Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Curr Eye Res ; 48(5): 474-484, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36591949

RESUMEN

PURPOSE: To explore the pathological mechanism of Toll-like receptor 4 (TLR4) mediating neovascular age-related macular degeneration (nAMD) and the potential role of the TLR4 coreceptor myeloid differentiation protein 2 (MD2). METHODS: In the study, we inhibited MD2 with the chalcone derivative L2H17 and we utilized a laser-induced choroidal neovascularization (CNV) mouse model and Tert-butyl hydroperoxide (TBHP)-challenged rhesus choroid-retinal endothelial (RF/6A) cells to assess the effect of MD2 blockade on CNV. RESULTS: Inhibiting MD2 with L2H17 reduced angiogenesis in CNV mice, and significantly protected against retinal dysfunction. In retina and choroid/retinal pigment epithelium (RPE) tissues, L2H17 reduced phospho-ERK, phospho-P65 but not phospho-P38, phospho-JNK, and reduced the transcriptional levels of IL-6, TNF-α, ICAM-1 but not VCAM-1. L2H17 could protect RF/6A against TBHP-induced inflammation, oxidative stress, and apoptosis, via inhibiting the TLR4/MD2 signaling pathway and the following downstream mitogen-activated protein kinase (MAPK) and nuclear transcription factor-κB (NF-κB) activation. CONCLUSIONS: Inhibiting MD2 with L2H17 significantly reduced CNV, suppressed inflammation, and oxidative stress by antagonizing TLR4/MD2 pathway in an MD2-dependent manner. MD2 may be a potential therapeutic target and L2H17 may offer an alternative treatment strategy for nAMD.


Asunto(s)
Neovascularización Coroidal , Receptor Toll-Like 4 , Animales , Ratones , Neovascularización Coroidal/metabolismo , Inflamación , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
2.
Front Chem ; 9: 766201, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34900935

RESUMEN

A library of new heteroaromatic ring-linked chalcone analogs were designed and synthesized of these, compound 7m with α-CH3 substitution and bearing a benzofuran ring, displaying the most potent activity, with IC50 values of 0.07-0.183 µM against three cancer cells. Its low cytotoxicity toward normal human cells and strong potency on drug-resistant cells revealed the possibility for cancer therapy. It also could moderately inhibit in vitro tubulin polymerization with an IC50 value of 12.23 µM, and the disruption of cellular architecture in MCF-7 cells was observed by an immunofluorescence assay. Cellular-based mechanism studies elucidated that 7m arrested the cell cycle at the G2/M phase and induced apoptosis by regulating the expression levels of caspases and PARP protein. Importantly, the compound 7 m was found to inhibit HUVEC tube formation, migration, and invasion in vitro. In vivo assay showed that 7m could effectively destroy angiogenesis of zebrafish embryos. Furthermore, our data suggested that treatment with 7m significantly reduced MCF-7 cell metastasis and proliferation in vitro and in zebrafish xenograft. Collectively, this work showed that chalcone hybrid 7m deserves further investigation as dual potential tubulin polymerization and angiogenesis inhibitor.

3.
Neural Regen Res ; 13(9): 1665-1672, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30127130

RESUMEN

Chalcone is a plant metabolite widely found in fruits, vegetables, spices and tea, and has anti-tumor, anti-inflammation, immunomodulation, antibacterial and anti-oxidation activities, as well as many other pharmacological and biological effects. Our team has shown that its analogs have antioxidant activity, and oxidative stress is a pathological hallmark of retinal ischemia/reperfusion injury that can lead to retinal damage and visual loss. This investigation aims to identify a chalcone that protects retinal ganglion cells in vitro from the effects of oxidative stress and examine its mechanism. Rat retinal ganglion cell-5 cells were pretreated with chalcones and then exposed to tert-butyl hydroperoxide that causes oxidative damage. Controls received dimethyl sulfoxide only or tert-butyl hydroperoxide in dimethyl sulfoxide. Only (E)-3,4-dihydroxy-2'-methylether ketone (L2H17), of the five chalcone analogs, markedly increased the survival rate of oxidatively injured RGC-5 cells. Thus, subsequent experiments only analyzed the results of the L2H17 intervention. Cell viability and apoptosis were measured. Intracellular superoxide dismutase and reactive oxygen species levels were used to assess induced oxidative stress. The mechanism of action by L2H17 was explored by measuring the ER stress/UPR pathway and the expression and localization of Nrf2. All results demonstrated that L2H17 could reduce the apoptosis of oxidatively injured cells, inhibit caspase-3 activity, increase Bcl-2 expression, decrease Bad expression, increase the activity of superoxide dismutase, inhibit the production of reactive oxygen species, increase Nrf2 immunoreactivity, and reduce the activating transcription factor 4, phospho-eukaryotic initiation factor 2 and CHOP expression. L2H17 protects retinal ganglion cells induced by oxidative stress by regulating Nrf2, which indicates that it has the potential to become a drug for retinal ischemia/reperfusion.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda