Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Mol Pharm ; 21(7): 3240-3255, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38785196

RESUMEN

Inhibitors of a DNA repair enzyme known as polynucleotide kinase 3'-phosphatase (PNKP) are expected to show synergistic cytotoxicity in combination with topoisomerase I (TOP1) inhibitors in cancer. In this study, the synergistic cytotoxicity of a novel inhibitor of PNKP, i.e., A83B4C63, with a potent TOP1 inhibitor, i.e., SN-38, against colorectal cancer cells was investigated. Polymeric micelles (PMs) for preferred tumor delivery of A83B4C63, developed through physical encapsulation of this compound in methoxy poly(ethylene oxide)-poly(α-benzyl carboxylate-ε-caprolactone) (mPEO-b-PBCL) micelles, were combined with SN-38 in free or PM form. The PM form of SN-38 was prepared through chemical conjugation of SN-38 to the functional end group of mPEO-b-PBCL and further assembly of mPEO-b-PBCL-SN-38 in water. Moreover, mixed micelles composed of mPEO-b-PBCL and mPEO-b-PBCL-SN-38 were used to co-load A83B4C63 and SN-38 in the same nanoformulation. The loading content (% w/w) of the SN-38 and A83B4C63 to mPEO-b-PBCL in the co-loaded formulation was 7.91 ± 0.66 and 16.13 ± 0.11% (w/w), respectively, compared to 15.67 ± 0.34 (% w/w) and 23.06 ± 0.63 (% w/w) for mPEO-b-PBCL micelles loading individual drugs. Notably, the average diameter of PMs co-encapsulating both SN-38 and A83B4C63 was larger than that of PMs encapsulating either of these compounds alone but still lower than 60 nm. The release of A83B4C63 from PMs co-encapsulating both drugs was 76.36 ± 1.41% within 24 h, which was significantly higher than that of A83B4C63-encapsulated micelles (42.70 ± 0.72%). In contrast, the release of SN-38 from PMs co-encapsulating both drugs was 44.15 ± 2.61% at 24 h, which was significantly lower than that of SN-38-conjugated PMs (74.16 ± 3.65%). Cytotoxicity evaluations by the MTS assay as analyzed by the Combenefit software suggested a clear synergy between PM/A83B4C63 (at a concentration range of 10-40 µM) and free SN-38 (at a concentration range of 0.001-1 µM). The synergistic cytotoxic concentration range for SN-38 was narrowed down to 0.1-1 or 0.01-1 µM when combined with PM/A83B4C63 at 10 or 20-40 µM, respectively. In general, PMs co-encapsulating A83B4C63 and SN-38 at drug concentrations within the synergistic range (10 µM for A83B4C63 and 0.05-1 µM for SN-38) showed slightly less enhancement of SN-38 anticancer activity than a combination of individual micelles, i.e., A83B4C63 PMs + SN-38 PMs at the same molar concentrations. This was attributed to the slower release of SN-38 from the SN-38 and A83B4C63 co-encapsulated PMs compared to PMs only encapsulating SN-38. Cotreatment of cells with TOP1 inhibitors and A83B4C63 formulation enhanced the expression level of γ-HA2X, cleaved PARP, caspase-3, and caspase-7 in most cases. This trend was more consistent and notable for PMs co-encapsulating both A83B4C63 and SN-38. The overall result from the study shows a synergy between PMs of SN-38 and A83B4C63 as a mixture of two PMs for individual drugs or PMs co-encapsulating both drugs.


Asunto(s)
Neoplasias Colorrectales , Irinotecán , Micelas , Inhibidores de Topoisomerasa I , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Irinotecán/farmacología , Irinotecán/administración & dosificación , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/administración & dosificación , Inhibidores de Topoisomerasa I/química , Línea Celular Tumoral , Animales , Ratones , Nanomedicina/métodos , Sinergismo Farmacológico , ADN-Topoisomerasas de Tipo I/metabolismo , Nanopartículas/química , Ensayos Antitumor por Modelo de Xenoinjerto , Poliésteres/química , Fosfotransferasas (Aceptor de Grupo Alcohol) , Enzimas Reparadoras del ADN
2.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256235

RESUMEN

The excellent physicochemical properties of two-dimensional transition-metal dichalcogenides (2D TMDCs) such as WS2 and WSe2 provide potential benefits for biomedical applications, such as drug delivery, photothermal therapy, and bioimaging. WS2 and WSe2 have recently been used as chemosensitizers; however, the detailed molecular basis underlying WS2- and WSe2-induced sensitization remains elusive. Our recent findings showed that 2D TMDCs with different thicknesses and different element compositions induced autophagy in normal human bronchial epithelial cells and mouse alveolar macrophages at sublethal concentrations. Here, we explored the mechanism by which WS2 and WSe2 act as sensitizers to increase lung cancer cell susceptibility to chemotherapeutic agents. The results showed that WS2 and WSe2 enhanced autophagy flux in A549 lung cancer cells at sublethal concentrations without causing significant cell death. Through the autophagy-specific RT2 Profiler PCR Array, we identified the genes significantly affected by WS2 and WSe2 treatment. Furthermore, the key genes that play central roles in regulating autophagy were identified by constructing a molecular interaction network. A mechanism investigation uncovered that WS2 and WSe2 activated autophagy-related signaling pathways by interacting with different cell surface proteins or cytoplasmic proteins. By utilizing this mechanism, the efficacy of the chemotherapeutic agent doxorubicin was enhanced by WS2 and WSe2 pre-treatment in A549 lung cancer cells. This study revealed a feature of WS2 and WSe2 in cancer therapy, in which they eliminate the resistance of A549 lung cancer cells against doxorubicin, at least partially, by inducing autophagy.


Asunto(s)
Doxorrubicina , Neoplasias Pulmonares , Humanos , Animales , Ratones , Células A549 , Doxorrubicina/farmacología , Autofagia , Células Epiteliales
3.
Fish Physiol Biochem ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39026113

RESUMEN

The membrane efflux transporter P-glycoprotein (P-gp, [ABCB1, MDR1]) exports a wide range of xenobiotic compounds, resulting in a continuous first line of defense against toxicant accumulation at basal expression levels, and contributing to the multixenobiotic resistance (MXR) phenotype at elevated expression levels. Relatively little information exists on P-gp inhibition in fish by chemosensitizers, compounds which lower toxicity thresholds for harmful P-gp substrates in complex mixtures. The effects of four known mammalian chemosensitizers (cyclosporin A [CsA], quinidine, valspodar [PSC833], and verapamil) on the P-gp-mediated transport of rhodamine 123 (R123) and cortisol in primary cultures of rainbow trout (Oncorhynchus mykiss) hepatocytes were examined. Competitive accumulation assays using 25 µM R123 or cortisol and varying concentrations of chemosensitizers (0-500 µM) were used. CsA, quinidine, and verapamil inhibited R123 export (IC50 values ± SE: 132 ± 60, 83.3 ± 27.2, and 43.2 ± 13.6 µM, respectively). CsA and valspodar inhibited cortisol export (IC50 values: 294 ± 106 and 92.2 ± 34.9 µM, respectively). In an ATP depletion assay, hepatocytes incubated with all four chemosensitizers resulted in lower free ATP concentrations, suggesting that they act via competitive inhibition. Chemosensitizers that inhibit MXR transporters are an important class of environmental pollutant, and these results show that rainbow trout transporters are inhibited by similar chemosensitizers (and mostly at similar concentrations) as seen in mammals and other fish species.

4.
BMC Cancer ; 22(1): 446, 2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35461219

RESUMEN

BACKGROUND: Although several novel resistant breast cancer cell lines have been established, only a few resistant breast cancer cell lines overexpress breast cancer resistance proteins (BCRP). The aim of this study was to establish new resistant breast cancer cell lines overexpressing BCRP using SN38 (7-ethyl-10-hydroxycamptothecin), an active metabolite of irinotecan and was to discover genes and mechanisms associated with multidrug resistance. METHODS: SN38-resistant T47D breast cancer cell sublines were selected from the wild-type T47D cells by gradually increasing SN38 concentration. The sensitivity of the cells to anti-cancer drugs was assessed by 3-(4,5-methylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Expression profiles of the resistance-related transporters were examined using RT-qPCR, and western blot analysis. Intracellular fluorescent dye accumulation in the resistant cells was determined using flow cytometry. RESULTS: The SN38-resistant T47D breast cancer cell sublines T47D/SN120 and T47D/SN150 were established after long-term exposure (more than 16 months) of wild-type T47D cells to 120 nM and 150 nM SN38, respectively. T47D/SN120 and T47D/SN150 cells were more resistant to SN38 (14.5 and 59.1 times, respectively), irinotecan (1.5 and 3.7 times, respectively), and topotecan (4.9 and 12 times, respectively), than the wild-type parental cells. Both T47D/SN120 and T47D/SN150 sublines were cross-resistant to various anti-cancer drugs. These resistant sublines overexpressed mRNAs of MRP1, MRP2, MRP3, MRP4, and BCRP. The DNA methylase inhibitor 5-aza-2'-deoxycytidine and the histone deacetylase inhibitor trichostatin A increased the expression levels of BCRP, MRP1, MRP2, MRP3, and MRP4 transcripts in T47D/WT cells. Fluorescent dye accumulation was found to be lower in T47D/SN120 and T47D/SN150 cells, compared to that in T47D/WT cells. However, treatment with known chemosensitizers increased the intracellular fluorescent dye accumulation and sensitivity of anti-tumor agents. CONCLUSION: T47D/SN120 and T47D/SN150 cells overexpressed MRP1, MRP2, MRP3, MRP4, and BCRP, which might be due to the suppression of epigenetic gene silencing via DNA hypermethylation and histone deacetylation. Although these resistant cells present a higher resistance to various anti-cancer drugs than their parental wild-type cells, multidrug resistance was overcome by treatment with chemosensitizers. These SN38 resistant T47D breast cancer cell sublines expressing resistance proteins can be useful for the development of new chemosensitizers.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , ADN , Resistencia a Antineoplásicos/genética , Femenino , Colorantes Fluorescentes/farmacología , Humanos , Irinotecán/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
5.
Cell Mol Biol Lett ; 27(1): 61, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35883026

RESUMEN

BACKGROUND: Cisplatin (CDDP) is commonly used to treat non-small cell lung cancer (NSCLC), but the appearance of drug resistance greatly hinders its efficacy. Borneol may promote drug absorption; however, synergism between borneol and CDDP in suppressing NSCLC is not clearly understood. Hence, we investigated borneol as a novel chemosensitizer to support chemotherapeutic efficacy and reduce side effects. METHODS: We compared viability after exposure to d-borneol, l-borneol, and synthetic borneol in two NSCLC cell lines, A549 and H460, and selected the most sensitive cells. We then assessed synergy between borneol forms and CDDP in cisplatin-resistant NSCLC cells, H460/CDDP. Next, we identified effective concentrations and exposure times. Subsequently, we evaluated cell migration via wound healing and cell proliferation via clone formation assay. Then, we focused on P-glycoprotein (P-gp) function, cell cycle, apoptosis, and RNA sequencing to elucidate underlying molecular mechanisms for synergy. Finally, we used an H460/CDDP xenograft tumor model to verify antitumor activity and safety in vivo. Data were examined using one-way analysis of variance (ANOVA) for multiple datasets or t-test for comparisons between two variables. RESULTS: d-Borneol was more effective in H460 than A549 cells. d-Borneol combined with CDDP showed greater inhibition of cell proliferation, migration, and clone formation in H460/CDDP cells than CDDP alone. RNA sequencing (RNA-seq) analysis identified differentially expressed genes enriched in cell cycle pathways. The impact of d-borneol on CDDP chemosensitivity involved arrest of the cell cycle at S phase via p27/p21-mediated cyclinA2/D3-CDK2/6 signaling and activation of intrinsic apoptosis via p21-mediated Bax/Bcl-2/caspase3 signaling. Further, d-borneol ameliorated drug resistance by suppressing levels and activity of P-gp. Cotreatment with d-borneol and CDDP inhibited tumor growth in vivo and reduced CDDP-caused liver and kidney toxicity. CONCLUSIONS: d-Borneol increased the efficacy of cisplatin and reduced its toxicity. This compound has the potential to become a useful chemosensitizer for drug-resistance NSCLC.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Canfanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Xenoinjertos , Humanos , Neoplasias Pulmonares/genética , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Int J Mol Sci ; 23(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36361555

RESUMEN

Hydroxygenkwanin, a flavonoid isolated from the leaves of the Daphne genkwa plant, is known to have pharmacological properties; however, its modulatory effect on multidrug resistance, which is (MDR) mediated by ATP-binding cassette (ABC) drug transporters, has not been investigated. In this study, we examine the interaction between hydroxygenkwanin, ABCB1, and ABCG2, which are two of the most well-characterized ABC transporters known to contribute to clinical MDR in cancer patients. Hydroxygenkwanin is not an efflux substrate of either ABCB1 or ABCG2. We discovered that, in a concentration-dependent manner, hydroxygenkwanin significantly reverses ABCG2-mediated resistance to multiple cytotoxic anticancer drugs in ABCG2-overexpressing multidrug-resistant cancer cells. Although it inhibited the drug transport function of ABCG2, it had no significant effect on the protein expression of this transporter in cancer cells. Experimental data showing that hydroxygenkwanin stimulates the ATPase activity of ABCG2, and in silico docking analysis of hydroxygenkwanin binding to the inward-open conformation of human ABCG2, further indicate that hydroxygenkwanin sensitizes ABCG2-overexpressing cancer cells by binding to the substrate-binding pocket of ABCG2 and attenuating the transport function of ABCG2. This study demonstrates the potential use of hydroxygenkwanin as an effective inhibitor of ABCG2 in drug combination therapy trials for patients with tumors expressing higher levels of ABCG2.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Resistencia a Múltiples Medicamentos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Resistencia a Antineoplásicos , Proteínas de Neoplasias/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Flavonoides/farmacología , Transportadoras de Casetes de Unión a ATP/metabolismo , Neoplasias/tratamiento farmacológico
7.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35216255

RESUMEN

Female breast cancer is the world's most prevalent cancer in 2020. Chemotherapy still remains a backbone in breast cancer therapy and is crucial in advanced and metastatic breast cancer treatment. The clinical efficiency of chemotherapy regimens is limited due to tumor heterogeneity, chemoresistance, and side effects. Chemotherapeutic drug combinations with natural products hold great promise for enhancing their anticancer efficacy. Curcumin is an ideal chemopreventive and chemotherapy agent owning to its multitargeting function on various regulatory molecules, key signaling pathways, and pharmacological safety. This review aimed to elucidate the potential role of curcumin in enhancing the efficacy of doxorubicin, paclitaxel, 5-fluorouracil, and cisplatin via combinational therapy. Additionally, the molecular mechanisms underlying the chemosensitizing activity of these combinations have been addressed. Overall, based on the promising therapeutic potential of curcumin in combination with conventional chemotherapy drugs, curcumin is of considerable value to develop as an adjunct for combination chemotherapy with current drugs to treat breast cancer. Furthermore, this topic may provide the frameworks for the future research direction of curcumin-chemotherapy combination studies and may benefit in the development of a novel therapeutic strategy to maximize the clinical efficacy of anticancer drugs while minimizing their side effects in the future breast cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Curcumina/farmacología , Animales , Humanos , Transducción de Señal/efectos de los fármacos
8.
Cell Biol Int ; 45(1): 177-187, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33049093

RESUMEN

Non-small-cell lung cancer (NSCLC) is one of the most common malignancies, and the occurrence of drug-resistance severely limits the efficacy of anticancer drugs in the treatment of NSCLC. Identification of new agents to reverse drug-resistance in NSCLC treatment is of great importance and urgency both clinically and scientifically. In the present study, we found that A549/Taxol cells displayed a high level of resistance to paclitaxel with the resistance index up to 231. Importantly, esomeprazole could potentiate the antiproliferative effect of paclitaxel in A549/Taxol cells, but not in A549 cells. Further exploration on the underlying mechanisms revealed that esomeprazole decreased the intracellular pH via inhibiting V-ATPase expression in A549/Taxol cells. Meanwhile, esomeprazole pretreatment significantly promoted paclitaxel-induced polymerization of tubulin and enhanced the proportion of G2/M-arrested cells in A549/Taxol cells. Unfortunately, esomeprazole could only result in a slight decrease in the expression of P-gp in A549/Taxol cells. Interestingly, esomeprazole significantly increased paclitaxel-induced apoptosis, which was impeded by the autophagy inhibitor 3-MA in A549/Taxol cells. Taken together, our data suggest that esomeprazole is a promising chemosensitizer against paclitaxel-resistant NSCLC by inducing autophagy. Our study also offers a new strategy to solve the paclitaxel-resistance problem during NSCLC treatment.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Autofagia/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Esomeprazol/farmacología , Paclitaxel/farmacología , Células A549 , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Regulación hacia Arriba/efectos de los fármacos , ATPasas de Translocación de Protón Vacuolares/metabolismo
9.
Bioorg Med Chem Lett ; 41: 127997, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33775839

RESUMEN

Resistance phenomena during chemotherapy of tumor has been severely hampering the applications of chemotherapeutics. Due to advantage of drug repurposing, discovery of new chemosensitizers based on approved drugs is an effect strategy to find new candidates. Herein, we found antidepressant drug - sertraline, could sensitize drug-resistant gastric cancer cell (SGC-7901/DDP) with the IC50 value of 18.73 µM. To understand the structure-activity relationship and improve the activity, 30 derivatives were synthesized and evaluated. The IC50 value of the best compound was improved to 5.2 µM. Moreover, we found apoptosis induction and cell cycle arrest was the reason for the cell death of the drug-resistant cells after treatment of sertraline and derivatives, and PI3K/Akt/mTOR pathway was involved.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Descubrimiento de Drogas , Resistencia a Antineoplásicos/efectos de los fármacos , Sertralina/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Sertralina/síntesis química , Sertralina/química , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Relación Estructura-Actividad
10.
Bioorg Chem ; 114: 105066, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34134031

RESUMEN

Twenty-one eudesmane-type sesquiterpenes, including five new compounds, were isolated from the roots of Inula helenium. The structures of the new compounds (1-5) were determined by extensive spectroscopic data interpretation, single-crystal X-ray diffraction analysis and ECD calculations. Six compounds can synergistically enhance cisplatin effect against ovarian cancer cells, the structure - activity relationship for the synergistic effect of these compounds with cisplatin was revealed for the first time, which provides useful clues to develop novel sensitizers to overcome drug resistance in cancer. In addition, fifteen sesquiterpenes exhibited significant anti-inflammatory activity, which provided promising candidates for development of anti-inflammatory agent.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Inula/química , Sesquiterpenos/farmacología , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Células RAW 264.7 , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Relación Estructura-Actividad
11.
Phytother Res ; 34(10): 2534-2556, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32307747

RESUMEN

Chemotherapy is one of the main methods for cancer treatment. However, despite many advances in the design of anticancer drugs, their efficiency is limited due to their high toxicity and resistance of cells to chemotherapeutic drugs. In order to improve the cancer therapy, it is essential to use the compounds that can overcome drug resistance and increase treatment efficiency. Researchers have studied the effects of natural compounds for the controlling various drug resistance mechanisms. Curcumin is a natural phenolic compound which shows potent anticancer activities in different tumors, alone or as an adjuvant with other antitumor drugs to prevent or inhibit the survival and cancer progression by various mechanisms. The role of curcumin in overcoming drug resistance was followed by reviewing different applications of curcumin in cancer therapy. Afterward, the clinical impacts of curcumin, role of curcumin in decreasing drug resistance in different cancer cells and its mechanisms were discussed. It has been demonstrated that curcumin regulates signaling pathways in cancer cells, reduces the expression of proteins related to drug resistance, and increases the performance of antitumor drugs at various levels. Curcumin reverses multidrug resistance mechanisms and increases sensitivity of resistance cells to chemotherapy. This review mainly focuses on different mechanisms of drug resistance and curcumin as a nontoxic natural substance to eliminate the effects of drug resistance through modulation and controlling cell resistance pathways and eventually suggests curcumin as a potent chemosensitizer in cancers.


Asunto(s)
Curcumina/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Curcumina/uso terapéutico , Humanos , Neoplasias/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
12.
Molecules ; 25(9)2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32344919

RESUMEN

Silymarin extracted from milk thistle consisting of flavonolignan silybin has shown chemopreventive and chemosensitizing activity against various cancers. The present review summarizes the current knowledge on the potential targets of silymarin against various cancers. Silymarin may play on the system of xenobiotics, metabolizing enzymes (phase I and phase II) to protect normal cells against various toxic molecules or to protect against deleterious effects of chemotherapeutic agents on normal cells. Furthermore, silymarin and its main bioactive compounds inhibit organic anion transporters (OAT) and ATP-binding cassettes (ABC) transporters, thus contributing to counteracting potential chemoresistance. Silymarin and its derivatives play a double role, namely, limiting the progression of cancer cells through different phases of the cycle-thus forcing them to evolve towards a process of cell death-and accumulating cancer cells in a phase of the cell cycle-thus making it possible to target a greater number of tumor cells with a specific anticancer agent. Silymarin exerts a chemopreventive effect by inducing intrinsic and extrinsic pathways and reactivating cell death pathways by modulation of the ratio of proapoptotic/antiapoptotic proteins and synergizing with agonists of death domains receptors. In summary, we highlight how silymarin may act as a chemopreventive agent and a chemosensitizer through multiple pathways.


Asunto(s)
Quimioprevención , Resistencia a Antineoplásicos/efectos de los fármacos , Sustancias Protectoras/farmacología , Silimarina/farmacología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Puntos de Control del Ciclo Celular/genética , Humanos , Transducción de Señal/efectos de los fármacos
13.
Molecules ; 25(21)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158261

RESUMEN

The biological properties of doxyl stearate nitroxides (DSs): 5-DS, Met-12-DS, and 16-DS, commonly used as spin probes, have not been explored in much detail so far. Furthermore, the influence of DSs on the cellular changes induced by the anticancer drug doxorubicin (DOX) has not yet been investigated. Therefore, we examined the cytotoxicity of DSs and their ability to induce cell death and to influence on fluidity and lipid peroxidation (LPO) in the plasma membrane of immortalised B14 fibroblasts, used as a model neoplastic cells, susceptible to DOX-induced changes. The influence of DSs on DOX toxicity was also investigated and compared with that of a natural reference antioxidant α-Tocopherol. By employing the trypan blue exclusion test and double fluorescent staining, we found a significant level of cytotoxicity for DSs and showed that their ability to induce apoptosis and modify plasma membrane fluidity (measured fluorimetrically) is more potent than for α-Tocopherol. The most cytotoxic nitroxide was 5-DS. The electron paramagnetic resonance (EPR) measurements revealed that 5-DS was reduced in B14 cells at the fastest and Met-12-DS at the slowest rate. In the presence of DOX, DSs were reduced slower than alone. The investigated compounds, administered with DOX, enhanced DOX-induced cell death and demonstrated concentration-dependent biphasic influence on membrane fluidity. A-Tocopherol showed weaker effects than DSs, regardless the mode of its application-alone or with DOX. High concentrations of α-Tocopherol and DSs decreased DOX-induced LPO. Substantial cytotoxicity of the DSs suggests that they should be used more carefully in the investigations performed on sensitive cells. Enhancement of DOX toxicity by DSs showed their potential to act as chemosensitizers of cancer cells to anthracycline chemotherapy.


Asunto(s)
Membrana Celular/metabolismo , Doxorrubicina/efectos adversos , Fibroblastos/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Óxidos de Nitrógeno , Marcadores de Spin/síntesis química , Animales , Línea Celular , Cricetulus , Doxorrubicina/farmacología , Fluidez de la Membrana/efectos de los fármacos , Óxidos de Nitrógeno/síntesis química , Óxidos de Nitrógeno/química , Óxidos de Nitrógeno/farmacología , alfa-Tocoferol/química , alfa-Tocoferol/farmacología
14.
Bioorg Med Chem Lett ; 29(1): 28-31, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30455148

RESUMEN

Twenty-five seco-4-methyl-DCK derivatives were designed, synthesized and evaluated for chemoreversal activity when combined with paclitaxel or vincristine in two drug-resistant cancer cell lines (A2780/T and KB-V) respectively. Most of the new compounds displayed moderate to significant MDR reversal activities in the P-gp overexpressing A2780/T and KB-V cells. Especially, compounds 7o and 7y showed the most potent chemosensitization activities with more than 496 and 735 reversal ratios at a concentration of 10 µM. Unexpectedly the newly synthesized compounds did not show chemosensitization activities observed in a non-P-gp overexpressing cisplatin resistant human ovarian cancer cell line (A2780/CDDP), implying that the MDR reversal effects might be associated with P-gp overexpression. Moreover, these compounds did not exhibit significant antiproliferative activities against nontumorigenic cell lines (HUVEC, HOSEC and T29) compared to the positive control verapamil at the tested concentration, which suggested better safety than verapamil. The pharmacological actions of the compounds will be studied further to explore their merit for development as novel candidates to overcome P-gp mediated MDR cancer.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad
15.
Bioorg Chem ; 91: 103181, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31404795

RESUMEN

Two new series of compounds were designed and synthesized as potent PARP-1 inhibitors. These compounds were evaluated for PARP-1 enzyme and cellular inhibitory activities. All efforts lead to the identification of 9k (named as LG-12) with efficient potency both for PARP-1 and BRCA1 deficient MDA-MB-436 cells. Additionally, the novel PARP-1 inhibitor LG-12 is an efficient chemosensitizer, which could potentiate the anti-cancer effect of TMZ. Our data presented herein provide a comprehensive preclinical in vitro evaluation of the potential therapeutic efficacy and potency of chemotherapeutic agent-PARP-1 inhibitor combinations for LG-12. The combined results indicated that LG-12 could be a promising candidate for further study.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Diseño de Fármacos , Imidazoles/síntesis química , Imidazoles/farmacología , Ftalazinas/química , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Tiohidantoínas/química , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Ciclo Celular , Proliferación Celular , Femenino , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
16.
Chem Biodivers ; 16(10): e1900334, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31448497

RESUMEN

Cernumidine (CER) is a guanidinic alkaloid isolated from Solanum cernuum leaves. In this work, we investigated the cytotoxicity, chemosensitizing effect of cernumidine to cisplatin (cDDP) and the possible mechanism of action of the combination on bladder cancer cells. Cernumidine showed cytotoxicity and could sensitize bladder cancer cells to cisplatin. The combination of CER+cDDP inhibited cell migration on T24 cells. CER+cDDP down-regulated MMP-2/9 and p-ERK1/2, while it increased EGFR activity corroborating the observed cell migration inhibition. Down-regulation of Bcl-2 and up-regulation pro-apoptotic Bax and further depletion of the mitochondrial membrane potential (ΔΨm) indicates that mitochondria play a central role in the combination treatment inducing the mitochondrial signaling pathway of apoptosis in T24 cells. Our data showed that the alkaloid cernumidine is worthy of further studies as a chemosensitizing agent to be used in complementary chemotherapy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Ácidos Cafeicos/farmacología , Guanidinas/farmacología , Solanum/química , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Ácidos Cafeicos/química , Ácidos Cafeicos/aislamiento & purificación , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Guanidinas/química , Guanidinas/aislamiento & purificación , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microscopía Fluorescente , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Hojas de la Planta/química , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
17.
Mol Cancer ; 17(1): 25, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29455646

RESUMEN

Multidrug resistance (MDR) triggered by ATP binding cassette (ABC) transporter such as ABCB1, ABCC1, ABCG2 limited successful cancer chemotherapy. Unfortunately, no commercial available MDR modulator approved by FDA was used in clinic. Tyrosine kinase inhibitors (TKIs) have been administrated to fight against cancer for decades. Almost TKI was used alone in clinic. However, drug combinations acting synergistically to kill cancer cells have become increasingly important in cancer chemotherapy as an approach for the recurrent resistant disease. Here, we summarize the effect of TKIs on enhancing the efficacy of conventional chemotherapeutic drug in ABC transporter-mediated MDR cancer cells, which encourage to further discuss and study in clinic.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Inhibidores de Proteínas Quinasas/farmacología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Antineoplásicos/uso terapéutico , Ensayos Clínicos como Asunto , Sinergismo Farmacológico , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Inhibidores de Proteínas Quinasas/uso terapéutico
18.
Chem Pharm Bull (Tokyo) ; 66(2): 162-169, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29386467

RESUMEN

Crebanine (CN), tetrahydropalmatine (THP), O-methylbulbocapnine (OMBC) and N-methyl tetrahydropalmatine (NMTHP) are isoquinoline derived natural alkaloids isolated from tubers of Stephania venosa. We investigated chemo-sensitizing effects of these alkaloids in ovarian cancer cells and evaluated underlying molecular mechanisms involved in chemo-sensitivity. Detection of cell apoptosis was evaluated by using flow cytometry. Cell viability was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Chou-Talalay median effect principle was used to evaluate potential drug interactions. Protein analyses were performed on ovarian carcinoma cells using Western blotting upon treatment with anticancer drug and alkaloids. Aporphine alkaloids, such as CN and OMBC, enhanced cisplatin sensitivity in intrinsic cisplatin resistant SKOV3 cells, but not in cisplatin sensitive A2780 cells. Protoberberine alkaloids, such as THP and NMTHP, had no synergistic effect on cisplatin sensitivity in either cell line. Chemo-sensitizing effects of CN and OMBC in SKOV3 cells were mediated via activating apoptosis-induced cell death through caspase-3, -8 and cleaved poly ADP-ribose polymerase (PARP) and via inhibiting anti-apopotic and survival protein expression, such as Bcl-xL, Baculoviral IAP repeat-containing protein 3 (cIAP-2), survivin and interleukin (IL) -6. Cisplatin stimulated protein kinase B (Akt) and nuclear factor-kappaB (NF-κB) signaling pathways, but not mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1) and signal transducer and activator of transcription 3 (STAT3) in SKOV3 cells. Akt/NF-κB signaling was blocked by CN and OMBC leading to increased sensitization to cisplatin. These findings demonstrate that CN and OMBC sensitizes SKOV3 cells to cisplatin via inhibition of Akt/NF-κB signaling and the down regulation of NF-κB mediated gene products. Our results suggest that alkaloids obtained from S. venosa could be used as chemo-sensitizers in ovarian cancer to sensitize and minimize the dose related toxicity of platinum-based chemotherapeutic drugs.


Asunto(s)
Alcaloides/química , Antineoplásicos/química , Neoplasias Ováricas/tratamiento farmacológico , Extractos Vegetales/química , Stephania/química , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Antineoplásicos/farmacología , Apoptosis , Alcaloides de Berberina/química , Línea Celular Tumoral , Supervivencia Celular , Cisplatino/farmacología , Regulación hacia Abajo , Femenino , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Invest New Drugs ; 34(3): 371-7, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26841903

RESUMEN

The 'holy grail' in radiation oncology is to improve the outcome of radiation therapy (RT) with a radiosensitizer-a systemic chemical/biochemical agent that additively or synergistically sensitizes tumor cells to radiation in the absence of significant toxicity. Similar to the oxygen effect, in which DNA bases modified by reactive oxygen species prevent repair of the cellular radiation damage, these compounds in general magnify free radical formation, leading to the permanent "fixation" of the resultant chemical change in the DNA structure. The purpose of this review is to present the origin story of the radiosensitizer, RRx-001, which emerged from the aerospace industry. The activity of RRx-001 as a chemosensitizer in multiple tumor types and disease states including malaria, hemorrhagic shock and sickle cell anemia, are the subject of future reviews.


Asunto(s)
Azetidinas/administración & dosificación , Neoplasias/terapia , Nitrocompuestos/administración & dosificación , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Azetidinas/farmacología , Humanos , Neoplasias/patología , Nitrocompuestos/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Especies Reactivas de Oxígeno/metabolismo
20.
Mol Pharm ; 13(2): 520-33, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26636714

RESUMEN

In the present study, we synthesized a novel cationic copolymer composed of polyethylene glycol 5000 (PEG5K), vitamin E (VE), and diethylenetriamine (DET) at 1:4:20 molar ratio. The resulting PEG5K-VE4-DET20 copolymer formed nanoassemblies when mixed with the neutral PEG5K-VE4 copolymer at 1:8 weight ratio, which were investigated as the nanocarriers for combined delivery of paclitaxel and let-7b mimic. We found that the PEG5K-VE4-DET20 nanoassemblies could entrap paclitaxel for an extended period and burst release the drug in the presence of cathepsin B, demonstrating the biodegradability of the copolymers. At N/P ratio of 12:1, the PEG5K-VE4-DET20 nanoassemblies formed stable polyplexes with let-7b mimic, which were efficiently taken up by tumor cells and underwent endosomal escape. In non-small cell lung cancer A549 cells that harbor mutant KRAS, paclitaxel and let-7b mimic-loaded nanoassemblies (N-PTX/let-7b) markedly potentiated the cytotoxicity of paclitaxel, induced apoptosis, and diminished the invasiveness of tumor cells. In mice bearing subcutaneous A549 xenografts, intravenous administration of N-PTX/let-7b retarded tumor growth more efficaciously than Taxol. Our study demonstrates the promise of the PEG5K-VE4-DET20 nanoassemblies for concurrent delivery of hydrophobic drugs and miRNA mimics.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/terapia , Sistemas de Liberación de Medicamentos , Neoplasias Pulmonares/terapia , MicroARNs/administración & dosificación , Nanocompuestos/química , Paclitaxel/administración & dosificación , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacología , Apoptosis , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Movimiento Celular , Proliferación Celular , Portadores de Fármacos , Femenino , Humanos , Técnicas para Inmunoenzimas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Micelas , MicroARNs/genética , Mutación/genética , Paclitaxel/farmacología , Polietilenglicoles/química , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda