Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Microsc Microanal ; 22(1): 63-70, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26810277

RESUMEN

An original high-pressure microscopy chamber has been designed for real-time visualization of biological cell growth during high isostatic (gas or liquid) pressure treatments up to 200 MPa. This new system is highly flexible allowing cell visualization under a wide range of pressure levels as the thickness and the material of the observation window can be easily adapted. Moreover, the design of the observation area allows different microscope objectives to be used as close as possible to the observation window. This chamber can also be temperature controlled. In this study, the resistance and optical properties of this new high-pressure chamber have been tested and characterized. The use of this new chamber was illustrated by a real-time study of the growth of two different yeast strains - Saccharomyces cerevisiae and Candida viswanathii - under high isostatic gas pressure (30 or 20 MPa, respectively). Using image analysis software, we determined the evolution of the area of colonies as a function of time, and thus calculated colony expansion rates.


Asunto(s)
Técnicas Citológicas/instrumentación , Técnicas Citológicas/métodos , Gases , Presión Hidrostática , Microscopía/instrumentación , Microscopía/métodos , Candida/citología , Candida/crecimiento & desarrollo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo
2.
Cytometry A ; 83(12): 1105-12, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24105998

RESUMEN

The beautiful patterns formed by motile bacteria have always intrigued the curious (Ben-Jacob et al., Eur. Phys. J. B 2008;65:315-322). The mechanisms underlying their formation are believed to play a role in a range of natural phenomena, including embryogenesis, animal behavior, and economics. There has been significant effort to develop tools for characterizing the behavior of individual cells within large populations of migrating bacteria; a prerequisite for studying self-organization in this context (Garner, Mol. Micro. 2011;80:577-579). Here, I apply powerful computer vision methods to study P. vortex interstitial colony expansion. Quantitative observations show how exceptionally long bacteria play a catalytic role-both in vortex formation, which had to date remained somewhat mysterious-and in facilitating colony expansion. This highlights the functional importance of bacterial morphology in bridging the microscopic and macroscopic scales, and it reshapes our understanding of vortex-forming bacteria.


Asunto(s)
Paenibacillus/crecimiento & desarrollo , Fenómenos Fisiológicos Bacterianos , Procesamiento de Imagen Asistido por Computador , Microscopía de Contraste de Fase , Modelos Biológicos , Paenibacillus/citología , Imagen de Lapso de Tiempo
3.
Front Microbiol ; 12: 651891, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33889143

RESUMEN

The genus Flavobacterium is characterized by the capacity to metabolize complex organic compounds and a unique gliding motility mechanism. Flavobacteria are often abundant in root microbiomes of various plants, but the factors contributing to this high abundance are currently unknown. In this study, we evaluated the effect of various plant-associated poly- and mono-saccharides on colony expansion of two Flavobacterium strains. Both strains were able to spread on pectin and other polysaccharides such as microcrystalline cellulose. However, only pectin (but not pectin monomers), a component of plant cell walls, enhanced colony expansion on solid surfaces in a dose- and substrate-dependent manner. On pectin, flavobacteria exhibited bi-phasic motility, with an initial phase of rapid expansion, followed by growth within the colonized area. Proteomic and gene expression analyses revealed significant induction of carbohydrate metabolism related proteins when flavobacteria were grown on pectin, including selected SusC/D, TonB-dependent glycan transport operons. Our results show a positive correlation between colony expansion and the upregulation of proteins involved in sugar uptake, suggesting an unknown linkage between specific operons encoding for glycan uptake and metabolism and flavobacterial expansion. Furthermore, within the context of flavobacterial-plant interactions, they suggest that pectin may facilitate flavobacterial expansion on plant surfaces in addition to serving as an essential carbon source.

4.
IEEE Control Syst Lett ; 5(6): 1952-1957, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33829120

RESUMEN

Bacterial colony formations exhibit diverse morphologies and dynamics. A mechanistic understanding of this process has broad implications to ecology and medicine. However, many control factors and their impacts on colony formation remain underexplored. Here we propose a reaction-diffusion based dynamic model to quantitatively describe cell division and colony expansion, where control factors of colony spreading take the form of nonlinear density-dependent function and the intercellular impacts take the form of density-dependent hill function. We validate the model using experimental E. coli colony growth data and our results show that the model is capable of predicting the whole colony expansion process in both time and space under different conditions. Furthermore, the nonlinear control factors can predict colony morphology at both center and edge of the colony.

5.
mBio ; 10(2)2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837345

RESUMEN

The quest to manipulate microbiomes has intensified, but many microbial communities have proven to be recalcitrant to sustained change. Developing model communities amenable to genetic dissection will underpin successful strategies for shaping microbiomes by advancing an understanding of community interactions. We developed a model community with representatives from three dominant rhizosphere taxa, the Firmicutes, Proteobacteria, and Bacteroidetes We chose Bacillus cereus as a model rhizosphere firmicute and characterized 20 other candidates, including "hitchhikers" that coisolated with B. cereus from the rhizosphere. Pairwise analysis produced a hierarchical interstrain-competition network. We chose two hitchhikers, Pseudomonas koreensis from the top tier of the competition network and Flavobacterium johnsoniae from the bottom of the network, to represent the Proteobacteria and Bacteroidetes, respectively. The model community has several emergent properties, induction of dendritic expansion of B. cereus colonies by either of the other members, and production of more robust biofilms by the three members together than individually. Moreover, P. koreensis produces a novel family of alkaloid antibiotics that inhibit growth of F. johnsoniae, and production is inhibited by B. cereus We designate this community THOR, because the members are the hitchhikers of the rhizosphere. The genetic, genomic, and biochemical tools available for dissection of THOR provide the means to achieve a new level of understanding of microbial community behavior.IMPORTANCE The manipulation and engineering of microbiomes could lead to improved human health, environmental sustainability, and agricultural productivity. However, microbiomes have proven difficult to alter in predictable ways, and their emergent properties are poorly understood. The history of biology has demonstrated the power of model systems to understand complex problems such as gene expression or development. Therefore, a defined and genetically tractable model community would be useful to dissect microbiome assembly, maintenance, and processes. We have developed a tractable model rhizosphere microbiome, designated THOR, containing Pseudomonas koreensis, Flavobacterium johnsoniae, and Bacillus cereus, which represent three dominant phyla in the rhizosphere, as well as in soil and the mammalian gut. The model community demonstrates emergent properties, and the members are amenable to genetic dissection. We propose that THOR will be a useful model for investigations of community-level interactions.


Asunto(s)
Firmicutes/fisiología , Interacciones Microbianas , Microbiota , Proteobacteria/fisiología , Microbiología del Suelo , Bacteroidetes , Firmicutes/crecimiento & desarrollo , Modelos Biológicos , Proteobacteria/crecimiento & desarrollo , Rizosfera
6.
Microorganisms ; 5(1)2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28212310

RESUMEN

Robust colony formation by Bacillus subtilis is recognized as one of the sessile, multicellular lifestyles of this bacterium. Numerous pathways and genes are responsible for the architecturally complex colony structure development. Cells in the biofilm colony secrete extracellular polysaccharides (EPS) and protein components (TasA and the hydrophobin BslA) that hold them together and provide a protective hydrophobic shield. Cells also secrete surfactin with antimicrobial as well as surface tension reducing properties that aid cells to colonize the solid surface. Depending on the environmental conditions, these secreted components of the colony biofilm can also promote the flagellum-independent surface spreading of B. subtilis, called sliding. In this study, we emphasize the influence of Ca2+ in the medium on colony expansion of B. subtilis. Interestingly, the availability of Ca2+ has no major impact on the induction of complex colony morphology. However, in the absence of this divalent ion, peripheral cells of the colony expand radially at later stages of development, causing colony size to increase. We demonstrate that the secreted extracellular compounds, EPS, BslA, and surfactin facilitate colony expansion after biofilm maturation. We propose that Ca2+ hinders biofilm colony expansion by modifying the amphiphilic properties of surfactin.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda