Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
Cell ; 173(4): 972-988.e23, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29656893

RESUMEN

Repair of damaged DNA is essential for maintaining genome integrity and for preventing genome-instability-associated diseases, such as cancer. By combining proximity labeling with quantitative mass spectrometry, we generated high-resolution interaction neighborhood maps of the endogenously expressed DNA repair factors 53BP1, BRCA1, and MDC1. Our spatially resolved interaction maps reveal rich network intricacies, identify shared and bait-specific interaction modules, and implicate previously concealed regulators in this process. We identified a novel vertebrate-specific protein complex, shieldin, comprising REV7 plus three previously uncharacterized proteins, RINN1 (CTC-534A2.2), RINN2 (FAM35A), and RINN3 (C20ORF196). Recruitment of shieldin to DSBs, via the ATM-RNF8-RNF168-53BP1-RIF1 axis, promotes NHEJ-dependent repair of intrachromosomal breaks, immunoglobulin class-switch recombination (CSR), and fusion of unprotected telomeres. Shieldin functions as a downstream effector of 53BP1-RIF1 in restraining DNA end resection and in sensitizing BRCA1-deficient cells to PARP inhibitors. These findings have implications for understanding cancer-associated PARPi resistance and the evolution of antibody CSR in higher vertebrates.


Asunto(s)
Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Adaptadoras Transductoras de Señales , Proteína BRCA1/antagonistas & inhibidores , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Humanos , Cambio de Clase de Inmunoglobulina/efectos de los fármacos , Proteínas Mad2/antagonistas & inhibidores , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas de Unión a Telómeros/antagonistas & inhibidores , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/antagonistas & inhibidores , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Cell ; 169(3): 523-537.e15, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28431250

RESUMEN

The distribution of sense and antisense strand DNA mutations on transcribed duplex DNA contributes to the development of immune and neural systems along with the progression of cancer. Because developmentally matured B cells undergo biologically programmed strand-specific DNA mutagenesis at focal DNA/RNA hybrid structures, they make a convenient system to investigate strand-specific mutagenesis mechanisms. We demonstrate that the sense and antisense strand DNA mutagenesis at the immunoglobulin heavy chain locus and some other regions of the B cell genome depends upon localized RNA processing protein complex formation in the nucleus. Both the physical proximity and coupled activities of RNA helicase Mtr4 (and senataxin) with the noncoding RNA processing function of RNA exosome determine the strand-specific distribution of DNA mutations. Our study suggests that strand-specific DNA mutagenesis-associated mechanisms will play major roles in other undiscovered aspects of organismic development.


Asunto(s)
Linfocitos B/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Núcleo Celular/metabolismo , ADN Helicasas/metabolismo , Exorribonucleasas/genética , Inestabilidad Genómica , Cadenas Pesadas de Inmunoglobulina/genética , Ratones , Enzimas Multifuncionales , Proteínas Nucleares/genética , ARN Helicasas , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/genética
3.
Mol Cell ; 84(7): 1206-1223.e15, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38423014

RESUMEN

Appropriate DNA end synapsis, regulated by core components of the synaptic complex including KU70-KU80, LIG4, XRCC4, and XLF, is central to non-homologous end joining (NHEJ) repair of chromatinized DNA double-strand breaks (DSBs). However, it remains enigmatic whether chromatin modifications can influence the formation of NHEJ synaptic complex at DNA ends, and if so, how this is achieved. Here, we report that the mitotic deacetylase complex (MiDAC) serves as a key regulator of DNA end synapsis during NHEJ repair in mammalian cells. Mechanistically, MiDAC removes combinatorial acetyl marks on histone H2A (H2AK5acK9ac) around DSB-proximal chromatin, suppressing hyperaccumulation of bromodomain-containing protein BRD4 that would otherwise undergo liquid-liquid phase separation with KU80 and prevent the proper installation of LIG4-XRCC4-XLF onto DSB ends. This study provides mechanistic insight into the control of NHEJ synaptic complex assembly by a specific chromatin signature and highlights the critical role of H2A hypoacetylation in restraining unscheduled compartmentalization of DNA repair machinery.


Asunto(s)
Cromatina , Proteínas Nucleares , Animales , Cromatina/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , ADN/genética , Reparación del ADN por Unión de Extremidades , Histonas/genética , Histonas/metabolismo , Emparejamiento Cromosómico , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Mamíferos/metabolismo
4.
Mol Cell ; 83(5): 681-697.e7, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36736317

RESUMEN

Interactions between transcription and cohesin-mediated loop extrusion can influence 3D chromatin architecture. However, their relevance in biology is unclear. Here, we report a direct role for such interactions in the mechanism of antibody class switch recombination (CSR) at the murine immunoglobulin heavy chain locus (Igh). Using Tri-C to measure higher-order multiway interactions on single alleles, we find that the juxtaposition (synapsis) of transcriptionally active donor and acceptor Igh switch (S) sequences, an essential step in CSR, occurs via the interaction of loop extrusion complexes with a de novo topologically associating domain (TAD) boundary formed via transcriptional activity across S regions. Surprisingly, synapsis occurs predominantly in proximity to the 3' CTCF-binding element (3'CBE) rather than the Igh super-enhancer, suggesting a two-step mechanism whereby transcription of S regions is not topologically coupled to synapsis, as has been previously proposed. Altogether, these insights advance our understanding of how 3D chromatin architecture regulates CSR.


Asunto(s)
Reordenamiento Génico , Cadenas Pesadas de Inmunoglobulina , Ratones , Animales , Cadenas Pesadas de Inmunoglobulina/genética , Cambio de Clase de Inmunoglobulina , Cromatina , Isotipos de Inmunoglobulinas
5.
Mol Cell ; 83(7): 1043-1060.e10, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36854302

RESUMEN

Repair of DNA double-strand breaks (DSBs) elicits three-dimensional (3D) chromatin topological changes. A recent finding reveals that 53BP1 assembles into a 3D chromatin topology pattern around DSBs. How this formation of a higher-order structure is configured and regulated remains enigmatic. Here, we report that SLFN5 is a critical factor for 53BP1 topological arrangement at DSBs. Using super-resolution imaging, we find that SLFN5 binds to 53BP1 chromatin domains to assemble a higher-order microdomain architecture by driving damaged chromatin dynamics at both DSBs and deprotected telomeres. Mechanistically, we propose that 53BP1 topology is shaped by two processes: (1) chromatin mobility driven by the SLFN5-LINC-microtubule axis and (2) the assembly of 53BP1 oligomers mediated by SLFN5. In mammals, SLFN5 deficiency disrupts the DSB repair topology and impairs non-homologous end joining, telomere fusions, class switch recombination, and sensitivity to poly (ADP-ribose) polymerase inhibitor. We establish a molecular mechanism that shapes higher-order chromatin topologies to safeguard genomic stability.


Asunto(s)
Cromatina , Reparación del ADN , Animales , Cromatina/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Mamíferos/metabolismo , Proteínas de Unión a Telómeros/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteínas de Ciclo Celular/metabolismo
6.
Mol Cell ; 82(7): 1359-1371.e9, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35216668

RESUMEN

The chromatin-binding protein 53BP1 promotes DNA repair by orchestrating the recruitment of downstream effectors including PTIP, RIF1, and shieldin to DNA double-strand break sites. While we know how PTIP recognizes 53BP1, the molecular details of RIF1 recruitment to DNA-damage sites remains undefined. Here, we report that RIF1 is a phosphopeptide-binding protein that directly interacts with three phosphorylated 53BP1 epitopes. The RIF1-binding sites on 53BP1 share an essential LxL motif followed by two closely apposed phosphorylated residues. Simultaneous mutation of these sites on 53BP1 abrogates RIF1 accumulation into ionizing-radiation-induced foci, but surprisingly, only fully compromises 53BP1-dependent DNA repair when an alternative mode of shieldin recruitment to DNA-damage sites is also disabled. Intriguingly, this alternative mode of recruitment still depends on RIF1 but does not require its interaction with 53BP1. RIF1 therefore employs phosphopeptide recognition to promote DNA repair but also modifies shieldin action independently of 53BP1 binding.


Asunto(s)
Fosfopéptidos , Proteínas de Unión a Telómeros , Proteína BRCA1/genética , Proteínas Portadoras/metabolismo , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Fosfopéptidos/genética , Fosfopéptidos/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
7.
Mol Cell ; 82(10): 1924-1939.e10, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35439434

RESUMEN

The 53BP1-RIF1-shieldin pathway maintains genome stability by suppressing nucleolytic degradation of DNA ends at double-strand breaks (DSBs). Although RIF1 interacts with damaged chromatin via phospho-53BP1 and facilitates recruitment of the shieldin complex to DSBs, it is unclear whether other regulatory cues contribute to this response. Here, we implicate methylation of histone H3 at lysine 4 by SETD1A-BOD1L in the recruitment of RIF1 to DSBs. Compromising SETD1A or BOD1L expression or deregulating H3K4 methylation allows uncontrolled resection of DNA ends, impairs end-joining of dysfunctional telomeres, and abrogates class switch recombination. Moreover, defects in RIF1 localization to DSBs are evident in patient cells bearing loss-of-function mutations in SETD1A. Loss of SETD1A-dependent RIF1 recruitment in BRCA1-deficient cells restores homologous recombination and leads to resistance to poly(ADP-ribose)polymerase inhibition, reinforcing the clinical relevance of these observations. Mechanistically, RIF1 binds directly to methylated H3K4, facilitating its recruitment to, or stabilization at, DSBs.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Unión a Telómeros , Proteína BRCA1/genética , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Reparación del ADN , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Metilación , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
8.
Immunity ; 53(5): 952-970.e11, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33098766

RESUMEN

Precise targeting of activation-induced cytidine deaminase (AID) to immunoglobulin (Ig) loci promotes antibody class switch recombination (CSR) and somatic hypermutation (SHM), whereas AID targeting of non-Ig loci can generate oncogenic DNA lesions. Here, we examined the contribution of G-quadruplex (G4) nucleic acid structures to AID targeting in vivo. Mice bearing a mutation in Aicda (AIDG133V) that disrupts AID-G4 binding modeled the pathology of hyper-IgM syndrome patients with an orthologous mutation, lacked CSR and SHM, and had broad defects in genome-wide AIDG133V chromatin localization. Genome-wide analyses also revealed that wild-type AID localized to MHCII genes, and AID expression correlated with decreased MHCII expression in germinal center B cells and diffuse large B cell lymphoma. Our findings indicate a crucial role for G4 binding in AID targeting and suggest that AID activity may extend beyond Ig loci to regulate the expression of genes relevant to the physiology and pathology of activated B cells.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , G-Cuádruplex , Síndrome de Inmunodeficiencia con Hiper-IgM/etiología , Síndrome de Inmunodeficiencia con Hiper-IgM/metabolismo , Mutación , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biología Computacional/métodos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Activación Enzimática , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Centro Germinal/inmunología , Centro Germinal/metabolismo , Antígenos HLA/genética , Antígenos HLA/inmunología , Humanos , Síndrome de Inmunodeficiencia con Hiper-IgM/diagnóstico , Cambio de Clase de Inmunoglobulina/genética , Cambio de Clase de Inmunoglobulina/inmunología , Inmunofenotipificación , Activación de Linfocitos/genética , Linfoma de Células B Grandes Difuso/etiología , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Ratones , Ratones Transgénicos
9.
Mol Cell ; 81(12): 2611-2624.e10, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33857404

RESUMEN

The Shieldin complex shields double-strand DNA breaks (DSBs) from nucleolytic resection. Curiously, the penultimate Shieldin component, SHLD1, is one of the least abundant mammalian proteins. Here, we report that the transcription factors THAP1, YY1, and HCF1 bind directly to the SHLD1 promoter, where they cooperatively maintain the low basal expression of SHLD1, thereby ensuring a proper balance between end protection and resection during DSB repair. The loss of THAP1-dependent SHLD1 expression confers cross-resistance to poly (ADP-ribose) polymerase (PARP) inhibitor and cisplatin in BRCA1-deficient cells and shorter progression-free survival in ovarian cancer patients. Moreover, the embryonic lethality and PARPi sensitivity of BRCA1-deficient mice is rescued by ablation of SHLD1. Our study uncovers a transcriptional network that directly controls DSB repair choice and suggests a potential link between DNA damage and pathogenic THAP1 mutations, found in patients with the neurodevelopmental movement disorder adult-onset torsion dystonia type 6.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Animales , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Reparación del ADN/genética , Distonía/genética , Femenino , Factor C1 de la Célula Huésped/metabolismo , Proteínas Mad2/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Reparación del ADN por Recombinación/efectos de los fármacos , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Factor de Transcripción YY1/metabolismo
10.
Mol Cell ; 81(19): 3949-3964.e7, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34450044

RESUMEN

Immunoglobulin heavy chain (IgH) locus-associated G-rich long noncoding RNA (SµGLT) is important for physiological and pathological B cell DNA recombination. We demonstrate that the METTL3 enzyme-catalyzed N6-methyladenosine (m6A) RNA modification drives recognition and 3' end processing of SµGLT by the RNA exosome, promoting class switch recombination (CSR) and suppressing chromosomal translocations. The recognition is driven by interaction of the MPP6 adaptor protein with nuclear m6A reader YTHDC1. MPP6 and YTHDC1 promote CSR by recruiting AID and the RNA exosome to actively transcribe SµGLT. Direct suppression of m6A modification of SµGLT or of m6A reader YTHDC1 reduces CSR. Moreover, METTL3, an essential gene for B cell development in the bone marrow and germinal center, suppresses IgH-associated aberrant DNA breaks and prevents genomic instability. Taken together, we propose coordinated and central roles for MPP6, m6A modification, and m6A reader proteins in controlling long noncoding RNA processing, DNA recombination, and development in B cells.


Asunto(s)
Adenosina/análogos & derivados , Linfocitos B/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Cadenas Pesadas de Inmunoglobulina/metabolismo , Procesamiento de Término de ARN 3' , ARN Largo no Codificante/metabolismo , Recombinación Genética , Adenosina/metabolismo , Animales , Linfocitos B/inmunología , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Femenino , Inestabilidad Genómica , Células HEK293 , Humanos , Cambio de Clase de Inmunoglobulina , Cadenas Pesadas de Inmunoglobulina/genética , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones Noqueados , ARN Largo no Codificante/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo
11.
Mol Cell ; 77(2): 384-394.e4, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31806351

RESUMEN

HMCES (5hmC binding, embryonic stem cell-specific-protein), originally identified as a protein capable of binding 5-hydroxymethylcytosine (5hmC), an epigenetic modification generated by TET proteins, was previously reported to covalently crosslink to DNA at abasic sites via a conserved cysteine. We show here that Hmces-deficient mice display normal hematopoiesis without global alterations in 5hmC. HMCES specifically enables DNA double-strand break repair through the microhomology-mediated alternative-end-joining (Alt-EJ) pathway during class switch recombination (CSR) in B cells, and HMCES deficiency leads to a significant defect in CSR. HMCES mediates Alt-EJ through its SOS-response-associated-peptidase domain (SRAPd), a function that requires DNA binding but is independent of its autopeptidase and DNA-crosslinking activities. We show that HMCES is recruited to switch regions of the immunoglobulin locus and provide a potential structural basis for the interaction of HMCES with long DNA overhangs generated by Alt-EJ during CSR. Our studies provide further evidence for a specialized role for HMCES in DNA repair.


Asunto(s)
Linfocitos B/fisiología , Reparación del ADN por Unión de Extremidades/genética , Proteínas de Unión al ADN/genética , ADN/genética , Cambio de Clase de Inmunoglobulina/genética , Animales , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Ratones , Ratones Endogámicos C57BL , Translocación Genética/genética
12.
Immunol Rev ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041740

RESUMEN

Despite the near ubiquitous presence of Ig-based antibodies in vertebrates, IgE is unique to mammals. How and why it emerged remains mysterious. IgE expression is greatly constrained compared to other IgH isotypes. While other IgH isotypes are relatively abundant, soluble IgE has a truncated half-life, and IgE plasma cells are mostly short-lived. Despite its rarity, IgE is consequential and can trigger life-threatening anaphylaxis. IgE production reflects a dynamic steady state with IgG memory B cells feeding short-lived IgE production. Emerging evidence suggests that IgE may also potentially be produced in longer-lived plasma cells as well, perhaps as an aberrancy stemming from its evolutionary roots from an antibody isotype that likely functioned more like IgG. As a late derivative of an ancient systemic antibody system, the benefits of IgE in mammals likely stems from the antibody system's adaptive recognition and response capability. However, the tendency for massive, systemic, and long-lived production, common to IgH isotypes like IgG, were likely not a good fit for IgE. The evolutionary derivation of IgE from an antibody system that for millions of years was good at antigen de-sensitization to now functioning as a highly specialized antigen-sensitization function required heavy restrictions on antibody production-insufficiency of which may contribute to allergic disease.

13.
Proc Natl Acad Sci U S A ; 121(22): e2314619121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38776375

RESUMEN

Humoral immunity depends on the germinal center (GC) reaction where B cells are tightly controlled for class-switch recombination and somatic hypermutation and finally generated into plasma and memory B cells. However, how protein SUMOylation regulates the process of the GC reaction remains largely unknown. Here, we show that the expression of SUMO-specific protease 1 (SENP1) is up-regulated in GC B cells. Selective ablation of SENP1 in GC B cells results in impaired GC dark and light zone organization and reduced IgG1-switched GC B cells, leading to diminished production of class-switched antibodies with high-affinity in response to a TD antigen challenge. Mechanistically, SENP1 directly binds to Paired box protein 5 (PAX5) to mediate PAX5 deSUMOylation, sustaining PAX5 protein stability to promote the transcription of activation-induced cytidine deaminase. In summary, our study uncovers SUMOylation as an important posttranslational mechanism regulating GC B cell response.


Asunto(s)
Linfocitos B , Cisteína Endopeptidasas , Centro Germinal , Factor de Transcripción PAX5 , Sumoilación , Centro Germinal/inmunología , Centro Germinal/metabolismo , Factor de Transcripción PAX5/metabolismo , Factor de Transcripción PAX5/genética , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Ratones , Cambio de Clase de Inmunoglobulina , Humanos , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Inmunidad Humoral , Ratones Endogámicos C57BL
14.
EMBO J ; 41(11): e109324, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35471583

RESUMEN

In activated B cells, activation-induced cytidine deaminase (AID) generates programmed DNA lesions required for antibody class switch recombination (CSR), which may also threaten genome integrity. AID dynamically shuttles between cytoplasm and nucleus, and the majority stays in the cytoplasm due to active nuclear export mediated by its C-terminal peptide. In immunodeficient-patient cells expressing mutant AID lacking its C-terminus, a catalytically active AID-delC protein accumulates in the nucleus but nevertheless fails to support CSR. To resolve this apparent paradox, we dissected the function of AID-delC proteins in the CSR process and found that they cannot efficiently target antibody genes. We demonstrate that AID-delC proteins form condensates both in vivo and in vitro, dependent on its N-terminus and on a surface arginine-rich patch. Co-expression of AID-delC and wild-type AID leads to an unbalanced nuclear AID-delC/AID ratio, with AID-delC proteins able to trap wild-type AID in condensates, resulting in a dominant-negative phenotype that could contribute to immunodeficiency. The co-condensation model of mutant and wild-type proteins could be an alternative explanation for the dominant-negative effect in genetic disorders.


Asunto(s)
Citidina Desaminasa , Cambio de Clase de Inmunoglobulina , Linfocitos B , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN/metabolismo , Humanos , Cambio de Clase de Inmunoglobulina/genética
15.
Trends Immunol ; 44(10): 782-791, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37640588

RESUMEN

The DNA double-strand break (DSB) repair factor 53BP1 has long been implicated in V(D)J and class switch recombination (CSR) of mammalian lymphocyte receptors. However, the dissection of the underlying molecular activities is hampered by a paucity of studies [V(D)J] and plurality of phenotypes (CSR) associated with 53BP1 deficiency. Here, we revisit the currently accepted roles of 53BP1 in antibody diversification in view of the recent identification of its downstream effectors in DSB protection and latest advances in genome architecture. We propose that, in addition to end protection, 53BP1-mediated end-tethering stabilization is essential for CSR. Furthermore, we support a pre-DSB role during V(D)J recombination. Our perspective underscores the importance of evaluating repair of DSBs in relation to their dynamic architectural contexts.


Asunto(s)
Anticuerpos , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteína 1 de Unión al Supresor Tumoral P53 , Animales , Humanos , Ratones , Anticuerpos/genética , Cambio de Clase de Inmunoglobulina/genética , Linfocitos , Mamíferos
16.
Mol Cell ; 72(4): 636-649.e8, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30293785

RESUMEN

Class switch recombination (CSR) is a DNA recombination reaction that diversifies the effector component of antibody responses. CSR is initiated by activation-induced cytidine deaminase (AID), which targets transcriptionally active immunoglobulin heavy chain (Igh) switch donor and acceptor DNA. The 3' Igh super-enhancer, 3' regulatory region (3'RR), is essential for acceptor region transcription, but how this function is regulated is unknown. Here, we identify the chromatin reader ZMYND8 as an essential regulator of the 3'RR. In B cells, ZMYND8 binds promoters and super-enhancers, including the Igh enhancers. ZMYND8 controls the 3'RR activity by modulating the enhancer transcriptional status. In its absence, there is increased 3'RR polymerase loading and decreased acceptor region transcription and CSR. In addition to CSR, ZMYND8 deficiency impairs somatic hypermutation (SHM) of Igh, which is also dependent on the 3'RR. Thus, ZMYND8 controls Igh diversification in mature B lymphocytes by regulating the activity of the 3' Igh super-enhancer.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cambio de Clase de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/genética , Proteínas Supresoras de Tumor/genética , Animales , Linfocitos B , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN/genética , Elementos de Facilitación Genéticos , Reordenamiento Génico , Humanos , Dominios MYND , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Hipermutación Somática de Inmunoglobulina/genética , Proteínas Supresoras de Tumor/metabolismo
17.
Mol Cell ; 70(4): 650-662.e8, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29731414

RESUMEN

Class switch recombination (CSR) at the immunoglobulin heavy-chain (IgH) locus is associated with the formation of R-loop structures over switch (S) regions. While these often occur co-transcriptionally between nascent RNA and template DNA, we now show that they also form as part of a post-transcriptional mechanism targeting AID to IgH S-regions. This depends on the RNA helicase DDX1 that is also required for CSR in vivo. DDX1 binds to G-quadruplex (G4) structures present in intronic switch transcripts and converts them into S-region R-loops. This in turn targets the cytidine deaminase enzyme AID to S-regions so promoting CSR. Notably R-loop levels over S-regions are diminished by chemical stabilization of G4 RNA or by the expression of a DDX1 ATPase-deficient mutant that acts as a dominant-negative protein to reduce CSR efficiency. In effect, we provide evidence for how S-region transcripts interconvert between G4 and R-loop structures to promote CSR in the IgH locus.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ARN Helicasas DEAD-box/fisiología , G-Cuádruplex , Cadenas Pesadas de Inmunoglobulina/genética , Región de Cambio de la Inmunoglobulina/genética , ARN/química , Adenosina Trifosfatasas/genética , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Replicación del ADN , Cambio de Clase de Inmunoglobulina , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN/genética , Recombinación Genética
18.
Proc Natl Acad Sci U S A ; 120(25): e2221894120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307443

RESUMEN

The nonhomologous end-joining (NHEJ) pathway is a major DNA double-strand break repair pathway in mammals and is essential for lymphocyte development. Ku70 and Ku80 heterodimer (KU) initiates NHEJ, thereby recruiting and activating the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). While DNA-PKcs deletion only moderately impairs end-ligation, the expression of kinase-dead DNA-PKcs completely abrogates NHEJ. Active DNA-PK phosphorylates DNA-PKcs at two clusters-PQR around S2056 (S2053 in mouse) and ABCDE around T2609. Alanine substitution at the S2056 cluster moderately compromises end-ligation on plasmid-based assays. But, mice carrying alanine substitution at all five serine residues within the S2056 cluster (DNA-PKcsPQR/PQR) display no defect in lymphocyte development, leaving the physiological significance of S2056 cluster phosphorylation elusive. Xlf is a nonessential NHEJ factor. Xlf -/- mice have substantial peripheral lymphocytes that are completely abolished by the loss of DNA-PKcs, the related ATM kinases, other chromatin-associated DNA damage response factors (e.g., 53BP1, MDC1, H2AX, and MRI), or RAG2-C-terminal regions, suggesting functional redundancy. While ATM inhibition does not further compromise end-ligation, here we show that in XLF-deficient background, DNA-PKcs S2056 cluster phosphorylation is critical for normal lymphocyte development. Chromosomal V(D)J recombination from DNA-PKcsPQR/PQRXlf -/- B cells is efficient but often has large deletions that jeopardize lymphocyte development. Class-switch recombination junctions from DNA-PKcsPQR/PQRXlf -/- mice are less efficient and the residual junctions display decreased fidelity and increased deletion. These findings establish a role for DNA-PKcs S2056 cluster phosphorylation in physiological chromosomal NHEJ, implying that S2056 cluster phosphorylation contributes to the synergy between XLF and DNA-PKcs in end-ligation.


Asunto(s)
Proteínas Quinasas , Procesamiento Proteico-Postraduccional , Animales , Ratones , Fosforilación , Alanina , Linfocitos B , Proteína Quinasa Activada por ADN , Mamíferos , Proteínas de Unión al ADN
19.
Trends Biochem Sci ; 46(3): 184-199, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33250286

RESUMEN

Immunoglobulin (Ig) class switch recombination (CSR) is the process occurring in mature B cells that diversifies the effector component of antibody responses. CSR is initiated by the activity of the B cell-specific enzyme activation-induced cytidine deaminase (AID), which leads to the formation of programmed DNA double-strand breaks (DSBs) at the Ig heavy chain (Igh) locus. Mature B cells use a multilayered and complex regulatory framework to ensure that AID-induced DNA breaks are channeled into productive repair reactions leading to CSR, and to avoid aberrant repair events causing lymphomagenic chromosomal translocations. Here, we review the DNA repair pathways acting on AID-induced DSBs and their functional interplay, with a particular focus on the latest developments in their molecular composition and mechanistic regulation.


Asunto(s)
Roturas del ADN de Doble Cadena , Cambio de Clase de Inmunoglobulina , Linfocitos B , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Reparación del ADN , Cadenas Pesadas de Inmunoglobulina/genética
20.
Eur J Immunol ; : e2451041, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38794862

RESUMEN

IgE is induced by the presence of IL-4 by class switching from IgM through IgG1 to IgE. IL-21 inhibits the IgE class switch by induction of Blimp1 leading to Stat6 and AID downregulation, and plasmablast/plasma cell differentiation.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda