Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Cell ; 184(14): 3702-3716.e30, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34133940

RESUMEN

Many embryonic organs undergo epithelial morphogenesis to form tree-like hierarchical structures. However, it remains unclear what drives the budding and branching of stratified epithelia, such as in the embryonic salivary gland and pancreas. Here, we performed live-organ imaging of mouse embryonic salivary glands at single-cell resolution to reveal that budding morphogenesis is driven by expansion and folding of a distinct epithelial surface cell sheet characterized by strong cell-matrix adhesions and weak cell-cell adhesions. Profiling of single-cell transcriptomes of this epithelium revealed spatial patterns of transcription underlying these cell adhesion differences. We then synthetically reconstituted budding morphogenesis by experimentally suppressing E-cadherin expression and inducing basement membrane formation in 3D spheroid cultures of engineered cells, which required ß1-integrin-mediated cell-matrix adhesion for successful budding. Thus, stratified epithelial budding, the key first step of branching morphogenesis, is driven by an overall combination of strong cell-matrix adhesion and weak cell-cell adhesion by peripheral epithelial cells.


Asunto(s)
Uniones Célula-Matriz/metabolismo , Morfogénesis , Animales , Membrana Basal/metabolismo , Adhesión Celular , División Celular , Movimiento Celular , Rastreo Celular , Embrión de Mamíferos/citología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Epitelio , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Integrinas/metabolismo , Ratones , Modelos Biológicos , Glándulas Salivales/citología , Glándulas Salivales/embriología , Glándulas Salivales/metabolismo , Transcriptoma/genética
2.
J Cell Sci ; 137(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37888135

RESUMEN

Polarised epithelial cell divisions represent a fundamental mechanism for tissue maintenance and morphogenesis. Morphological and mechanical changes in the plasma membrane influence the organisation and crosstalk of microtubules and actin at the cell cortex, thereby regulating the mitotic spindle machinery and chromosome segregation. Yet, the precise mechanisms linking plasma membrane remodelling to cell polarity and cortical cytoskeleton dynamics to ensure accurate execution of mitosis in mammalian epithelial cells remain poorly understood. Here, we manipulated the density of mammary epithelial cells in culture, which led to several mitotic defects. Perturbation of cell-cell adhesion formation impairs the dynamics of the plasma membrane, affecting the shape and size of mitotic cells and resulting in defects in mitotic progression and the generation of daughter cells with aberrant architecture. In these conditions, F- actin-astral microtubule crosstalk is impaired, leading to mitotic spindle misassembly and misorientation, which in turn contributes to chromosome mis-segregation. Mechanistically, we identify S100 Ca2+-binding protein A11 (S100A11) as a key membrane-associated regulator that forms a complex with E-cadherin (CDH1) and the leucine-glycine-asparagine repeat protein LGN (also known as GPSM2) to coordinate plasma membrane remodelling with E-cadherin-mediated cell adhesion and LGN-dependent mitotic spindle machinery. Thus, plasma membrane-mediated maintenance of mammalian epithelial cell identity is crucial for correct execution of polarised cell divisions, genome maintenance and safeguarding tissue integrity.


Asunto(s)
Actinas , Polaridad Celular , Animales , Adhesión Celular , Actinas/metabolismo , Polaridad Celular/fisiología , Mitosis , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Membrana Celular/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Mamíferos/metabolismo
3.
Mol Cell Proteomics ; 23(3): 100735, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342409

RESUMEN

Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca2+ dependence to the mature, Ca2+-independent, hyper-adhesive state, which predominates in tissues. Results suggest that individual desmosomal proteins have distinct roles in connecting to cellular signaling pathways and that these roles alter substantially when cells change their adhesion state. The data provide further support for a dualistic concept of desmosomes in which the properties of Pkp2a differ from those of the other, more stable proteins. This body of data provides an invaluable resource for the analysis of desmosome function.


Asunto(s)
Desmosomas , Placofilinas , Animales , Perros , Desmosomas/metabolismo , Membrana Celular/metabolismo , Placofilinas/metabolismo , Células de Riñón Canino Madin Darby , Transducción de Señal , Adhesión Celular , Desmoplaquinas/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(50): e2316456120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38055737

RESUMEN

The ability of cells to move in a mechanically coupled, coordinated manner, referred to as collective cell migration, is central to many developmental, physiological, and pathophysiological processes. Limited understanding of how mechanical forces and biochemical regulation interact to affect coupling has been a major obstacle to unravelling the underlying mechanisms. Focusing on the linker protein vinculin, we use a suite of Förster resonance energy transfer-based biosensors to probe its mechanical functions and biochemical regulation, revealing a switch that toggles vinculin between loadable and unloadable states. Perturbation of the switch causes covarying changes in cell speed and coordination, suggesting alteration of the friction within the system. Molecular scale modelling reveals that increasing levels of loadable vinculin increases friction, due to engagement of self-stabilizing catch bonds. Together, this work reveals a regulatory switch for controlling cell coupling and describes a paradigm for relating biochemical regulation, altered mechanical properties, and changes in cell behaviors.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Fenómenos Mecánicos , Vinculina/metabolismo , Movimiento Celular/fisiología , Adhesión Celular/fisiología
5.
Proc Natl Acad Sci U S A ; 120(41): e2308941120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37782785

RESUMEN

Impaired lymphatic drainage and lymphedema are major morbidities whose mechanisms have remained obscure. To study lymphatic drainage and its impairment, we engineered a microfluidic culture model of lymphatic vessels draining interstitial fluid. This lymphatic drainage-on-chip revealed that inflammatory cytokines that are known to disrupt blood vessel junctions instead tightened lymphatic cell-cell junctions and impeded lymphatic drainage. This opposing response was further demonstrated when inhibition of rho-associated protein kinase (ROCK) was found to normalize fluid drainage under cytokine challenge by simultaneously loosening lymphatic junctions and tightening blood vessel junctions. Studies also revealed a previously undescribed shift in ROCK isoforms in lymphatic endothelial cells, wherein a ROCK2/junctional adhesion molecule-A (JAM-A) complex emerges that is responsible for the cytokine-induced lymphatic junction zippering. To validate these in vitro findings, we further demonstrated in a genetic mouse model that lymphatic-specific knockout of ROCK2 reversed lymphedema in vivo. These studies provide a unique platform to generate interstitial fluid pressure and measure the drainage of interstitial fluid into lymphatics and reveal a previously unappreciated ROCK2-mediated mechanism in regulating lymphatic drainage.


Asunto(s)
Molécula A de Adhesión de Unión , Vasos Linfáticos , Linfedema , Quinasas Asociadas a rho , Animales , Ratones , Biomimética , Citocinas/metabolismo , Células Endoteliales/metabolismo , Uniones Intercelulares , Molécula A de Adhesión de Unión/metabolismo , Vasos Linfáticos/metabolismo , Linfedema/genética , Linfedema/metabolismo , Quinasas Asociadas a rho/metabolismo
6.
J Cell Sci ; 136(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37248996

RESUMEN

Vinculin is an actin-binding protein present at cell-matrix and cell-cell adhesions, which plays a critical role in bearing force experienced by cells and dissipating it onto the cytoskeleton. Recently, we identified a key tyrosine residue, Y822, whose phosphorylation plays a critical role in force transmission at cell-cell adhesions. The role of Y822 in human cancer remains unknown, even though Y822 is mutated to Y822C in uterine cancers. Here, we investigated the effect of this amino acid substitution and that of a phosphodeficient Y822F vinculin in cancer cells. We observed that the presence of the Y822C mutation led to cells that proliferate and migrate more rapidly and contained smaller focal adhesions when compared to cells with wild-type vinculin. In contrast, the presence of the Y822F mutation led to highly spread cells with larger focal adhesions and increased contractility. Furthermore, we provide evidence that Y822C vinculin forms a disulfide bond with paxillin, accounting for some of the elevated phosphorylated paxillin recruitment. Taken together, these data suggest that vinculin Y822 modulates the recruitment of ligands.


Asunto(s)
Comunicación Celular , Adhesiones Focales , Humanos , Vinculina/genética , Vinculina/metabolismo , Paxillin/genética , Paxillin/metabolismo , Ligandos , Adhesión Celular/genética , Adhesiones Focales/genética , Adhesiones Focales/metabolismo
7.
J Cell Sci ; 136(7)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37039101

RESUMEN

Finely tuned regulation of transport protein localization is vital for epithelial function. The Na+-HCO3- co-transporter NBCn1 (also known as SLC4A7) is a key contributor to epithelial pH homeostasis, yet the regulation of its subcellular localization is not understood. Here, we show that a predicted N-terminal ß-sheet and short C-terminal α-helical motif are essential for NBCn1 plasma membrane localization in epithelial cells. This localization was abolished by cell-cell contact disruption, and co-immunoprecipitation (co-IP) and proximity ligation (PLA) revealed NBCn1 interaction with E-cadherin and DLG1, linking it to adherens junctions and the Scribble complex. NBCn1 also interacted with RhoA and localized to lamellipodia and filopodia in migrating cells. Finally, analysis of native and GFP-tagged NBCn1 localization, subcellular fractionation, co-IP with Arl13B and CEP164, and PLA of NBCn1 and tubulin in mitotic spindles led to the surprising conclusion that NBCn1 additionally localizes to centrosomes and primary cilia in non-dividing, polarized epithelial cells, and to the spindle, centrosomes and midbodies during mitosis. We propose that NBCn1 traffics between lateral junctions, the leading edge and cell division machinery in Rab11 endosomes, adding new insight to the role of NBCn1 in cell cycle progression.


Asunto(s)
Membrana Celular , Centrosoma , Cilios , Simportadores de Sodio-Bicarbonato , Huso Acromático , Humanos , Animales , Ratas , Membrana Celular/química , Cilios/química , Centrosoma/química , Huso Acromático/química , Simportadores de Sodio-Bicarbonato/análisis , Simportadores de Sodio-Bicarbonato/metabolismo , Ciclo Celular , AMP Cíclico/metabolismo , Polaridad Celular , Células Epiteliales/metabolismo
8.
Development ; 149(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36125129

RESUMEN

The cadherin-catenin complex (CCC) is central to embryonic development and tissue repair, yet how CCC binding partners function alongside core CCC components remains poorly understood. Here, we establish a previously unappreciated role for an evolutionarily conserved protein, the slit-robo GTPase-activating protein SRGP-1/srGAP, in cadherin-dependent morphogenetic processes in the Caenorhabditis elegans embryo. SRGP-1 binds to the M domain of the core CCC component, HMP-1/α-catenin, via its C terminus. The SRGP-1 C terminus is sufficient to target it to adherens junctions, but only during later embryonic morphogenesis, when junctional tension is known to increase. Surprisingly, mutations that disrupt stabilizing salt bridges in the M domain block this recruitment. Loss of SRGP-1 leads to an increase in mobility and decrease of junctional HMP-1. In sensitized genetic backgrounds with weakened adherens junctions, loss of SRGP-1 leads to late embryonic failure. Rescue of these phenotypes requires the C terminus of SRGP-1 but also other domains of the protein. Taken together, these data establish a role for an srGAP in stabilizing and organizing the CCC during epithelial morphogenesis by binding to a partially closed conformation of α-catenin at junctions.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Cadherinas/genética , Cadherinas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Morfogénesis/genética , alfa Catenina/genética , alfa Catenina/metabolismo
9.
J Biol Chem ; 299(3): 102944, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36707052

RESUMEN

Hemagglutinin (HA), a nontoxic component of the botulinum neurotoxin (BoNT) complex, binds to E-cadherin and inhibits E-cadherin-mediated cell-cell adhesion. HA is a 470 kDa protein complex comprising six HA1, three HA2, and three HA3 subcomponents. Thus, to prepare recombinant full-length HA in vitro, it is necessary to reconstitute the macromolecular complex from purified HA subcomponents, which involves multiple purification steps. In this study, we developed NanoHA, a minimal E-cadherin inhibitor protein derived from Clostridium botulinum HA with a simple purification strategy needed for production. NanoHA, containing HA2 and a truncated mutant of HA3 (amino acids 380-626; termed as HA3mini), is a 47 kDa single polypeptide (one-tenth the molecular weight of full-length HA, 470 kDa) engineered with three types of modifications: (i) a short linker sequence between the C terminus of HA2 and N terminus of HA3; (ii) a chimeric complex composed of HA2 derived from the serotype C BoNT complex and HA3mini from the serotype B BoNT complex; and (iii) three amino acid substitutions from hydrophobic to hydrophilic residues on the protein surface. We demonstrated that NanoHA inhibits E-cadherin-mediated cell-cell adhesion of epithelial cells (e.g., Caco-2 and Madin-Darby canine kidney cells) and disrupts their epithelial barrier. Finally, unlike full-length HA, NanoHA can be transported from the basolateral side to adherens junctions via passive diffusion. Overall, these results indicate that the rational design of NanoHA provides a minimal E-cadherin inhibitor with a wide variety of applications as a lead molecule and for further molecular engineering.


Asunto(s)
Toxinas Botulínicas , Cadherinas , Ingeniería de Proteínas , Animales , Perros , Humanos , Células CACO-2 , Cadherinas/antagonistas & inhibidores , Clostridium botulinum , Hemaglutininas/química , Células de Riñón Canino Madin Darby , Adhesión Celular/efectos de los fármacos
10.
Genes Cells ; 28(3): 175-187, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36562594

RESUMEN

In vivo, cells collectively migrate in a variety of developmental and pathological contexts. Coordinated epithelial rotation represents a unique type of collective cell migrations, which has been modeled in vitro under spatially confined conditions. Although it is known that the coordinated rotation depends on intercellular interactions, the contribution of E-cadherin, a major cell-cell adhesion molecule, has not been directly addressed on two-dimensional (2D) confined substrates. Here, using well-controlled fibronectin-coated surfaces, we tracked and compared the migratory behaviors of MDCK cells expressing or lacking E-cadherin. We observed that wild-type MDCK II cells exhibited persistent and coordinated rotations on discoidal patterns, while E-cadherin knockout cells migrated in a less coordinated manner without large-scale rotation. Our comparison of the collective dynamics between these two cell types revealed a series of changes in migratory behavior caused by the loss of E-cadherin, including a decreased global migration speed, less regularity in quantified coordination, and increased average density of topological defects. Taken together, these data demonstrate that spontaneous initiation of collective epithelial rotations depends on E-cadherin under 2D discoidal confinements.


Asunto(s)
Cadherinas , Células Epiteliales , Animales , Perros , Cadherinas/metabolismo , Adhesión Celular , Células de Riñón Canino Madin Darby , Movimiento Celular , Células Epiteliales/metabolismo
11.
Cell Commun Signal ; 22(1): 85, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291468

RESUMEN

K-Ras is the most frequently mutated Ras variant in pancreatic, colon and non-small cell lung adenocarcinoma. Activating mutations in K-Ras result in increased amounts of active Ras-GTP and subsequently a hyperactivation of effector proteins and downstream signaling pathways. Here, we demonstrate that oncogenic K-Ras(V12) regulates tumor cell migration by activating the phosphatidylinositol 3-kinases (PI3-K)/Akt pathway and induces the expression of E-cadherin and neural cell adhesion molecule (NCAM) by upregulation of Akt3. In vitro interaction and co-precipitation assays identified PI3-Kα as a bona fide effector of active K-Ras4B but not of H-Ras or N-Ras, resulting in enhanced Akt phosphorylation. Moreover, K-Ras(V12)-induced PI3-K/Akt activation enhanced migration in all analyzed cell lines. Interestingly, Western blot analyses with Akt isoform-specific antibodies as well as qPCR studies revealed, that the amount and the activity of Akt3 was markedly increased whereas the amount of Akt1 and Akt2 was downregulated in EGFP-K-Ras(V12)-expressing cell clones. To investigate the functional role of each Akt isoform and a possible crosstalk of the isoforms in more detail, each isoform was stably depleted in PANC-1 pancreatic and H23 lung carcinoma cells. Akt3, the least expressed Akt isoform in most cell lines, is especially upregulated and active in Akt2-depleted cells. Since expression of EGFP-K-Ras(V12) reduced E-cadherin-mediated cell-cell adhesion by induction of polysialylated NCAM, Akt3 was analyzed as regulator of E-cadherin and NCAM. Western blot analyses revealed pronounced reduction of E-cadherin and NCAM in the Akt3-kd cells, whereas Akt1 and Akt2 depletion upregulated E-cadherin, especially in H23 lung carcinoma cells. In summary, we identified oncogenic K-Ras4B as a key regulator of PI3-Kα-Akt signaling and Akt3 as a crucial regulator of K-Ras4B-induced modulation of E-cadherin and NCAM expression and localization.


Asunto(s)
Adenocarcinoma , Neoplasias Pulmonares , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Moléculas de Adhesión de Célula Nerviosa , Cadherinas , Neoplasias Pulmonares/genética , Isoformas de Proteínas , Fosfatidilinositol 3-Quinasas/metabolismo , Pulmón/metabolismo , Neoplasias Pancreáticas/patología
12.
J Math Biol ; 88(5): 55, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568280

RESUMEN

Cell-cell adhesion plays a vital role in the development and maintenance of multicellular organisms. One of its functions is regulation of cell migration, such as occurs, e.g. during embryogenesis or in cancer. In this work, we develop a versatile multiscale approach to modelling a moving self-adhesive cell population that combines a careful microscopic description of a deterministic adhesion-driven motion component with an efficient mesoscopic representation of a stochastic velocity-jump process. This approach gives rise to mesoscopic models in the form of kinetic transport equations featuring multiple non-localities. Subsequent parabolic and hyperbolic scalings produce general classes of equations with non-local adhesion and myopic diffusion, a special case being the classical macroscopic model proposed in Armstrong et al. (J Theoret Biol 243(1): 98-113, 2006). Our simulations show how the combination of the two motion effects can unfold. Cell-cell adhesion relies on the subcellular cell adhesion molecule binding. Our approach lends itself conveniently to capturing this microscopic effect. On the macroscale, this results in an additional non-linear integral equation of a novel type that is coupled to the cell density equation.


Asunto(s)
Desarrollo Embrionario , Adhesión Celular , Movimiento Celular , Difusión , Cinética
13.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34272284

RESUMEN

As collective cell migration is essential in biological processes spanning development, healing, and cancer progression, methods to externally program cell migration are of great value. However, problems can arise if the external commands compete with strong, preexisting collective behaviors in the tissue or system. We investigate this problem by applying a potent external migratory cue-electrical stimulation and electrotaxis-to primary mouse skin monolayers where we can tune cell-cell adhesion strength to modulate endogenous collectivity. Monolayers with high cell-cell adhesion showed strong natural coordination and resisted electrotactic control, with this conflict actively damaging the leading edge of the tissue. However, reducing preexisting coordination in the tissue by specifically inhibiting E-cadherin-dependent cell-cell adhesion, either by disrupting the formation of cell-cell junctions with E-cadherin-specific antibodies or rapidly dismantling E-cadherin junctions with calcium chelators, significantly improved controllability. Finally, we applied this paradigm of weakening existing coordination to improve control and demonstrate accelerated wound closure in vitro. These results are in keeping with those from diverse, noncellular systems and confirm that endogenous collectivity should be considered as a key quantitative design variable when optimizing external control of collective migration.


Asunto(s)
Movimiento Celular , Queratinocitos/fisiología , Animales , Cadherinas/metabolismo , Calcio/metabolismo , Adhesión Celular , Línea Celular , Humanos , Uniones Intercelulares/metabolismo , Queratinocitos/química , Ratones , Piel/química , Piel/citología , Cicatrización de Heridas , Heridas y Lesiones/metabolismo , Heridas y Lesiones/fisiopatología
14.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38255907

RESUMEN

Tight junction (TJ) proteins (Tjps), Tjp1 and Tjp2, are tight junction-associated scaffold proteins that bind to the transmembrane proteins of tight junctions and the underlying cytoskeleton. In this study, we first analyzed the tumorigenic characteristics of B16-F10 melanoma cells, including cell proliferation, migration, invasion, metastatic potential, and the expression patterns of related proteins, after the CRISPR-Cas9-mediated knockout (KO) of Tjp genes. The proliferation of Tjp1 and Tjp2 KO cells significantly increased in vitro. Other tumorigenic characteristics, including migration and invasion, were significantly enhanced in Tjp1 and Tjp2 KO cells. Zonula occludens (ZO)-associated protein Claudin-1 (CLDN-1), which is a major component of tight junctions and functions in controlling cell-to-cell adhesion, was decreased in Tjp KO cells. Additionally, Tjp KO significantly stimulated tumor growth and metastasis in an in vivo mouse model. We performed a transcriptome analysis using next-generation sequencing (NGS) to elucidate the key genes involved in the mechanisms of action of Tjp1 and Tjp2. Among the various genes affected by Tjp KO-, cell cycle-, cell migration-, angiogenesis-, and cell-cell adhesion-related genes were significantly altered. In particular, we found that the Ninjurin-1 (Ninj1) and Catenin alpha-1 (Ctnna1) genes, which are known to play fundamental roles in Tjps, were significantly downregulated in Tjp KO cells. In summary, tumorigenic characteristics, including cell proliferation, migration, invasion, tumor growth, and metastatic potential, were significantly increased in Tjp1 and Tjp2 KO cells, and the knockout of Tjp genes significantly affected the expression of related proteins.


Asunto(s)
Melanoma Experimental , Uniones Estrechas , Animales , Ratones , Carcinogénesis/genética , Proliferación Celular , Proteínas de Uniones Estrechas/genética , Melanoma Experimental/genética , Factores de Crecimiento Nervioso , Moléculas de Adhesión Celular Neuronal
15.
Semin Cell Dev Biol ; 120: 53-65, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34238674

RESUMEN

A universal principle of all living cells is the ability to sense and respond to mechanical stimuli which is essential for many biological processes. Recent efforts have identified critical mechanosensitive molecules and response pathways involved in mechanotransduction during development and tissue homeostasis. Tissue-wide force transmission and local force sensing need to be spatiotemporally coordinated to precisely regulate essential processes during development such as tissue morphogenesis, patterning, cell migration and organogenesis. Understanding how cells identify and interpret extrinsic forces and integrate a specific response on cell and tissue level remains a major challenge. In this review we consider important cellular and physical factors in control of cell-cell mechanotransduction and discuss their significance for cell and developmental processes. We further highlight mechanosensitive macromolecules that are known to respond to external forces and present examples of how force responses can be integrated into cell and developmental programs.


Asunto(s)
Cadherinas/metabolismo , Adhesión Celular/fisiología , Mecanotransducción Celular/fisiología , Humanos , Transducción de Señal
16.
J Cell Mol Med ; 27(22): 3553-3564, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37860940

RESUMEN

Approximately 40% of people will get cancer in their lifetime in the US, and 20% are predicted to die from the condition when it is invasive and metastatic. Targeted screening for drugs that interact with proteins that drive cancer cell growth and migration can lead to new therapies. We screened molecular libraries with the AtomNet® AI-based drug design tool to identify compounds predicted to interact with the cytoplasmic domain of protein tyrosine phosphatase mu. Protein tyrosine phosphatase mu (PTPmu) is proteolytically downregulated in cancers such as glioblastoma generating fragments that stimulate cell survival and migration. Aberrant nuclear localization of PTPmu intracellular fragments drives cancer progression, so we targeted a predicted drug-binding site between the two cytoplasmic phosphatase domains we termed a D2 binding pocket. The function of the D2 domain is controversial with various proposed regulatory functions, making the D2 domain an attractive target for the development of allosteric drugs. Seventy-five of the best-scoring and chemically diverse computational hits predicted to interact with the D2 binding pocket were screened for effects on tumour cell motility and growth in 3D culture as well as in a direct assay for PTPmu-dependent adhesion. We identified two high-priority hits that inhibited the migration and glioma cell sphere formation of multiple glioma tumour cell lines as well as aggregation. We also identified one activator of PTPmu-dependent aggregation, which was able to stimulate cell migration. We propose that the PTPmu D2 binding pocket represents a novel regulatory site and that inhibitors targeting this region may have therapeutic potential for treating cancer.


Asunto(s)
Glioblastoma , Glioma , Humanos , Adhesión Celular , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Inteligencia Artificial
17.
BMC Genomics ; 24(1): 468, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37605167

RESUMEN

BACKGROUND: The evolution of pregnancy-specific glycoprotein (PSG) genes within the CEA gene family of primates correlates with the evolution of hemochorial placentation about 45 Myr ago. Thus, we hypothesized that hemochorial placentation with intimate contact between fetal cells and maternal immune cells favors the evolution and expansion of PSGs. With only a few exceptions, all rodents have hemochorial placentas thus the question arises whether Psgs evolved in all rodent genera. RESULTS: In the analysis of 94 rodent species from 4 suborders, we identified Psg genes only in the suborder Myomorpha in three families (characteristic species in brackets), namely Muridae (mouse), Cricetidae (hamster) and Nesomyidae (giant pouched rat). All Psgs are located, as previously described for mouse and rat, in a region of the genome separated from the Cea gene family locus by several megabases, further referred to as the rodent Psg locus. In the suborders Castorimorpha (beaver), Hystricognatha (guinea pig) and Sciuromorpha (squirrel), neither Psg genes nor so called CEA-related cell adhesion molecule (Ceacam) genes were found in the Psg locus. There was even no evidence for the existence of Psgs in any other genomic region. In contrast to the Psg-harboring rodent species, which do not have activating CEACAMs, we were able to identify Ceacam genes encoding activating CEACAMs in all other rodents studied. In the Psg locus, there are genes encoding three structurally distinct CEACAM/PSGs: (i) CEACAMs composed of one N- and one A2-type domain (CEACAM9, CEACAM15), (ii) composed of two N domains (CEACAM11-CEACAM14) and (iii) composed of three to eight N domains and one A2 domain (PSGs). All of them were found to be secreted glycoproteins preferentially expressed by trophoblast cells, thus they should be considered as PSGs. CONCLUSION: In rodents Psg genes evolved only recently in the suborder Myomorpha shortly upon their most recent common ancestor (MRCA) has coopted the retroviral genes syncytin-A and syncytin-B which enabled the evolution of the three-layered trophoblast. The expansion of Psgs is limited to the Psg locus most likely after a translocation of a CEA-related gene - possibly encoding an ITAM harboring CEACAM. According to the expression pattern two waves of gene amplification occurred, coding for structurally different PSGs.


Asunto(s)
Glicoproteínas , Roedores , Cricetinae , Femenino , Embarazo , Cobayas , Ratas , Ratones , Animales , Roedores/genética , Glicoproteínas/genética , Arvicolinae , Transporte Biológico , Amplificación de Genes
18.
Biochemistry (Mosc) ; 88(1): 22-34, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37068870

RESUMEN

Cancer cells use the program of epithelial-mesenchymal transition (EMT) for initiation of the invasion-metastasis cascade. Using confocal and video-microscopy, reorganization of the cytoskeleton was studied in the MCF-7 breast cancer cells undergoing Snail1-induced EMT. We used the line of MCF-7 cells stably expressing tetOff SNAI1 construct (MCF-7-SNAI1 cells). After tetracycline washout and Snail1 activation MCF-7-SNAI1 cells underwent EMT and acquired a migratory phenotype while retaining expression of E-cadherin. We identified five variants of the mesenchymal phenotype, differing in cell morphology and migration velocity. Migrating cells had high degree of plasticity, which allowed them to quickly change both the phenotype and migration velocity. The changes of the phenotype of MCF-7-SNAI1 cells are based on the Arp2/3-mediated branched actin network polymerization in lamellipodia, myosin-based contractility in the zone behind the nucleus, redistribution of adhesive proteins from cell-cell contacts to the leading edge, and reorganization of intermediate keratin filaments.


Asunto(s)
Neoplasias de la Mama , Transición Epitelial-Mesenquimal , Factores de Transcripción de la Familia Snail , Factores de Transcripción , Cadherinas/genética , Cadherinas/metabolismo , Movimiento Celular , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Humanos , Neoplasias de la Mama/patología , Células MCF-7
19.
Proc Natl Acad Sci U S A ; 117(44): 27132-27140, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33067392

RESUMEN

Desmosomes are cell-cell junctions that link tissue cells experiencing intense mechanical stress. Although the structure of the desmosomal cadherins is known, the desmosome architecture-which is essential for mediating numerous functions-remains elusive. Here, we recorded cryo-electron tomograms (cryo-ET) in which individual cadherins can be discerned; they appear variable in shape, spacing, and tilt with respect to the membrane. The resulting sub-tomogram average reaches a resolution of ∼26 Å, limited by the inherent flexibility of desmosomes. To address this challenge typical of dynamic biological assemblies, we combine sub-tomogram averaging with atomistic molecular dynamics (MD) simulations. We generate models of possible cadherin arrangements and perform an in silico screening according to biophysical and structural properties extracted from MD simulation trajectories. We find a truss-like arrangement of cadherins that resembles the characteristic footprint seen in the electron micrograph. The resulting model of the desmosomal architecture explains their unique biophysical properties and strength.


Asunto(s)
Desmosomas/química , Tomografía con Microscopio Electrónico/métodos , Cadherinas/química , Cadherinas/metabolismo , Desmosomas/metabolismo , Desmosomas/fisiología , Humanos , Uniones Intercelulares , Simulación de Dinámica Molecular
20.
Am J Hum Genet ; 105(4): 854-868, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31585109

RESUMEN

Cadherins constitute a family of transmembrane proteins that mediate calcium-dependent cell-cell adhesion. The extracellular domain of cadherins consists of extracellular cadherin (EC) domains, separated by calcium binding sites. The EC interacts with other cadherin molecules in cis and in trans to mechanically hold apposing cell surfaces together. CDH2 encodes N-cadherin, whose essential roles in neural development include neuronal migration and axon pathfinding. However, CDH2 has not yet been linked to a Mendelian neurodevelopmental disorder. Here, we report de novo heterozygous pathogenic variants (seven missense, two frameshift) in CDH2 in nine individuals with a syndromic neurodevelopmental disorder characterized by global developmental delay and/or intellectual disability, variable axon pathfinding defects (corpus callosum agenesis or hypoplasia, mirror movements, Duane anomaly), and ocular, cardiac, and genital anomalies. All seven missense variants (c.1057G>A [p.Asp353Asn]; c.1789G>A [p.Asp597Asn]; c.1789G>T [p.Asp597Tyr]; c.1802A>C [p.Asn601Thr]; c.1839C>G [p.Cys613Trp]; c.1880A>G [p.Asp627Gly]; c.2027A>G [p.Tyr676Cys]) result in substitution of highly conserved residues, and six of seven cluster within EC domains 4 and 5. Four of the substitutions affect the calcium-binding site in the EC4-EC5 interdomain. We show that cells expressing these variants in the EC4-EC5 domains have a defect in cell-cell adhesion; this defect includes impaired binding in trans with N-cadherin-WT expressed on apposing cells. The two frameshift variants (c.2563_2564delCT [p.Leu855Valfs∗4]; c.2564_2567dupTGTT [p.Leu856Phefs∗5]) are predicted to lead to a truncated cytoplasmic domain. Our study demonstrates that de novo heterozygous variants in CDH2 impair the adhesive activity of N-cadherin, resulting in a multisystemic developmental disorder, that could be named ACOG syndrome (agenesis of corpus callosum, axon pathfinding, cardiac, ocular, and genital defects).


Asunto(s)
Axones/patología , Cadherinas/genética , Cuerpo Calloso/patología , Ojo/patología , Genitales/patología , Cardiopatías Congénitas/genética , Trastornos del Neurodesarrollo/genética , Mutación del Sistema de Lectura , Heterocigoto , Humanos , Trastornos del Neurodesarrollo/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda