Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
1.
Physiol Rev ; 103(1): 433-513, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35951482

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of disorders characterized by early-onset, often severe epileptic seizures and EEG abnormalities on a background of developmental impairment that tends to worsen as a consequence of epilepsy. DEEs may result from both nongenetic and genetic etiologies. Genetic DEEs have been associated with mutations in many genes involved in different functions including cell migration, proliferation, and organization, neuronal excitability, and synapse transmission and plasticity. Functional studies performed in different animal models and clinical trials on patients have contributed to elucidate pathophysiological mechanisms underlying many DEEs and have explored the efficacy of different treatments. Here, we provide an extensive review of the phenotypic spectrum included in the DEEs and of the genetic determinants and pathophysiological mechanisms underlying these conditions. We also provide a brief overview of the most effective treatment now available and of the emerging therapeutic approaches.


Asunto(s)
Epilepsia , Animales , Epilepsia/genética , Heterogeneidad Genética , Mutación
2.
Annu Rev Neurosci ; 44: 383-402, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34236889

RESUMEN

Nearly all structures in our body experience mechanical forces. At a molecular scale, these forces are detected by ion channels that function as mechanotransducers converting physical forces into electrochemical responses. Here we focus on PIEZOs, a family of mechanically activated ion channels comprising PIEZO1 and PIEZO2. The significance of these channels is highlighted by their roles in touch and pain sensation as well as in cardiovascular and respiratory physiology, among others. Moreover, mutations in PIEZOs cause somatosensory, proprioceptive, and blood disorders. The goal here is to present the diverse physiology and pathophysiology of these unique channels, discuss ongoing research and critical gaps in the field, and explore the pharmaceutical interest in targeting PIEZOs for therapeutic development.


Asunto(s)
Canales Iónicos , Mecanotransducción Celular , Canales Iónicos/genética , Percepción del Dolor
3.
Mol Cell ; 81(6): 1160-1169.e5, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33503406

RESUMEN

Voltage-gated sodium channels are targets for many analgesic and antiepileptic drugs whose therapeutic mechanisms and binding sites have been well characterized. We describe the identification of a previously unidentified receptor site within the NavMs voltage-gated sodium channel. Tamoxifen, an estrogen receptor modulator, and its primary and secondary metabolic products bind at the intracellular exit of the channel, which is a site that is distinct from other previously characterized sodium channel drug sites. These compounds inhibit NavMs and human sodium channels with similar potencies and prevent sodium conductance by delaying channel recovery from the inactivated state. This study therefore not only describes the structure and pharmacology of a site that could be leveraged for the development of new drugs for the treatment of sodium channelopathies but may also have important implications for off-target health effects of this widely used therapeutic drug.


Asunto(s)
Modelos Moleculares , Tamoxifeno/química , Canales de Sodio Activados por Voltaje/química , Células HEK293 , Humanos
4.
Annu Rev Physiol ; 86: 277-300, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37906945

RESUMEN

Novel KCNMA1 variants, encoding the BK K+ channel, are associated with a debilitating dyskinesia and epilepsy syndrome. Neurodevelopmental delay, cognitive disability, and brain and structural malformations are also diagnosed at lower incidence. More than half of affected individuals present with a rare negative episodic motor disorder, paroxysmal nonkinesigenic dyskinesia (PNKD3). The mechanistic relationship of PNKD3 to epilepsy and the broader spectrum of KCNMA1-associated symptomology is unknown. This review summarizes patient-associated KCNMA1 variants within the BK channel structure, functional classifications, genotype-phenotype associations, disease models, and treatment. Patient and transgenic animal data suggest delineation of gain-of-function (GOF) and loss-of-function KCNMA1 neurogenetic disease, validating two heterozygous alleles encoding GOF BK channels (D434G and N999S) as causing seizure and PNKD3. This discovery led to a variant-defined therapeutic approach for PNKD3, providing initial insight into the neurological basis. A comprehensive clinical definition of monogenic KCNMA1-linked disease and the neuronal mechanisms currently remain priorities for continued investigation.


Asunto(s)
Canalopatías , Corea , Epilepsia , Animales , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio , Canalopatías/genética , Epilepsia/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética
5.
Physiol Rev ; 100(2): 725-803, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31670612

RESUMEN

The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.


Asunto(s)
Señalización del Calcio , Mecanotransducción Celular , Nocicepción , Células Receptoras Sensoriales/metabolismo , Canal Catiónico TRPA1/metabolismo , Sensación Térmica , Animales , Canalopatías/metabolismo , Canalopatías/fisiopatología , Células Quimiorreceptoras/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/fisiopatología , Mecanorreceptores/metabolismo , Nociceptores/metabolismo , Dolor/metabolismo , Dolor/fisiopatología , Termorreceptores/metabolismo
6.
Physiol Rev ; 104(1): 23-31, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37561136
7.
Proc Natl Acad Sci U S A ; 120(14): e2219624120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36996107

RESUMEN

Gain-of-function mutations in voltage-gated sodium channel NaV1.7 cause severe inherited pain syndromes, including inherited erythromelalgia (IEM). The structural basis of these disease mutations, however, remains elusive. Here, we focused on three mutations that all substitute threonine residues in the alpha-helical S4-S5 intracellular linker that connects the voltage sensor to the pore: NaV1.7/I234T, NaV1.7/I848T, and NaV1.7/S241T in order of their positions in the amino acid sequence within the S4-S5 linkers. Introduction of these IEM mutations into the ancestral bacterial sodium channel NaVAb recapitulated the pathogenic gain-of-function of these mutants by inducing a negative shift in the voltage dependence of activation and slowing the kinetics of inactivation. Remarkably, our structural analysis reveals a common mechanism of action among the three mutations, in which the mutant threonine residues create new hydrogen bonds between the S4-S5 linker and the pore-lining S5 or S6 segment in the pore module. Because the S4-S5 linkers couple voltage sensor movements to pore opening, these newly formed hydrogen bonds would stabilize the activated state substantially and thereby promote the 8 to 18 mV negative shift in the voltage dependence of activation that is characteristic of the NaV1.7 IEM mutants. Our results provide key structural insights into how IEM mutations in the S4-S5 linkers may cause hyperexcitability of NaV1.7 and lead to severe pain in this debilitating disease.


Asunto(s)
Eritromelalgia , Canales de Sodio Activados por Voltaje , Humanos , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Dolor/genética , Dolor/metabolismo , Mutación , Eritromelalgia/genética , Eritromelalgia/metabolismo , Eritromelalgia/patología , Canales de Sodio Activados por Voltaje/genética , Treonina/genética
8.
Eur Heart J ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38751064

RESUMEN

BACKGROUND AND AIMS: Risk scores are proposed for genetic arrhythmias. Having proposed in 2010 one such score (M-FACT) for the long QT syndrome (LQTS), this study aims to test whether adherence to its suggestions would be appropriate. METHODS: LQT1/2/3 and genotype-negative patients without aborted cardiac arrest (ACA) before diagnosis or cardiac events (CEs) below age 1 were included in the study, focusing on an M-FACT score ≥2 (intermediate/high risk), either at presentation (static) or during follow-up (dynamic), previously associated with 40% risk of implantable cardioverter defibrillator (ICD) shocks within 4 years. RESULTS: Overall, 946 patients (26 ± 19 years at diagnosis, 51% female) were included. Beta-blocker (ßB) therapy in 94% of them reduced the rate of those with a QTc ≥500 ms from 18% to 12% (P < .001). During 7 ± 6 years of follow-up, none died; 4% had CEs, including 0.4% with ACA. A static M-FACT ≥2 was present in 110 patients, of whom 106 received ßBs. In 49/106 patients with persistent dynamic M-FACT ≥2, further therapeutic optimization (left cardiac sympathetic denervation in 55%, mexiletine in 31%, and ICD at 27%) resulted in just 7 (14%) patients with CEs (no ACA), with no CEs in the remaining 57. Additionally, 32 patients developed a dynamic M-FACT ≥2 but, after therapeutic optimization, only 3 (9%) had CEs. According to an M-FACT score ≥2, a total of 142 patients should have received an ICD, but only 22/142 (15%) were implanted, with shocks reported in 3. CONCLUSIONS: Beta-blockers often shorten QTc, thus changing risk scores and ICD indications for primary prevention. Yearly risk reassessment with therapy optimization leads to fewer ICD implants (3%) without increasing life-threatening events.

9.
Circulation ; 147(21): 1568-1578, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-36960730

RESUMEN

BACKGROUND: Treatment options for high-risk Brugada syndrome (BrS) with recurrent ventricular fibrillation (VF) are limited. Catheter ablation is increasingly performed but a large study with long-term outcome data is lacking. We report the results of the multicenter, international BRAVO (Brugada Ablation of VF Substrate Ongoing Registry) for treatment of high-risk symptomatic BrS. METHODS: We enrolled 159 patients (median age 42 years; 156 male) with BrS and spontaneous VF in BRAVO; 43 (27%) of them had BrS and early repolarization pattern. All but 5 had an implantable cardioverter-defibrillator for cardiac arrest (n=125) or syncope (n=34). A total of 140 (88%) had experienced numerous implantable cardioverter-defibrillator shocks for spontaneous VF before ablation. All patients underwent a percutaneous epicardial substrate ablation with electroanatomical mapping except for 8 who underwent open-thoracotomy ablation. RESULTS: In all patients, VF/BrS substrates were recorded in the epicardial surface of the right ventricular outflow tract; 45 (29%) patients also had an arrhythmic substrate in the inferior right ventricular epicardium and 3 in the posterior left ventricular epicardium. After a single ablation procedure, 128 of 159 (81%) patients remained free of VF recurrence; this number increased to 153 (96%) after a repeated procedure (mean 1.2±0.5 procedures; median=1), with a mean follow-up period of 48±29 months from the last ablation. VF burden and frequency of shocks decreased significantly from 1.1±2.1 per month before ablation to 0.003±0.14 per month after the last ablation (P<0.0001). The Kaplan-Meier VF-free survival beyond 5 years after the last ablation was 95%. The only variable associated with a VF-free outcome in multivariable analysis was normalization of the type 1 Brugada ECG, both with and without sodium-channel blockade, after the ablation (hazard ratio, 0.078 [95% CI, 0.008 to 0.753]; P=0.0274). There were no arrhythmic or cardiac deaths. Complications included hemopericardium in 4 (2.5%) patients. CONCLUSIONS: Ablation treatment is safe and highly effective in preventing VF recurrence in high-risk BrS. Prospective studies are needed to determine whether it can be an alternative treatment to implantable cardioverter-defibrillator implantation for selected patients with BrS. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT04420078.


Asunto(s)
Síndrome de Brugada , Ablación por Catéter , Desfibriladores Implantables , Humanos , Masculino , Adulto , Fibrilación Ventricular , Electrocardiografía/métodos , Ventrículos Cardíacos , Síndrome de Brugada/cirugía , Síndrome de Brugada/complicaciones , Desfibriladores Implantables/efectos adversos , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , Sistema de Registros
10.
Pflugers Arch ; 476(5): 735-753, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38424322

RESUMEN

Genetic variants of gene SCN5A encoding the alpha-subunit of cardiac voltage-gated sodium channel Nav1.5 are associated with various diseases, including long QT syndrome (LQT3), Brugada syndrome (BrS1), and progressive cardiac conduction disease (PCCD). In the last decades, the great progress in understanding molecular and biophysical mechanisms of these diseases has been achieved. The LQT3 syndrome is associated with gain-of-function of sodium channels Nav1.5 due to impaired inactivation, enhanced activation, accelerated recovery from inactivation or the late current appearance. In contrast, BrS1 and PCCD are associated with the Nav1.5 loss-of-function, which in electrophysiological experiments can be manifested as reduced current density, enhanced fast or slow inactivation, impaired activation, or decelerated recovery from inactivation. Genetic variants associated with congenital arrhythmias can also disturb interactions of the Nav1.5 channel with different proteins or drugs and cause unexpected reactions to drug administration. Furthermore, mutations can affect post-translational modifications of the channels and their sensitivity to pH and temperature. Here we briefly review the current knowledge on biophysical mechanisms of LQT3, BrS1 and PCCD. We focus on limitations of studies that use heterologous expression systems and induced pluripotent stem cells (iPSC) derived cardiac myocytes and summarize our understanding of genotype-phenotype relations of SCN5A mutations.


Asunto(s)
Canalopatías , Canal de Sodio Activado por Voltaje NAV1.5 , Humanos , Animales , Canalopatías/genética , Canalopatías/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Miocardio/metabolismo , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/fisiopatología
11.
J Cardiovasc Electrophysiol ; 35(6): 1219-1228, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38654386

RESUMEN

The limited literature and increasing interest in studies on cardiac electrophysiology, explicitly focusing on cardiac ion channelopathies and sudden cardiac death in diverse populations, has prompted a comprehensive examination of existing research. Our review specifically targets Hispanic/Latino and Indigenous populations, which are often underrepresented in healthcare studies. This review encompasses investigations into genetic variants, epidemiology, etiologies, and clinical risk factors associated with arrhythmias in these demographic groups. The review explores the Hispanic paradox, a phenomenon linking healthcare outcomes to socioeconomic factors within Hispanic communities in the United States. Furthermore, it discusses studies exemplifying this observation in the context of arrhythmias and ion channelopathies in Hispanic populations. Current research also sheds light on disparities in overall healthcare quality in Indigenous populations. The available yet limited literature underscores the pressing need for more extensive and comprehensive research on cardiac ion channelopathies in Hispanic/Latino and Indigenous populations. Specifically, additional studies are essential to fully characterize pathogenic genetic variants, identify population-specific risk factors, and address health disparities to enhance the detection, prevention, and management of arrhythmias and sudden cardiac death in these demographic groups.


Asunto(s)
Arritmias Cardíacas , Canalopatías , Muerte Súbita Cardíaca , Predisposición Genética a la Enfermedad , Hispánicos o Latinos , Humanos , Muerte Súbita Cardíaca/etnología , Muerte Súbita Cardíaca/etiología , Canalopatías/genética , Canalopatías/etnología , Canalopatías/mortalidad , Canalopatías/diagnóstico , Arritmias Cardíacas/etnología , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/genética , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/mortalidad , Factores de Riesgo , Medición de Riesgo , Disparidades en el Estado de Salud , Masculino , Disparidades en Atención de Salud/etnología , Femenino , Estados Unidos/epidemiología , Fenotipo , Pronóstico , Adulto , Factores Raciales , Potenciales de Acción , Persona de Mediana Edad
12.
Am J Med Genet A ; 194(8): e63609, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38532509

RESUMEN

Mental illnesses are one of the biggest contributors to the global disease burden. Despite the increased recognition, diagnosis and ongoing research of mental health disorders, the etiology and underlying molecular mechanisms of these disorders are yet to be fully elucidated. Moreover, despite many treatment options available, a large subset of the psychiatric patient population is nonresponsive to standard medications and therapies. There has not been a comprehensive study to date examining the burden and impact of treatable genetic disorders (TGDs) that can present with neuropsychiatric features in psychiatric patient populations. In this study, we test the hypothesis that TGDs that present with psychiatric symptoms are more prevalent within psychiatric patient populations compared to the general population by performing targeted next-generation sequencing of 129 genes associated with 108 TGDs in a cohort of 2301 psychiatric patients. In total, 48 putative affected and 180 putative carriers for TGDs were identified, with known or likely pathogenic variants in 79 genes. Despite screening for only 108 genetic disorders, this study showed a two-fold (2.09%) enrichment for genetic disorders within the psychiatric population relative to the estimated 1% cumulative prevalence of all single gene disorders globally. This strongly suggests that the prevalence of these, and most likely all, genetic diseases is greatly underestimated in psychiatric populations. Increasing awareness and ensuring accurate diagnosis of TGDs will open new avenues to targeted treatment for a subset of psychiatric patients.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Trastornos Mentales , Humanos , Trastornos Mentales/genética , Trastornos Mentales/epidemiología , Trastornos Mentales/terapia , Femenino , Masculino , Adulto , Persona de Mediana Edad , Predisposición Genética a la Enfermedad , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/epidemiología , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/terapia , Prevalencia , Pruebas Genéticas
13.
Circ Res ; 130(12): 1926-1964, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679367

RESUMEN

Cardiac arrhythmias are a significant cause of morbidity and mortality worldwide, accounting for 10% to 15% of all deaths. Although most arrhythmias are due to acquired heart disease, inherited channelopathies and cardiomyopathies disproportionately affect children and young adults. Arrhythmogenesis is complex, involving anatomic structure, ion channels and regulatory proteins, and the interplay between cells in the conduction system, cardiomyocytes, fibroblasts, and the immune system. Animal models of arrhythmia are powerful tools for studying not only molecular and cellular mechanism of arrhythmogenesis but also more complex mechanisms at the whole heart level, and for testing therapeutic interventions. This review summarizes basic and clinical arrhythmia mechanisms followed by an in-depth review of published animal models of genetic and acquired arrhythmia disorders.


Asunto(s)
Arritmias Cardíacas , Canalopatías , Animales , Arritmias Cardíacas/metabolismo , Canalopatías/genética , Sistema de Conducción Cardíaco/metabolismo , Modelos Animales , Miocitos Cardíacos/metabolismo
14.
Brain ; 146(4): 1316-1321, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36382348

RESUMEN

Accurate determination of the pathogenicity of missense genetic variants of uncertain significance is a huge challenge for implementing genetic data in clinical practice. In silico predictive tools are used to score variants' pathogenicity. However, their value in clinical settings is often unclear, as they have not usually been validated against robust functional assays. We compared nine widely used in silico predictive tools, including more recently developed tools (EVE and REVEL) with detailed cell-based electrophysiology, for 126 CLCN1 variants discovered in patients with the skeletal muscle channelopathy myotonia congenita. We found poor accuracy for most tools. The highest accuracy was obtained with MutationTaster (84.58%) and REVEL (82.54%). Both of these scores showed poor specificity, although specificity was better using EVE. Combining methods based on concordance improved performance overall but still lacked specificity. Our calculated statistics for the predictive tools were different to reported values for other genes in the literature, suggesting that the utility of the tools varies between genes. Overall, current predictive tools for this chloride channel are not reliable for clinical use, and tools with better specificity are urgently required. Improving the accuracy of predictive tools is a wider issue and a huge challenge for effective clinical implementation of genetic data.


Asunto(s)
Canalopatías , Miotonía Congénita , Humanos , Canalopatías/genética , Músculo Esquelético , Canales de Cloruro/genética , Miotonía Congénita/genética , Mutación
15.
Adv Exp Med Biol ; 1441: 1057-1090, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884769

RESUMEN

Arrhythmias account for over 300,000 annual deaths in the United States, and approximately half of all deaths are associated with heart disease. Mechanisms underlying arrhythmia risk are complex; however, work in humans and animal models over the past 25 years has identified a host of molecular pathways linked with both arrhythmia substrates and triggers. This chapter will focus on select arrhythmia pathways solved by linking human clinical and genetic data with animal models.


Asunto(s)
Arritmias Cardíacas , Modelos Animales de Enfermedad , Animales , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/metabolismo , Transducción de Señal/genética
16.
Pediatr Dermatol ; 41(1): 80-83, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37345838

RESUMEN

Congenital insensitivity to pain (CIP) is a rare phenotype characterized by the inability to perceive pain stimuli with subsequent self-injuries, whereas CIP associated with anhidrosis (CIPA) is an overlapping phenotype mainly characterized by insensitivity to noxious stimuli and anhidrosis. CIP is primarily associated with pathogenetic variants in the SCN9A gene while CIPA is associated with pathogenetic variants in NGF and NRTK genes. However, in recent years, a significant overlap between these two disorders has been observed highlighting the presence of anhidrosis in SCN9A variants. We report the cases of two siblings (age 4 and 6 years) born from consanguineous parents presenting with a previously undescribed phenotype due to a novel pathogenic variant in SCN9A clinically characterized by congenital insensitivity to pain, anhidrosis, and mild cognitive impairment.


Asunto(s)
Canalopatías , Disfunción Cognitiva , Neuropatías Hereditarias Sensoriales y Autónomas , Hipohidrosis , Indoles , Insensibilidad Congénita al Dolor , Propionatos , Humanos , Preescolar , Niño , Insensibilidad Congénita al Dolor/genética , Hipohidrosis/genética , Mutación , Receptor trkA/genética , Dolor/genética , Disfunción Cognitiva/genética , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética
17.
J Physiol ; 601(9): 1573-1582, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36068724

RESUMEN

Today, biomedicine faces one of its greatest challenges, i.e. treating diseases through their causative dysfunctional processes and not just their symptoms. However, we still miss a global view of the mechanisms and pathways involved in the pathophysiology of most diseases. In fact, disease mechanisms and pathways can be achieved by holistic studies provided by 'omic' approaches. Cystic fibrosis (CF), caused by mutations in the CF transmembrane conductance regulator (CFTR) gene which encodes an anion channel, is paradigmatic for monogenic disorders, namely channelopathies. A high number of 'omics studies' have focused on CF; namely, several cell-based high-throughput approaches were developed and applied towards a global mechanistic characterization of CF pathophysiology and the identification of novel and 'unbiased' drug targets. Notwithstanding, it is likely that, through the integration of all these 'layers' of large datasets into comprehensive disease maps, biological significance can be extracted so that the enormous potential of these approaches to identifying dysfunctional mechanisms and novel drugs may become a reality.


Asunto(s)
Canalopatías , Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Transporte Iónico , Mutación
18.
Hum Genomics ; 16(1): 30, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35932045

RESUMEN

BACKGROUND: The prevalence and genetic spectrum of cardiac channelopathies exhibit population-specific differences. We aimed to understand the spectrum of cardiac channelopathy-associated variations in India, which is characterised by a genetically diverse population and is largely understudied in the context of these disorders. RESULTS: We utilised the IndiGenomes dataset comprising 1029 whole genomes from self-declared healthy individuals as a template to filter variants in 36 genes known to cause cardiac channelopathies. Our analysis revealed 186,782 variants, of which we filtered 470 variants that were identified as possibly pathogenic (440 nonsynonymous, 30 high-confidence predicted loss of function ). About 26% (124 out of 470) of these variants were unique to the Indian population as they were not reported in the global population datasets and published literature. Classification of 470 variants by ACMG/AMP guidelines unveiled 13 pathogenic/likely pathogenic (P/LP) variants mapping to 19 out of the 1029 individuals. Further query of 53 probands in an independent cohort of cardiac channelopathy, using exome sequencing, revealed the presence of 3 out of the 13 P/LP variants. The identification of p.G179Sfs*62, p.R823W and c.420 + 2 T > C variants in KCNQ1, KCNH2 and CASQ2 genes, respectively, validate the significance of the P/LP variants in the context of clinical applicability as well as for large-scale population analysis. CONCLUSION: A compendium of ACMG/AMP classified cardiac channelopathy variants in 1029 self-declared healthy Indian population was created. A conservative genotypic prevalence was estimated to be 0.9-1.8% which poses a huge public health burden for a country with large population size like India. In the majority of cases, these disorders are manageable and the risk of sudden cardiac death can be alleviated by appropriate lifestyle modifications as well as treatment regimens/clinical interventions. Clinical utility of the obtained variants was demonstrated using a cardiac channelopathy patient cohort. Our study emphasises the need for large-scale population screening to identify at-risk individuals and take preventive measures. However, we suggest cautious clinical interpretation to be exercised by taking other cardiac channelopathy risk factors into account.


Asunto(s)
Canalopatías , Humanos , Canalopatías/epidemiología , Canalopatías/genética , Muerte Súbita Cardíaca/epidemiología , Muerte Súbita Cardíaca/patología , Secuenciación del Exoma , India/epidemiología
19.
Muscle Nerve ; 68(4): 439-450, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37515374

RESUMEN

INTRODUCTION/AIMS: The periodic paralyses are muscle channelopathies: hypokalemic periodic paralysis (CACNA1S and SCN4A variants), hyperkalemic periodic paralysis (SCN4A variants), and Andersen-Tawil syndrome (KCNJ2). Both episodic weakness and disabling fixed weakness can occur. Little literature exists on magnetic resonance imaging (MRI) in muscle channelopathies. We undertake muscle MRI across all subsets of periodic paralysis and correlate with clinical features. METHODS: A total of 45 participants and eight healthy controls were enrolled and underwent T1-weighted and short-tau-inversion-recovery (STIR) MRI imaging of leg muscles. Muscles were scored using the modified Mercuri Scale. RESULTS: A total of 17 patients had CACNA1S variants, 16 SCN4A, and 12 KCNJ2. Thirty-one (69%) had weakness, and 9 (20%) required a gait-aid/wheelchair. A total of 78% of patients had intramuscular fat accumulation on MRI. Patients with SCN4A variants were most severely affected. In SCN4A, the anterior thigh and posterior calf were more affected, in contrast to the posterior thigh and posterior calf in KCNJ2. We identified a pattern of peri-tendinous STIR hyperintensity in nine patients. There were moderate correlations between Mercuri, STIR scores, and age. Intramuscular fat accumulation was seen in seven patients with no fixed weakness. DISCUSSION: We demonstrate a significant burden of disease in patients with periodic paralyses. MRI intramuscular fat accumulation may be helpful in detecting early muscle involvement, particularly in those without fixed weakness. Longitudinal studies are needed to assess the role of muscle MRI in quantifying disease progression over time and as a potential biomarker in clinical trials.


Asunto(s)
Canalopatías , Parálisis Periódica Hipopotasémica , Distrofias Musculares , Parálisis Periódicas Familiares , Humanos , Parálisis Periódicas Familiares/diagnóstico por imagen , Parálisis Periódica Hipopotasémica/diagnóstico por imagen , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Distrofias Musculares/patología , Imagen por Resonancia Magnética , Parálisis , Canal de Sodio Activado por Voltaje NAV1.4/genética , Mutación
20.
Liver Int ; 43(2): 401-412, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36478640

RESUMEN

BACKGROUND AND AIMS: Autosomal dominant polycystic liver and kidney disease is a spectrum of hereditary diseases, which display disturbed function of primary cilia leading to cyst formation. In autosomal dominant polycystic kidney disease a genetic cause can be determined in almost all cases. However, in isolated polycystic liver disease (PLD) about half of all cases remain genetically unsolved, suggesting more, so far unidentified genes to be implicated in this disease. METHODS: Customized next-generation sequencing was used to identify the underlying pathogenesis in two related patients with PLD. A variant identified in SEC61A1 was further analysed in immortalized patients' urine sediment cells and in an epithelial cell model. RESULTS: In both patients, a heterozygous missense change (c.706C>T/p.Arg236Cys) was found in SEC61A1, which encodes for a subunit of the translocation machinery of protein biosynthesis at the endoplasmic reticulum (ER). While kidney disease is absent in the proposita, her mother displays an atypical polycystic kidney phenotype with severe renal failure. In immortalized urine sediment cells, mutant SEC61A1 is expressed at reduced levels, resulting in decreased levels of polycystin-2 (PC2). In an epithelial cell culture model, we found the proteasomal degradation of mutant SEC61A1 to be increased, whereas its localization to the ER is not affected. CONCLUSIONS: Our data expand the allelic and clinical spectrum for SEC61A1, adding PLD as a new and the major phenotypic trait in the family described. We further demonstrate that mutant SEC61A1 results in enhanced proteasomal degradation and impaired biosynthesis of PC2.


Asunto(s)
Quistes , Hepatopatías , Canales de Translocación SEC , Femenino , Humanos , Línea Celular , Quistes/genética , Hepatopatías/genética , Canales de Translocación SEC/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda