Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Chemistry ; 28(1): e202102966, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34766387

RESUMEN

In recent years, owing to the demand for high-efficiency phosphorescent organic light-emitting devices (PhOLEDs), many studies have been conducted on the development of bipolar host materials. A series of imidazolyl-phenylcarbazole-based host materials, i. e., im-CzP, im-CzPCz, im-CzPtBu, and im-OCzP, were synthesized to obtain high-efficiency green and red-emitting PhOLEDs. With im-OCzP as the host, satisfactory peak efficiencies of 22.2 (77.0 cd A-1 and 93.1 lm W-1 ) and 14.1 % (9.0 cd A-1 and 10.1 lm W-1 ) could be obtained, respectively. To further improve the performance of the devices, an electron transport material, bis-4,6-(3,5-di-3-pyridylphenyl)-2-methylpyrimidine (B3PyMPM) was selected to construct a co-hosted system. The efficiency of im-OCzP combined with B3PyMPM forming co-hosts could also achieve high values of 23.0 (80.0 cd A-1 and 98.8 lm W-1 ) and 16.5 % (10.2 cd A-1 and 13.4 lm W-1 ) for green and red PhOLEDs, respectively. These results exhibited that the proposed bipolar hosts have great flexibility in adjusting the carrier balance of EML in OLEDs, demonstrating their ingenious design and high potential.

2.
Molecules ; 27(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36296475

RESUMEN

The low-lying HOMO level of the blue emitter and the interfacial miscibility of organic materials result in inferior hole injection, and long exciton lifetime leads to triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA), so the efficiencies of blue phosphorescent organic light-emitting diodes (PhOLEDs) are still unsatisfactory. Herein, we design co-host and co-dopant structures to improve the efficiency of blue PhOLEDs by means of solution processing. TcTa acts as hole transport ladder due to its high-lying HOMO level, and bipolar mCPPO1 helps to balance carriers' distribution and weaken TPA. Besides the efficient FIr6, which acts as the dominant blue dopant, FCNIrPic was introduced as the second dopant, whose higher HOMO level accelerates hole injection and high triplet energy facilitates energy transfer. An interesting phenomenon caused by microcavity effect between anode and cathode was observed. With increasing thickness of ETL, peak position of electroluminescence (EL) spectrum red shifts gradually. Once the thickness of ETL exceeded 140 nm, emission peak blue-shifts went back to its original position. Finally, the maximum current efficiency (CE), power efficiency (PE), and external quantum efficiency (EQE) of blue phosphorescent organic light-emitting diode (PhOLED) went up to 20.47 cd/A, 11.96 lm/W, and 11.62%, respectively.

3.
Bioresour Technol ; 374: 128721, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36774987

RESUMEN

Phages can promote the spread of antibiotic resistance genes (ARGs) in agricultural environments through transduction. However, studies on phage-mediated ARG profiles during composting have not been performed. This study investigated the effects of adding humic acid (HA) on the abundances of bacteria/phage co-mediated ARGs (b/pARGs) during swine manure composting and the key factors that affected the transmission of b/pARGs. The results showed that the addition of 5 % HA during composting could effectively reduce the absolute abundances of b/pARGs, inhibit the proliferation of pathogenic microorganisms (e.g., Corynebacterium and Streptococcus) that carried ARGs, and ultimately affect the fate of b/pARGs in the composting process by regulating key environmental factors to change the abundance of co-host bacteria. Overall, the findings of this study provided new information for understanding the main driving factors affecting the b/pARGs profile and provided a reference for the prevention and control of ARGs pollution during composting.


Asunto(s)
Bacteriófagos , Compostaje , Animales , Porcinos , Genes Bacterianos/genética , Sustancias Húmicas , Estiércol/microbiología , Bacterias/genética , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Bacteriófagos/genética
4.
Adv Mater ; 35(36): e2302275, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37228040

RESUMEN

Deep-red light-emitting diodes (DR-LEDs, >660 nm) with high color-purity and narrow-bandwidth emission are promising for full-color displays and solid-state lighting applications. Currently, the DR-LEDs are mainly based on conventional emitters such as organic materials and heavy-metal based quantum dots (QDs) and perovskites. However, the organic materials always suffer from the complicated synthesis, inferior color purity with full-width at half-maximum (FWHM) more than 40 nm, and the QDs and perovskites still suffer from serious problems related to toxicity. Herein, this work reports the synthesis of efficient and high color-purity deep-red carbon dots (CDs) with a record narrow FWHM of 21 nm and a high quantum yield of more than 50% from readily available green plants. Moreover, an exciplex host is further established using a polymer and small molecular blend, which has been shown to be an efficient strategy for producing high color-purity monochrome emission from deep-red CDs via Förster energy transfer (FET). The deep-red CD-LEDs display high color-purity with Commission Internationale de l'Eclairage (CIE) coordinates of (0.692, 0.307). To the best of the knowledge, this is the first report of high color-purity CD-LEDs in the deep-red region, opening the door for the application of CDs in the development of high-resolution light-emitting display technologies.

5.
ACS Appl Mater Interfaces ; 12(2): 2724-2732, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31846297

RESUMEN

A strategic approach combining a new co-host system and low concentration of new thermally activated delayed fluorescence (TADF) emitters to make efficient blue TADF organic light-emitting diode (OLED) was developed. The benchmark TADF molecule, 4CzIPN, was adopted as a probe to examine the feasibility of a co-host composing of a hole transporter SimCP and an electron transporter oCF3-T2T. As a result, a sky blue device with 1 wt % 4CzIPN doped in SimCP:oCF3-T2T co-host exhibited 100% energy transfer and achieved a high external quantum efficiency (EQE) up to 26.1%. Importantly, this device showed a limited efficiency rolloff with an EQE of 24% at 1000 cd m-2. To further shift the emission toward blue, three new TADF molecules, 4CzIPN-CF3, 3CzIPN-H-CF3, and 3CzIPN-CF3, modified either by lowering the electron-withdrawing ability of the acceptor group or by reducing the number of carbazole donors of 4CzIPN, have been synthesized and characterized. Among them, 4CzIPN-CF3 and 3CzIPN-H-CF3 display hypsochromic shift emissions compared to that of 4CzIPN. These new compounds were then explored for their potential applications as TADF emitters. Blue TADF OLEDs with 1 wt % of 4CzIPN-CF3 and 3CzIPN-H-CF3 dispersed in SimCP:oCF3-T2T co-host achieved EQEs of 23.1 and 16.5% and retained high EQEs of 20.9 and 14.7% at 1000 cd m-2, respectively.

6.
Materials (Basel) ; 13(9)2020 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-32357480

RESUMEN

High-efficiency single-layer organic light-emitting diodes (OLEDs) based on a simple structure doped with iridium(III) bis(4-phenylthieno[3,2-c]pyridinato-N,C2') acetylacetonate (PO-01) as emission dyes are realized, achieving maximum current efficiency (CE) and power efficiency (PE) of 37.1 cd A-1 and 33.3 lm W-1 as well as low turn-on voltage of 3.31 V. Such superior performance is mainly attributed to the employment of a uniform co-host structure and assisted charge transport property of phosphors dyes, which were in favor of the balance of charge carrier injection and transport in the single emitting layer (EML). Moreover, systematic researches on the position of exciton recombination region and the dopant effect on charge carriers were subsequently performed to better understand the operational mechanism. It could be experimentally found that the orange emitting dopants promoted the acceleration of the charge carriers transport and raised the exciton recombination efficiency, eventually leading to an excellent performance of single-layer OLEDs.

7.
ACS Appl Mater Interfaces ; 10(45): 39116-39123, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30353735

RESUMEN

It is a challenge to engineer white organic light-emitting diodes (WOLEDs) with high efficiency, low operating voltage, good color quality, and low efficiency roll-off, simultaneously. Herein, we employ a novel exciplex to solve this problem, which mixes a bipolar host material 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy) with a common electron-transporting material 4,6-bis[3,5-(dipyrid-4-yl)phenyl]-2-methylpyrimidine (B4PyMPM) to form the host for a blue emitter iridium(III)bis(4,6-(difluorophenyl)-pyridinato- N,C2') picolinate (FIrpic). The blue OLED with maximum power efficiency (PE) over 48 lm W-1 and Commission International de I'Eclairage chromaticity diagram (0.17, 0.36) was achieved. To obtain white light emission, a complementary orange emission layer is used, which consists of the bis(4-phenylth-ieno[3,2- c]pyridine)(acetylacetonate)iridium(III) (PO-01) doped into the single host of 26DCzPPy adjacent to the blue emission layer. Benefiting from the exciplex and effective utilization of the excitons by using the optimized multifunctional device structure, the WOLEDs remarkably exhibit maximum external quantum efficiency, PE, and current efficiency of 28.5%, 95.5 lm W-1, and 82.0 cd A-1, respectively. At the luminance of 100 cd m-2, it maintains the values of 27.2%, 90.2 lm W-1, and 78.4 cd A-1, respectively. Furthermore, the WOLEDs have a low threshold voltage of about 2.6 V and remain around 4.0 V at 10 000 cd m-2. These results indicate that the exciplex-forming co-host 26DCzPPy:B4PyMPM can provide an effective strategy to fabricate high-efficiency WOLEDs for potential applications.

8.
Adv Mater ; 28(24): 4920-5, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27060851

RESUMEN

Blue-phosphorescent organic light-emitting diodes (OLEDs) with 34.1% external quantum efficiency (EQE) and 79.6 lm W(-1) are demonstrated using a hole-transporting layer and electron-transporting layer with low refractive index values. Using optical simulations, it is predicted that outcoupling efficiencies with EQEs > 60% can be achieved if organic layers with a refractive index of 1.5 are used for OLEDs.

9.
Adv Mater ; 28(24): 4758, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27311092

RESUMEN

J.-J. Kim and co-workers achieve highly efficient blue organic light-emitting diodes (OLEDs) using a low-refractive-index layer. As described on page 4920, an external quantum efficiency over 34% is achieved, owing to the low refractive index of the materials. A milepost and a shining entrance of the castle are the metaphor indicating the way to highly efficient blue OLEDs. On the way to the castle, the depicted chemical structures serve as the light-emitting layer.

10.
Adv Mater ; 26(27): 4730-4, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-24838525

RESUMEN

A high-efficiency blue-emitting organic light-emitting diode (OLED) approaching theoretical efficiency using an exciplex-forming co-host composed of N,N'-dicarbazolyl-3,5-benzene (mCP) and bis-4,6-(3,5-di-3-pyridylphenyl)- 2-methylpyrimidine (B3PYMPM) is fabricated. Iridium(III)bis[(4,6-difluorophenyl)- pyridinato-N,C2']picolinate (FIrpic) is used as the emitter, which turns out to have a preferred horizontal dipole orientation in the emitting layer. The OLED shows a maximum external quantum efficiency of 29.5% (a maximum current efficiency of 62.2 cd A(-1) ), which is in perfect agreement with the theoretical prediction.


Asunto(s)
Complejos de Coordinación/química , Luz , Semiconductores , Color , Mediciones Luminiscentes , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda