Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Chem Senses ; 41(1): 3-14, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26476441

RESUMEN

We gathered from the literature 47 odor and 37 trigeminal (nasal and ocular) chemesthetic psychometric (i.e., detectability or dose-response) functions from a group of 41 chemicals. Vapors delivered were quantified by analytical methods. All functions were very well fitted by the sigmoid (logistic) equation: y = 1 / (1 + e({-(x-C)/D})), where parameter C quantifies the detection threshold concentration and parameter D the steepness of the function. Odor and chemesthetic functions showed no concentration overlap: olfactory functions grew along the parts per billion (ppb by volume) range or lower, whereas trigeminal functions grew along the part per million (ppm by volume) range. Although, on average, odor detectability rose from chance detection to perfect detection within 2 orders of magnitude in concentration, chemesthetic detectability did it within one. For 16 compounds having at least 1 odor and 1 chemesthetic function, the average gap between the 2 functions was 4.6 orders of magnitude in concentration. A quantitative structure-activity relationship (QSAR) using 5 chemical descriptors that had previously described stand-alone odor and chemesthetic threshold values, also holds promise to describe, and eventually predict, olfactory and chemesthetic detectability functions, albeit functions from additional compounds are needed to strengthen the QSAR.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Córnea/inervación , Cavidad Nasal/inervación , Odorantes/análisis , Mucosa Olfatoria/fisiología , Olfato/fisiología , Nervio Trigémino/fisiología , Relación Dosis-Respuesta a Droga , Humanos , Relación Estructura-Actividad Cuantitativa , Umbral Sensorial
2.
Environ Pollut ; 260: 113925, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32369894

RESUMEN

Copper is known to interfere with fish olfaction. Although the chemosensory detection and olfactory toxicity of copper ions (Cu2+) has been heavily studied in fish, the olfactory-driven detection of copper nanoparticles (CuNPs)-a rapidly emerging contaminant to aquatic systems-remains largely unknown. This study aimed to investigate the olfactory response of rainbow trout to equitoxic concentrations of CuNPs or Cu2+ using electro-olfactography (EOG, a neurophysiological technique) and olfactory-mediated behavioural assay. In the first experiment, the concentration of contaminants known to impair olfaction by 20% over 24 h (EOG-based 24-h IC20s of 220 and 3.5 µg/L for CuNPs and Cu2+, respectively) were tested as olfactory stimuli using both neurophysiological and behavioural assays. In the second experiment, to determine whether the presence of CuNPs or Cu2+ can affect the ability of fish to perceive a social cue (taurocholic acid (TCA)), fish were acutely exposed to one form of Cu-contaminants (approximately 15 min). Following exposure, olfactory sensitivity was measured by EOG and olfactory-mediated behaviour within a choice maze was recorded in the presence of TCA. Results of neurophysiological and behavioural experiments demonstrate that rainbow trout can detect and avoid the IC20 of CuNPs. The IC20 of Cu2+ was below the olfactory detection threshold of rainbow trout, as such, fish did not avoid Cu2+. The high sensitivity of behavioural endpoints revealed a lack of aversion response to TCA in CuNP-exposed fish, despite this change not being present utilizing EOG. The reduced response to TCA during the brief exposure to CuNPs may be a result of either olfactory fatigue or blockage of olfactory sensory neurons (OSNs) by CuNPs. The observed behavioural interference caused by CuNP exposure may indicate that CuNPs have the ability to interfere with other behaviours potentially affecting fitness and survival. Our findings also revealed the differential response of OSNs to CuNPs and Cu2+.


Asunto(s)
Cobre/toxicidad , Nanopartículas/toxicidad , Oncorhynchus mykiss , Trucha/fisiología , Contaminantes Químicos del Agua/toxicidad , Animales , Iones
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda