Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Plant J ; 117(3): 924-943, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37902994

RESUMEN

Chromoplasts act as a metabolic sink for carotenoids, in which plastoglobules serve as versatile lipoprotein particles. PGs in chloroplasts have been characterized. However, the features of PGs from non-photosynthetic plastids are poorly understood. We found that the development of chromoplast plastoglobules (CPGs) in globular and crystalloid chromoplasts of citrus is associated with alterations in carotenoid storage. Using Nycodenz density gradient ultracentrifugation, an efficient protocol for isolating highly purified CPGs from sweet orange (Citrus sinensis) pulp was established. Forty-four proteins were defined as likely comprise the core proteome of CPGs using comparative proteomics analysis. Lipidome analysis of different chromoplast microcompartments revealed that the nonpolar microenvironment within CPGs was modified by 35 triacylglycerides, two sitosterol esters, and one stigmasterol ester. Manipulation of the CPG-localized gene CsELT1 (esterase/lipase/thioesterase) in citrus calli resulted in increased lipids and carotenoids, which is further evidence that the nonpolar microenvironment of CPGs contributes to carotenoid accumulation and storage in the chromoplasts. This multi-feature analysis of CPGs sheds new light on the role of chromoplasts in carotenoid metabolism, paving the way for manipulating carotenoid content in citrus fruit and other crops.


Asunto(s)
Citrus sinensis , Citrus , Citrus/genética , Citrus/metabolismo , Multiómica , Carotenoides/metabolismo , Plastidios/metabolismo , Citrus sinensis/genética , Frutas/genética , Frutas/metabolismo
2.
J Exp Bot ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140865

RESUMEN

Capsanthin and capsorubin are red κ-xanthophylls exclusively found in a handful of other plant species. Currently, capsanthin and capsorubin are only extracted from red pepper. Here, high purity production of capsanthin and capsorubin has been achieved in carrot taproot by synthetic metabolic engineering strategy. Expression of a capsanthin-capsorubin synthase gene (CaCCS) from pepper resulted in dominant production of capsanthin whereas expression of a LiCCS gene from tiger lily resulted in production of both capsanthin and capsorubin in carrot taproot. The highest content of capsanthin and capsorubin was obtained in LiC-1 carrot taproot hosting the LiCCS gene, 150.09 µg/g DW (dry weight). Co-expression of DcBCH1 with CCS could improve the purity of capsanthin and capsorubin by eliminating the non-target carotenoids (eg. α-carotene and ß-carotene). The highest purity of capsanthin and capsorubin was obtained in BLiC-1 carrot taproot hosting DcBCH1+LiCCS genes, 91.10% of total carotenoids. The non-native pigments were esterified partially and stored in the globular chromoplast of carrot taproot. Our results demonstrated the possibility of employing carrot taproot as green factories for high purity production of capsanthin and capsorubin. The capsanthin/capsorubin carrot germplasms were also valuable materials for breeding colorful carrots cultivars.

3.
New Phytol ; 237(5): 1696-1710, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36307969

RESUMEN

Plant tissues can be enriched in phytonutrients not only by stimulating their biosynthesis but also by providing appropriate sink structures for their sequestering and storage. In the case of carotenoids, they accumulate at high levels in chromoplasts naturally found in flowers and fruit. Chromoplasts can also be artificially differentiated from leaf chloroplasts by boosting carotenoid production with the bacterial protein crtB. Here we used electron and confocal microscopy together with subplastidial fractionation and transcript, protein and metabolite analyses to analyze the structural and biochemical changes occurring in crtB-induced artificial chromoplasts and their impact on the accumulation of health-related isoprenoids. We show that leaf chromoplasts develop plastoglobules (PG) harboring high levels of carotenoids (mainly phytoene and pro-vitamin A ß-carotene) but also other nutritionally relevant isoprenoids, such as tocopherols (vitamin E) and phylloquinone (vitamin K1). Further promoting PG proliferation by exposure to intense (high) light resulted in a higher accumulation of these health-related metabolites but also an acceleration of the chloroplast-to-chromoplast conversion. We further show that the production of reactive oxygen species (ROS) stimulates chromoplastogenesis. Our data suggest that carotenoid accumulation and ROS production are not just consequences but promoters of the chromoplast differentiation process.


Asunto(s)
Carotenoides , Plastidios , Especies Reactivas de Oxígeno/metabolismo , Plastidios/metabolismo , Carotenoides/metabolismo , Cloroplastos/metabolismo , beta Caroteno/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(35): 21796-21803, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817419

RESUMEN

Plastids, the defining organelles of plant cells, undergo physiological and morphological changes to fulfill distinct biological functions. In particular, the differentiation of chloroplasts into chromoplasts results in an enhanced storage capacity for carotenoids with industrial and nutritional value such as beta-carotene (provitamin A). Here, we show that synthetically inducing a burst in the production of phytoene, the first committed intermediate of the carotenoid pathway, elicits an artificial chloroplast-to-chromoplast differentiation in leaves. Phytoene overproduction initially interferes with photosynthesis, acting as a metabolic threshold switch mechanism that weakens chloroplast identity. In a second stage, phytoene conversion into downstream carotenoids is required for the differentiation of chromoplasts, a process that involves a concurrent reprogramming of nuclear gene expression and plastid morphology for improved carotenoid storage. We hence demonstrate that loss of photosynthetic competence and enhanced production of carotenoids are not just consequences but requirements for chloroplasts to differentiate into chromoplasts.


Asunto(s)
Carotenoides/metabolismo , Cloroplastos/metabolismo , Plastidios/metabolismo , Arabidopsis/metabolismo , Diferenciación Celular/fisiología , Cloroplastos/fisiología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plastidios/fisiología , Ingeniería de Proteínas/métodos , Nicotiana/metabolismo , beta Caroteno/metabolismo
5.
Plant J ; 105(5): 1431-1442, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33258209

RESUMEN

We report here a detailed analysis of the proteome adjustments that accompany chromoplast differentiation from chloroplasts during bell pepper (Capsicum annuum) fruit ripening. While the two photosystems are disassembled and their constituents degraded, the cytochrome b6 f complex, the ATPase complex, and Calvin cycle enzymes are maintained at high levels up to fully mature chromoplasts. This is also true for ferredoxin (Fd) and Fd-dependent NADP reductase, suggesting that ferredoxin retains a central role in the chromoplasts' redox metabolism. There is a significant increase in the amount of enzymes of the typical metabolism of heterotrophic plastids, such as the oxidative pentose phosphate pathway (OPPP) and amino acid and fatty acid biosynthesis. Enzymes of chlorophyll catabolism and carotenoid biosynthesis increase in abundance, supporting the pigment reorganization that goes together with chromoplast differentiation. The majority of plastid encoded proteins decline but constituents of the plastid ribosome and AccD increase in abundance. Furthermore, the amount of plastid terminal oxidase (PTOX) remains unchanged despite a significant increase in phytoene desaturase (PDS) levels, suggesting that the electrons from phytoene desaturation are consumed by another oxidase. This may be a particularity of non-climacteric fruits such as bell pepper that lack a respiratory burst at the onset of fruit ripening.


Asunto(s)
Capsicum/metabolismo , Proteínas de Plantas/metabolismo , Plastidios/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Capsicum/genética , Frutas/genética , Frutas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Plastidios/genética , Proteómica/métodos
6.
Planta ; 256(6): 104, 2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36308565

RESUMEN

MAIN CONCLUSION: Distinct plastid types and ultrastructural changes are associated with differences in carotenoid pigment profiles in differently coloured carrots, and a variant of the OR gene, DcOR3Leu is vital for chromoplast biogenesis. Accumulation of different types and amounts of carotenoids in carrots impart different colours to their taproots. In this study, the carotenoid pigment profiles, morphology, and ultrastructure of plastids in 25 carrot varieties with orange, red, yellow, or white taproots were investigated by ultra-high performance liquid chromatography as well as light and transmission electron microscopy. α-/ß-Carotene and lycopene were identified as colour-determining carotenoids in orange and red carrots, respectively. In contrast, lutein was identified as the colour-determining carotenoid in almost all tested yellow and white carrots. The latter contained only trace amounts of lutein as a unique detectable carotenoid. Striking differences in plastid types that coincided with distinct carotenoid profiles were observed among the differently coloured carrots. Microscopic analysis of the different carotenoid pigment-loaded plastids revealed abundant crystalloid chromoplasts in the orange and red carrots, whereas amyloplasts were dominant in most of the yellow and white carrots, except for the yellow carrot 'Yellow Stone', where yellow chromoplasts were observed. Plastoglobuli and crystal remnants, the carotenoid sequestering substructures, were identified in crystalloid chromoplasts. Crystal remnants were often associated with a characteristic undulated internal membrane in orange carrots or several undulated membranes in red carrots. No crystal remnants, but some plastoglobuli, were observed in the plastids of all tested yellow and white carrots. In addition, the presence of chromoplast in carrot taproots was found to be associated with DcOR3Leu, a natural variant of DcOR3, which was previously reported to be co-segregated with carotene content in carrots. Knocking out DcOR3Leu in the orange carrot 'Kurodagosun' depressed chromoplast biogenesis and led to the generation of yellow carrots. Our results support that DcOR3Leu is vital but insufficient for chromoplasts biogenesis in carrots, and add to the understanding of the formation of chromoplasts in carrots.


Asunto(s)
Daucus carota , Daucus carota/genética , Daucus carota/ultraestructura , Luteína/análisis , Plastidios/ultraestructura , Carotenoides/análisis , beta Caroteno/análisis
7.
Plant Cell Rep ; 40(5): 799-804, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33754204

RESUMEN

The carotenoids available in food are vital dietary micronutrients for human health. Plants synthesize and accumulate different carotenoids in plastids in a tissue-specific manner. The level of ß-carotene (provitamin A) and other nutritionally important carotenoids is substantially low in the green tissues such as leaves compared to the fruits and roots. In photosynthetic tissues, chloroplasts can accumulate a moderate level of carotenoids, mainly to facilitate photosynthesis and environmental stress tolerance. However, chromoplasts from the storage tissues such as tomato fruit and carrot root can synthesize and accumulate carotenoids to a substantially higher level. A synthetic biology approach that utilizes a transient expression of bacterial phytoene synthase (crtB) gene in the photosynthetic leaves can induce the transition of chloroplasts into chromoplasts. The plastid-localized heterologous expression of crtB in leaves can induce the overaccumulation of phytoene, triggering the chloroplast-to-chromoplast transition; therefore, enhancing the biosynthesis and accumulation of carotenoids, including provitamin A. The transition of chloroplasts into chromoplasts, however, altered the photosynthetic thylakoids, consequently reducing the photosynthetic efficiency and plant growth. An efficient metabolic engineering strategy is desirable to enhance the production of targeted carotenoids in leaves without perturbing the photosynthetic efficiency and plant growth. Collectively, a synthetic biology strategy that triggers the transformation of chloroplasts into chromoplasts in photosynthetic tissues unfolds new avenues for carotenoid biofortification in the leafy food and vegetable crops, which can increase the dietary intake of carotenoids, therefore, combating the crisis of vitamin A deficiency.


Asunto(s)
Plastidios/metabolismo , Verduras/metabolismo , Biofortificación , Cloroplastos/metabolismo , Cloroplastos/fisiología , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Verduras/fisiología
8.
Plant J ; 99(2): 245-256, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30888718

RESUMEN

During daffodil flower development, chloroplasts differentiate into photosynthetically inactive chromoplasts having lost functional photosynthetic reaction centers. Chromoplasts exhibit a respiratory activity reducing oxygen to water and generating ATP. Immunoblots revealed the presence of the plastid terminal oxidase (PTOX), the NAD(P)H dehydrogenase (NDH) complex, the cytochrome b6 f complex, ATP synthase and several isoforms of ferredoxin-NADP+ oxidoreductase (FNR), and ferredoxin (Fd). Fluorescence spectroscopy allowed the detection of chlorophyll a in the cytochrome b6 f complex. Here we characterize the electron transport pathway of chromorespiration by using specific inhibitors for the NDH complex, the cytochrome b6 f complex, FNR and redox-inactive Fd in which the iron was replaced by gallium. Our data suggest an electron flow via two separate pathways, both reducing plastoquinone (PQ) and using PTOX as oxidase. The first oxidizes NADPH via FNR, Fd and cytochrome bh of the cytochrome b6 f complex, and does not result in the pumping of protons across the membrane. In the second, electron transport takes place via the NDH complex using both NADH and NADPH as electron donor. FNR and Fd are not involved in this pathway. The NDH complex is responsible for the generation of the proton gradient. We propose a model for chromorespiration that may also be relevant for the understanding of chlororespiration and for the characterization of the electron input from Fd to the cytochrome b6 f complex during cyclic electron transport in chloroplasts.


Asunto(s)
Transporte de Electrón , Narcissus/metabolismo , Plastidios/metabolismo , Clorofila A/metabolismo , Complejo de Citocromo b6f/metabolismo , Ferredoxinas/metabolismo , NADP/metabolismo , Oxidación-Reducción , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética
9.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971815

RESUMEN

Edible fleshy fruits are important food sources in the human diet. Their yield and nutritional quality have long been considered as breeding targets for improvement. Various developing fleshy fruits with functional chloroplasts are capable of photosynthesis and contribute to fruit photosynthate, leading to the accumulation of metabolites associated with nutritional quality in ripe fruit. Although tomato high-pigment mutants with dark-green fruits have been isolated for more than 100 years, our understanding of the mechanism of chloroplast development in fleshy fruit remain poor. During the past few years, several transcription factors that regulate chloroplast development in fleshy fruit were identified through map-based cloning. In addition, substantial progress has been made in elucidating the mechanisms that how these transcription factors regulate chloroplast development. This review provides a summary and update on this progress, with a framework for further investigations of the multifaceted and hierarchical regulation of chloroplast development in fleshy fruit.


Asunto(s)
Cloroplastos/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/biosíntesis , Solanum lycopersicum/metabolismo , Transcripción Genética/fisiología
10.
Planta ; 249(1): 257-270, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30083809

RESUMEN

MAIN CONCLUSION: Carotenoid accumulation and chromoplast development in orange were perturbed by carotenoid inhibitors, and candidate genes were identified via transcriptomic analysis. The role of CsPHT4;2 in enhancing carotenoid accumulation was revealed. Carotenoids are important plant pigments and their accumulation can be affected by biosynthesis inhibitors, but the genes involved were largely unknown. Here, application of norflurazon (NFZ), 2-(4-chlorophenylthio)-triethylamine hydrochloride (CPTA) and clomazone for 30 days to in vitro cultured sweet orange juice vesicles caused over-accumulation of phytoene (over 1000-fold), lycopene (2.92 µg g-1 FW, none in control), and deficiency in total carotenoids (reduced to 22%), respectively. Increased carotenoids were associated with bigger chromoplasts with enlarged plastoglobules or a differently crystalline structure in NFZ, and CPTA-treated juice vesicles, respectively. Global transcriptomic changes following inhibitor treatments were profiled. Induced expression of 1-deoxy-D-xylulose 5-phosphate synthase 1 by CPTA, hydroxymethylbutenyl 4-diphosphate reductase by both NFZ and CPTA, and reduced expression of chromoplast-specific lycopene ß-cyclase by CPTA, as well as several downstream genes by at least one of the three inhibitors were observed. Expression of fibrillin 11 (CsFBN11) was induced following both NFZ and CPTA treatments. Using weighted correlation network analysis, a plastid-type phosphate transporter 4;2 (CsPHT4;2) was identified as closely correlated with high-lycopene accumulation induced by CPTA. Transient over-expression of CsPHT4;2 significantly enhanced carotenoid accumulation over tenfold in 'Cara Cara' sweet orange juice vesicle-derived callus. The study provides a valuable overview of the underlying mechanisms for altered carotenoid accumulation and chromoplast development following carotenoid inhibitor treatments and sheds light on the relationship between carotenoid accumulation and chromoplast development.


Asunto(s)
Carotenoides/metabolismo , Citrus sinensis/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Regulación de la Expresión Génica de las Plantas , Liasas Intramoleculares/metabolismo , Licopeno/metabolismo , Proteínas de Transporte de Fosfato/genética , Plastidios/metabolismo
11.
Plant Cell Rep ; 38(7): 803-818, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31079194

RESUMEN

Plant cells are characterized by a unique group of interconvertible organelles called plastids, which are descended from prokaryotic endosymbionts. The most studied plastid type is the chloroplast, which carries out the ancestral plastid function of photosynthesis. During the course of evolution, plastid activities were increasingly integrated with cellular metabolism and functions, and plant developmental processes, and this led to the creation of new types of non-photosynthetic plastids. These include the chromoplast, a carotenoid-rich organelle typically found in flowers and fruits. Here, we provide an introduction to non-photosynthetic plastids, and then review the structures and functions of chromoplasts in detail. The role of chromoplast differentiation in fruit ripening in particular is explored, and the factors that govern plastid development are examined, including hormonal regulation, gene expression, and plastid protein import. In the latter process, nucleus-encoded preproteins must pass through two successive protein translocons in the outer and inner envelope membranes of the plastid; these are known as TOC and TIC (translocon at the outer/inner chloroplast envelope), respectively. The discovery of SP1 (suppressor of ppi1 locus1), which encodes a RING-type ubiquitin E3 ligase localized in the plastid outer envelope membrane, revealed that plastid protein import is regulated through the selective targeting of TOC complexes for degradation by the ubiquitin-proteasome system. This suggests the possibility of engineering plastid protein import in novel crop improvement strategies.


Asunto(s)
Cloroplastos/metabolismo , Plastidios/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/genética , Orgánulos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plásmidos/genética , Plastidios/genética , Transporte de Proteínas
12.
Molecules ; 24(3)2019 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-30691226

RESUMEN

Plastids are sites for carotenoid biosynthesis and accumulation, but detailed information on fruit plastid development and its relation to carotenoid accumulation remains largely unclear. Here, using Baisha (BS; white-fleshed) and Luoyangqing (LYQ; red-fleshed) loquat (Eriobotrya japonica), a detailed microscopic analysis of plastid development during fruit ripening was carried out. In peel cells, chloroplasts turned into smaller chromoplasts in both cultivars, and the quantity of plastids in LYQ increased by one-half during fruit ripening. The average number of chromoplasts per peel cell in fully ripe fruit was similar between the two cultivars, but LYQ peel cell plastids were 20% larger and had a higher colour density, associated with the presence of larger plastoglobules. In flesh cells, chromoplasts could be observed only in LYQ during the middle and late stages of ripening, and the quantity on a per-cell basis was higher than that in peel cells, but the size of chromoplasts was smaller. It was concluded that chromoplasts are derived from the direct conversion of chloroplasts to chromoplasts in the peel, and from de novo differentiation of proplastids into chromoplasts in flesh. The relationship between plastid development and carotenoid accumulation is discussed.


Asunto(s)
Eriobotrya/citología , Eriobotrya/genética , Frutas/citología , Frutas/genética , Células Vegetales/metabolismo , Plastidios/genética , Carotenoides/metabolismo , Eriobotrya/anatomía & histología , Eriobotrya/metabolismo , Frutas/anatomía & histología , Frutas/metabolismo , Microscopía , Fenotipo , Células Vegetales/ultraestructura
13.
Planta ; 248(6): 1455-1471, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30132151

RESUMEN

MAIN CONCLUSION: The new model orange callus line, similar to carrot root, was rich in carotenoids due to altered expression of some carotenogenesis-associated genes and possessed unique diversity of chromoplast ultrastructure. Callus induced from carrot root segments cultured in vitro is usually pale yellow (p-y) and poor in carotenoids. A unique, non-engineered callus line of dark orange (d-o) colour was developed in this work. The content of carotenoid pigments in d-o callus was at the same level as in an orange carrot storage root and nine-fold higher than in p-y callus. Carotenoids accumulated mainly in abundant crystalline chromoplasts that are also common in carrot root but not in p-y callus. Using transmission electron microscopy, other types of chromoplasts were also found in d-o callus, including membranous chromoplasts rarely identified in plants and not observed in carrot root until now. At the transcriptional level, most carotenogenesis-associated genes were upregulated in d-o callus in comparison to p-y callus, but their expression was downregulated or unchanged when compared to root tissue. Two pathway steps were critical and could explain the massive carotenoid accumulation in this tissue. The geranylgeranyl diphosphate synthase gene involved in the biosynthesis of carotenoid precursors was highly expressed, while the ß-carotene hydroxylase gene involved in ß-carotene conversion to downstream xanthophylls was highly repressed. Additionally, paralogues of these genes and phytoene synthase were differentially expressed, indicating their tissue-specific roles in carotenoid biosynthesis and metabolism. The established system may serve as a novel model for elucidating plastid biogenesis that coincides with carotenogenesis.


Asunto(s)
Carotenoides/metabolismo , Daucus carota/metabolismo , Oxigenasas de Función Mixta/metabolismo , Vías Biosintéticas , Daucus carota/genética , Daucus carota/ultraestructura , Oxigenasas de Función Mixta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Plastidios/metabolismo , Plastidios/ultraestructura , beta Caroteno/metabolismo
14.
New Phytol ; 213(3): 1208-1221, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27787901

RESUMEN

Chromoplast development plays a crucial role in controlling carotenoid content in watermelon flesh. Modern cultivated watermelons with colorful flesh are believed to originate from pale-colored and no-sweet progenitors. But the molecular basis of flesh color formation and regulation is poorly understood. More chromoplasts and released carotenoid globules were observed in the red-fleshed fruit of the 97103 cultivar than in the pale-colored fruits of the PI296341-FR line. Transcriptome profiles of these two materials identified Cla017962, predicted as ClPHT4;2, was dramatically up-regulated during flesh color formation. High ClPHT4;2 expression levels were closely correlated with increased flesh carotenoid contents among 198 representative watermelon accessions. Down-regulation of ClPHT4;2 expression in transgenic watermelons reduced the fruit carotenoid accumulation. ClPHT4;2 as a function of chromoplast-localized phosophate transporter was tested by heterologous expression into a yeast phosphate-uptake-defective mutant, western blotting, subcellular localization, and immunogold electron microscopy analysis. Two transcription factors, ClbZIP1 and ClbZIP2, were identified, which responded to ABA and sugar signaling to regulate ClPHT4;2 transcription only in cultivated watermelon species. Our findings suggest that elevated ClPHT4;2 gene expression is necessary for carotenoid accumulation, and may help to characterize the co-development of flesh color and sweetness during watermelon development and domestication.


Asunto(s)
Citrullus/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Fosfato/genética , Pigmentación , Proteínas de Plantas/genética , Plastidios/metabolismo , Ácido Abscísico/farmacología , Carotenoides/biosíntesis , Citrullus/efectos de los fármacos , Citrullus/ultraestructura , Ecotipo , Frutas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Prueba de Complementación Genética , Glucosa/farmacología , Glicina/análogos & derivados , Glicina/farmacología , Mutación/genética , Compuestos Organofosforados/farmacología , Fenotipo , Proteínas de Transporte de Fosfato/metabolismo , Pigmentación/efectos de los fármacos , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plastidios/efectos de los fármacos , Plastidios/ultraestructura , Regiones Promotoras Genéticas/genética , Unión Proteica , Piridonas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Elementos de Respuesta/genética , Fracciones Subcelulares/metabolismo , Sacarosa/farmacología , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos
15.
Plant Cell Rep ; 36(10): 1627-1640, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28698906

RESUMEN

KEY MESSAGE: Comparative ultrastructural developmental time-course analysis has identified discrete stages at which the fruit plastids undergo structural and consequently functional transitions to facilitate subsequent development-guided understanding of the complex plastid biology. Plastids are the defining organelle for a plant cell and are critical for myriad metabolic functions. The role of leaf plastid, chloroplast, is extensively documented; however, fruit plastids-chromoplasts-are poorly understood, especially in the context of the diverse metabolic processes operating in these diverse plant organs. Recently, in a comparative study of the predicted plastid-targeted proteomes across seven plant species, we reported that each plant species is predicted to harbor a unique set of plastid-targeted proteins. However, the temporal and developmental context of these processes remains unknown. In this study, an ultrastructural analysis approach was used to characterize fruit plastids in the epidermal and collenchymal cell layers at 11 developmental timepoints in three genotypes of apple (Malus × domestica Borkh.): chlorophyll-predominant 'Granny Smith', carotenoid-predominant 'Golden Delicious', and anthocyanin-predominant 'Top Red Delicious'. Plastids transitioned from a proplastid-like plastid to a chromoplast-like plastid in epidermis cells, while in the collenchyma cells, they transitioned from a chloroplast-like plastid to a chloro-chromo-amyloplast plastid. Plastids in the collenchyma cells of the three genotypes demonstrated a diverse array of structures and features. This study enabled the identification of discrete developmental stages during which specific functions are most likely being performed by the plastids as indicated by accumulation of plastoglobuli, starch granules, and other sub-organeller structures. Information regarding the metabolically active developmental stages is expected to facilitate biologically relevant omics studies to unravel the complex biochemistry of plastids in perennial non-model systems.


Asunto(s)
Proteínas de Cloroplastos/metabolismo , Frutas/metabolismo , Malus/metabolismo , Plastidios/metabolismo , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Frutas/genética , Frutas/crecimiento & desarrollo , Variación Genética , Genotipo , Malus/genética , Malus/crecimiento & desarrollo , Microscopía Electrónica de Transmisión , Plastidios/genética , Plastidios/ultraestructura , Proteoma/genética , Proteoma/metabolismo , Proteómica , Especificidad de la Especie , Factores de Tiempo
16.
Int J Mol Sci ; 18(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28045431

RESUMEN

Crocins, the glucosides of crocetin, are present at high concentrations in saffron stigmas and accumulate in the vacuole. However, the biogenesis of the saffron chromoplast, the changes during the development of the stigma and the transport of crocins to the vacuole, are processes that remain poorly understood. We studied the process of chromoplast differentiation in saffron throughout stigma development by means of transmission electron microscopy. Our results provided an overview of a massive transport of crocins to the vacuole in the later developmental stages, when electron dense drops of a much greater size than plastoglobules (here defined "crocinoplast") were observed in the chromoplast, connected to the vacuole with a subsequent transfer of these large globules inside the vacuole. A proteome analysis of chromoplasts from saffron stigma allowed the identification of several well-known plastid proteins and new candidates involved in crocetin metabolism. Furthermore, expressions throughout five developmental stages of candidate genes responsible for carotenoid and apocarotenoid biogenesis, crocins transport to the vacuole and starch metabolism were analyzed. Correlation matrices and networks were exploited to identify a series of transcripts highly associated to crocetin (such as 1-Deoxy-d-xylulose 5-phosphate synthase (DXS), 1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), carotenoid isomerase (CRTISO), Crocetin glucosyltransferase 2 (UGT2), etc.) and crocin (e.g., ζ-carotene desaturase (ZDS) and plastid-lipid-associated proteins (PLAP2)) accumulation; in addition, candidate aldehyde dehydrogenase (ADH) genes were highlighted.


Asunto(s)
Carotenoides/metabolismo , Crocus/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Crocus/genética , Crocus/metabolismo , Crocus/ultraestructura , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plastidios/genética , Plastidios/metabolismo , Plastidios/ultraestructura , Proteoma/genética , Proteoma/metabolismo , Terpenos/metabolismo , Vitamina A/análogos & derivados
17.
New Phytol ; 209(2): 650-63, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26377696

RESUMEN

The apocarotenoid crocetin and its glycosylated derivatives, crocins, confer the red colour to saffron. Crocetin biosynthesis in saffron is catalysed by the carotenoid cleavage dioxygenase CCD2 (AIG94929). No homologues have been identified in other plant species due to the very limited presence of crocetin and its derivatives in the plant kingdom. Spring Crocus species with yellow flowers accumulate crocins in the stigma and tepals. Four carotenoid CCDs, namely CaCCD1, CaCCD2 and CaCCD4a/b and CaCCD4c were first cloned and characterized. CaCCD2 was localized in plastids, and a longer CCD2 version, CsCCD2L, was also localized in this compartment. The activity of CaCCD2 was assessed in Escherichia coli and in a stable rice gene function characterization system, demonstrating the production of crocetin in both systems. The expression of all isolated CCDs was evaluated in stigma and tepals at three key developmental stages in relation with apocarotenoid accumulation. CaCCD2 expression parallels crocin accumulation, but C14 apocarotenoids most likely are associated to the CaCCD1 activity in Crocus ancyrensis flowers. The specific CCD2 localization and its membrane interaction will contribute to the development of a better understanding of the mechanism of crocetin biosynthesis and regulation in the chromoplast.


Asunto(s)
Carotenoides/biosíntesis , Crocus/metabolismo , Dioxigenasas/metabolismo , Proteínas de Plantas/metabolismo , Plastidios/enzimología , Carotenoides/metabolismo , Línea Celular Transformada , Clonación Molecular , Crocus/genética , Dioxigenasas/química , Dioxigenasas/genética , Escherichia coli/genética , Flores/enzimología , Flores/genética , Regulación de la Expresión Génica de las Plantas , Oryza/citología , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Plastidios/genética , Homología de Secuencia de Aminoácido , Nicotiana/genética , Vitamina A/análogos & derivados , Zeaxantinas/metabolismo
18.
Plant J ; 79(3): 453-65, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24888879

RESUMEN

Xanthophylls, the pigments responsible for yellow to red coloration, are naturally occurring carotenoid compounds in many colored tissues of plants. These pigments are esterified within the chromoplast; however, little is known about the mechanisms underlying their accumulation in flower organs. In this study, we characterized two allelic tomato (Solanum lycopersicum L.) mutants, pale yellow petal (pyp) 1-1 and pyp1-2, that have reduced yellow color intensity in the petals and anthers due to loss-of-function mutations. Carotenoid analyses showed that the yellow flower organs of wild-type tomato contained high levels of xanthophylls that largely consisted of neoxanthin and violaxanthin esterified with myristic and/or palmitic acids. Functional disruption of PYP1 resulted in loss of xanthophyll esters, which was associated with a reduction in the total carotenoid content and disruption of normal chromoplast development. These findings suggest that xanthophyll esterification promotes the sequestration of carotenoids in the chromoplast and that accumulation of these esters is important for normal chromoplast development. Next-generation sequencing coupled with map-based positional cloning identified the mutant alleles responsible for the pyp1 phenotype. PYP1 most likely encodes a carotenoid modifying protein that plays a vital role in the production of xanthophyll esters in tomato anthers and petals. Our results provide insight into the molecular mechanism underlying the production of xanthophyll esters in higher plants, thereby shedding light on a longstanding mystery.


Asunto(s)
Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Xantófilas/genética , Xantófilas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética
19.
Plant J ; 76(6): 1074-83, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24118159

RESUMEN

Increased accumulation of specific carotenoids in plastids through plant breeding or genetic engineering requires an understanding of the limitations that storage sites for these compounds may impose on that accumulation. Here, using Capsicum annuum L. fruit, we demonstrate directly the unique sub-organellar accumulation sites of specific carotenoids using live cell hyperspectral confocal Raman microscopy. Further, we show that chromoplasts from specific cultivars vary in shape and size, and these structural variations are associated with carotenoid compositional differences. Live-cell imaging utilizing laser scanning confocal (LSCM) and confocal Raman microscopy, as well as fixed tissue imaging by scanning and transmission electron microscopy (SEM and TEM), all demonstrated morphological differences with high concordance for the measurements across the multiple imaging modalities. These results reveal additional opportunities for genetic controls on fruit color and carotenoid-based phenotypes.


Asunto(s)
Capsicum/ultraestructura , Carotenoides/metabolismo , Frutas/ultraestructura , Plastidios/ultraestructura , Capsicum/metabolismo , Carotenoides/análisis , Frutas/metabolismo , Microscopía Confocal , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Análisis Multivariante , Fenotipo , Plastidios/metabolismo , Especificidad de la Especie
20.
Methods Mol Biol ; 2776: 63-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502498

RESUMEN

Plastids represent a largely diverse group of organelles in plant and algal cells that have several common features but also a broad spectrum of morphological, ultrastructural, biochemical, and physiological differences. Plastids and their structural and metabolic diversity significantly contribute to the functionality and developmental flexibility of the plant body throughout its lifetime. In addition to the multiple roles of given plastid types, this diversity is accomplished in some cases by interconversions between different plastids as a consequence of developmental and environmental signals that regulate plastid differentiation and specialization. In addition to basic plastid structural features, the most important plastid types, the newly characterized peculiar plastids, and future perspectives in plastid biology are also provided in this chapter.


Asunto(s)
Cloroplastos , Embryophyta , Cloroplastos/genética , Cloroplastos/metabolismo , Plastidios/metabolismo , Embryophyta/genética , Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda