin derived from Hakka pomelo tea (HPT) were detected by colorimetric methods and high-performance liquid chromatography using ethyl acetate as an extraction medium. CRC cell lines (HT-29 and HCT-116) treated with the combined extract were investigated in our study for cell viability (trypan blue or soft agar colony formation assay), cell cycle (propidium iodide staining), cell-cycle-associated proteins (immunoblotting), and stem cell markers (immunohistochemistry staining). RESULTS: Compared with other extraction methods, HPT extraction using an ethyl acetate medium exerts the most potent effect on inhibiting HT-29 cell growth in a dose-dependent manner. Furthermore, the treatment with combined extract had a higher inhibitory effect on CRC cell viability than gallic acid or hesperidin alone. The underlying mechanism was involved in G1-phase arrest and Cip1/p21 upregulation that could attenuate HCT-116 cell proliferation (Ki-67), stemness (CD-133), and spheroid growth in a 3D formation assay mimicking in vivo tumorigenesis. CONCLUSION: Gallic acid and hesperidin exert synergistic effects on cell growth, spheroids, and stemness of CRC and may serve as a potential chemopreventive agent. Further testing for the safety and effectiveness of the combined extract in large-scale randomized trials is required.

19.
J Transl Med ; 21(1): 371, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291585

RESUMEN

The transcription factor family activator protein 2 (TFAP2) is vital for regulating both embryonic and oncogenic development. The TFAP2 family consists of five DNA-binding proteins, including TFAP2A, TFAP2B, TFAP2C, TFAP2D and TFAP2E. The importance of TFAP2 in tumor biology is becoming more widely recognized. While TFAP2D is not well studied, here, we mainly focus on the other four TFAP2 members. As a transcription factor, TFAP2 regulates the downstream targets directly by binding to their regulatory region. In addition, the regulation of downstream targets by epigenetic modification, posttranslational regulation, and interaction with noncoding RNA have also been identified. According to the pathways in which the downstream targets are involved in, the regulatory effects of TFAP2 on tumorigenesis are generally summarized as follows: stemness and EMT, interaction between TFAP2 and tumor microenvironment, cell cycle and DNA damage repair, ER- and ERBB2-related signaling pathway, ferroptosis and therapeutic response. Moreover, the factors that affect TFAP2 expression in oncogenesis are also summarized. Here, we review and discuss the most recent studies on TFAP2 and its effects on carcinogenesis and regulatory mechanisms.


Asunto(s)
Neoplasias , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neoplasias/genética , Transición Epitelial-Mesenquimal , Microambiente Tumoral , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo
20.
J Transl Med ; 21(1): 236, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37004088

RESUMEN

BACKGROUND: Cancer-associated fibroblasts (CAFs), an important component of the tumor microenvironment (TME), play crucial roles in tumor stemness. It has been shown in various cancer studies that stanniocalcin-1 (STC1) is secreted by CAFs, however, its function in HCC is still not clear. METHODS: The serum concentration and intracellular expression level of STC1 were quantified by ELISA and western blotting, respectively. The role of CAF-derived STC1 in HCC stemness was investigated by sphere formation, sorafenib resistance, colony formation, and transwell migration and invasion assays in vitro and in an orthotopic liver xenograft model in vivo. An HCC tissue microarray containing 72 samples was used to evaluate the expression of STC1 and Notch1 in HCC tissues. Coimmunoprecipitation (CoIP) and dual-luciferase reporter assays were performed to further explore the underlying mechanisms. ELISAs were used to measure the serum concentration of STC1 in HCC patients. RESULTS: We demonstrated that CAFs were the main source of STC1 in HCC and that CAF-derived STC1 promoted HCC stemness through activation of the Notch signaling pathway. In HCC patients, the expression of STC1 was positively correlated with Notch1 expression and poor prognosis. The co-IP assay showed that STC1 directly bound to Notch1 receptors to activate the Notch signaling pathway, thereby promoting the stemness of HCC cells. Our data further demonstrated that STC1 was a direct transcriptional target of CSL in HCC cells. Furthermore, ELISA revealed that the serum STC1 concentration was higher in patients with advanced liver cancer than in patients with early liver cancer. CONCLUSIONS: CAF-derived STC1 promoted HCC stemness via the Notch1 signaling pathway. STC1 might serve as a potential biomarker for the prognostic assessment of HCC, and the stromal-tumor amplifying STC1-Notch1 feedforward signal could constitute an effective therapeutic target for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias de los Tejidos Blandos , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Glicoproteínas/metabolismo , Línea Celular Tumoral , Microambiente Tumoral , Receptor Notch1
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda