Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sci Technol Adv Mater ; 25(1): 2373041, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39169917

RESUMEN

We integrated transparent antireflective coatings and transparent electrodes onto flexible colorless polyimide (CPI) substrates to fabricate high-performance flexible perovskite solar cells. Multifunctional PPFC/CPI/IGTO substrates were fabricated by sputtering the optimal plasma-polymerized fluorocarbon (PPFC) antireflective coating and InGaTiO (IGTO) electrode films on both sides of the CPI substrate. By applying PPFC with a low refractive index (1.38) as an antireflective coating, the transparency of the PPFC/CPI/IGTO substrate increased by an additional 1.2%. In addition, owing to the amorphous characteristics of the PPFC and IGTO layers, the PPFC/CPI/IGTO substrate showed constant sheet resistance and transmittance change even after 10,000 cycles during the bending tests. The flexible perovskite solar cells, fabricated on the PPFC/CPI/IGTO substrate, exhibited an increase in current density of 1.48 mA/cm2 after the deposition of the PPFC antireflective coating. These results confirmed that the PPFC/CPI/IGTO substrate was durable against high-temperature treatment, flexible, and exhibited excellent electrical characteristics. This enhanced the efficiency and durability of the flexible perovskite solar cells. Moreover, the hydrophobic PPFC layer allowed the self-cleaning of inflexible perovskite solar cells. Given these attributes, the PPFC/CPI/IGTO structure has been recognized as a good choice for multifunctional substrates of flexible perovskite solar cells, presenting the potential for enhancing performance.


We have confirmed the durability of PPFC/CPI/IGTO substrates against high-temperature treatment, their flexibility, transparency, and their exceptional electrical properties, suggesting them as a prime selection for FPSCs.

2.
Molecules ; 29(18)2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39339480

RESUMEN

Traditional polyimides have highly conjugated structures, causing significant coloration under visible light. Fluorinated colorless polyimides, known for their light weight and excellent optical properties, are considered ideal for future aerospace optical lenses. However, their lifespan in low Earth orbit is severely limited by high-density atomic oxygen (AO) erosion, and the degradation behavior of fluorinated polyimides under AO exposure is not well understood. This study uses reactive molecular dynamics simulations to model two fluorinated polyimides, PMDA-TFMB and 6FDA-TFMB, with different fluorine contents, to explore their degradation mechanisms under varying AO concentrations. The results indicate that 6FDA-TFMB has slightly better resistance to erosion than PMDA-TFMB, mainly due to the enhanced chemical stability from its -CF3 groups. As AO concentration increases, widespread degradation of the polyimides occurs, with AO-induced cleavage and temperature-driven pyrolysis happening simultaneously, producing CO and OH as the main degradation products. This study uncovers the molecular-level degradation mechanisms of fluorinated polyimides, offering new insights for the design of AO erosion protection systems.

3.
Sensors (Basel) ; 23(24)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38139589

RESUMEN

With the demand for healthy life and the great advancement of flexible electronics, flexible sensors are playing an irreplaceably important role in healthcare monitoring, wearable devices, clinic treatment, and so on. In particular, the design and application of polyimide (PI)-based sensors are emerging swiftly. However, the tremendous potential of PI in sensors is not deeply understood. This review focuses on recent studies in advanced applications of PI in flexible sensors, including PI nanofibers prepared by electrospinning as flexible substrates, PI aerogels as friction layers in triboelectric nanogenerator (TENG), PI films as sensitive layers based on fiber Bragg grating (FBG) in relative humidity (RH) sensors, photosensitive PI (PSPI) as sacrificial layers, and more. The simple laser-induced graphene (LIG) technique is also introduced in the application of PI graphitization to graphene. Finally, the prospect of PIs in the field of electronics is proposed in the review.

4.
Nanotechnology ; 34(10)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36562516

RESUMEN

Transparent conductive films with high stability were prepared by embedding silver nanowires in colorless polyimide and adding a protective layer of exfoliated graphene. The films exhibit great light transmission and conductivity with a sheet resistance of 22 Ω sq-1at transmittance of 83%. Due to its special embedded structure, the conductive layer can withstand several peeling experiments without falling off. In addition, the most outstanding advantage is the ultra-high stability of the films, including high mechanical robustness, strong chemical corrosion resistance and high operating voltage capacity. The organic light-emitting diode devices prepared based on this transparent conductive electrode exhibit comparable efficiency to indium tin oxide (ITO) based devices, withC.E.max= 2.78 cd A-1,P-1.E.max= 1.89 lm W-1,EQEmax= 0.89%. Moreover, the efficiencies were even higher than that of ITO devices when the operating voltage of the device exceeds 5 V. The above performances show that the transparent conductive electrode based on this structure has high potential for application in organic electronic devices.

5.
Small ; 12(42): 5826-5835, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27626614

RESUMEN

Optically reduced graphene oxide (ORGO) sheets are successfully integrated on silver nanowire (Ag NW)-embedded transparent and flexible substrate. As a heating element, Ag NWs are embedded in a colorless polyimide (CPI) film by covering Ag NW networks using polyamic acid and subsequent imidization. Graphene oxide dispersed aqueous solution is drop-coated on the Ag NW-embedded CPI (Ag NW-CPI) film and directly irradiated by intense pulsed light to obtain ORGO sheets. The heat generation property of Ag NW-CPI film is investigated by applying DC voltage, which demonstrates unprecedentedly reliable and stable characteristics even in dynamic bending condition. To demonstrate the potential application in wearable chemical sensors, NO2 sensing characteristic of ORGO is investigated with respect to the different heating temperature (22.7-71.7 °C) of Ag NW-CPI film. The result reveals that the ORGO sheets exhibit high sensitivity of 2.69% with reversible response/recovery sensing properties and minimal deviation of baseline resistance of around 1% toward NO2 molecules when the temperature of Ag NW-CPI film is 71.7 °C. This work first demonstrates the improved reversible NO2 sensing properties of ORGO sheets on flexible and transparent Ag NW-CPI film assisted by Ag NW heating networks.

6.
Polymers (Basel) ; 16(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38611159

RESUMEN

In order to prepare polyimide (PI) films with a low dielectric constant and excellent comprehensive performance, a two-step method was employed in this study to integrate ß-cyclodextrin into a semi-aromatic fluorine-containing polyimide ternary system. By introducing trifluoromethyl groups to reduce the dielectric constant, the dielectric constant was further reduced to 2.55 at 10 MHz. Simultaneously, the film exhibited noteworthy thermal stability (a glass transition temperature exceeding 300 °C) and a high coefficient of thermal expansion. The material also demonstrated outstanding mechanical properties, boasting a strength of 122 MPa and a modulus of 2.2 GPa, along with high optical transparency (transmittance reaching up to 89% at 450 nm). Moreover, the inherent high transparency of colorless polyimide (CPI) combined with good stretchability contributed to the attainment of a low dielectric constant. This strategic approach not only opens up new opportunities for novel electroactive polymers but also holds potential applications in flexible displays, circuit printing, and chip packaging.

7.
ACS Appl Mater Interfaces ; 16(36): 48676-48684, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39190646

RESUMEN

The development of Perovskite Solar Cells (PSCs) on flexible substrates marks a significant advancement in thin-film photovoltaic technology. However, current state-of-the-art research predominantly utilizes Poly(ethylene terephthalate) (PET) substrate, which limits the deployment to less challenging environments. To address this limitation, we explore the fabrication of inverted PSCs on colorless polyimide (CPI) substrates that can withstand harsh environmental conditions. We employed a sequential sputtering technique to deposit indium tin oxide (bottom electrode) and nickel oxide (hole transport layer) as a base stack for the perovskite. This base layer was further enhanced by incorporating MeO-2PACz into the hole transport bilayer, significantly improving the NiOx interface, and thereby enhancing the efficiency of the devices. The PSCs fabricated on CPI demonstrated a power conversion efficiency (PCE) of 15.52% and a remarkable power-to-weight ratio (PWR) of 4.39 W/g, which is five times higher than that of devices on PET (0.87 W/g). Moreover, the active stack developed in this study can be used on any transparent substrate, showing its broader application potential.

8.
ACS Appl Mater Interfaces ; 15(47): 54923-54932, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37916291

RESUMEN

Polyimide is actively applied in various industrial fields because of its strong mechanical properties, owing to the interactions between the polymer chains. Fully aromatic imide structures exhibit high glass-transition temperatures due to the strong interactions between their chains, which hinder chain mobility. Therefore, preparing a material that exhibits self-healing at a low temperature of ≤100 °C and good mechanical properties is challenging. Thus, we prepared imides with four-component semiaromatic structures by adjusting the contents of 4,4'-(hexafluoroisopropylidene)diphthalic anhydride and 4,4'-(4,4'-isopropylidenediphenoxy)bis(phthalic anhydride) to yield four-component self-healable colorless polyimides (f-SH-CPIs) with novel structures, flexibilities, good mechanical properties, and low healing temperatures. The flexibilities and distances between the polymer chains, as the basis of the trade-off relationship between the mechanical properties and healing efficiency, were controlled. These materials may be used as substrates in wearable devices and multilayer insulation that may protect from space dust, cosmic rays, and satellite fragments.

9.
ACS Appl Mater Interfaces ; 14(24): 28105-28113, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35679605

RESUMEN

Flexible vanadium dioxide (VO2) thermochromic films show great potential for large-scale fabrication and possess broader applications compared with VO2 coatings on rigid substrates. However, the fabrication of flexible VO2 films remains a challenge so far, leading to the scarcity of research on flexible VO2 films for smart windows. With the aim to obtain a flexible VO2-based films with excellent optical properties and a long service life, we designed and successfully fabricated a flexible ITO/VO2/ITO (IVI) film on the colorless transparent polyimide substrate, which could be directly attached to glasses for indoor temperature modulation. This flexible IVI film effectively enhances the luminous transmittance (Tlum) and solar modulation ability (ΔTsol) (15 and 68% increase relative to a VO2 single layer), reduces the thermal emissivity (εT) (50.7% decrease relative to a VO2 single layer), and exhibits better durability than previously reported structures. Such excellent comprehensive performance offers it great potential in practical applications on smart windows. This work is supposed to provide a new strategy for facile direct fabrication of flexible VO2 films and broaden the applications of flexible VO2 in more coatings and devices.

10.
Nanomaterials (Basel) ; 12(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35335731

RESUMEN

In this paper, we investigate the characteristics of the colorless polyimide (CPI) film-based flexible organic X-ray detector. The CPI film can be applied to various applications, because it shows excellent visible light transmittance by removing the yellow color of polyimide (PI) film, which has the advantage of physical and chemical stability. In addition, the deformation curvature of the CPI substrate according to temperature showed similar characteristics to that of the glass substrate. For the organic active layer of the proposed detector, PBDB-T was fixed as a donor, and PC71BM and ITIC were used as acceptors. To evaluate the mechanical stability of the flexible detector, the degradation sensitivity was measured as bending curvature and bending cycle. The sensitivity of the detector with ITIC acceptor showed a 46.82% higher result than PC71BM acceptor on bending curvature (R = 10); and at the same curvature, when the bending cycle was 500 times, a 135.85% higher result than PC71BM acceptor.

11.
Polymers (Basel) ; 14(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35335422

RESUMEN

Optically transparent polymer films with excellent thermal and ultraviolet (UV) resistance have been highly desired in advanced optoelectronic fields, such as flexible substrates for photovoltaic devices. Colorless and transparent polyimide (CPI) films simultaneously possess the good thermal stability and optical transparency. However, conventional CPI films usually suffered from the UV exposure and have to face the deterioration of optical properties during the long-term service in UV environments. In the current work, the commercially available hindered amine light stabilizers (HALS) were tried to be incorporated into the semi-alicyclic CPI matrix with the aim of enhancing the UV exposure stability. For this target, a CPI-0 film was first prepared from hydrogenated pyromellitic dianhydride (HPMDA) and 2,2'-dimethylbenzidine (DMBZ) via a one-step polycondensation procedure. Then, the commercially available HALS were incorporated into the CPI-0 (HPMDA-DMBZ) film matrix to afford four series of CPI/HALS composite films. Experimental results indicated that the Tinuvin® 791 HALS showed the best miscibility with the CPI-0 film matrix and the derived CPI-D series of composite films exhibited the best optical transmittances. The CPI-D nanocomposite films showed apparently enhanced UV exposure stability via incorporation of the 791 additives. For the pristine CPI-0 film, after the UV exposure for 6 h, the optical properties, including the transmittance at the wavelength of 350 nm (T350), lightness (L*), yellow indices (b*), and haze obviously deteriorated with the T350 values from 55.7% to 17.5%, the L* values from 95.12 to 91.38, the b* values from 3.38 to 21.95, and the haze values from 1.46% to 9.33%. However, for the CPI-D-10 film (791: CPI-0 = 1.0 wt%, weight percent), the optical parameters were highly maintained with the T350 values from 61.4% to 53.8%, the L* values from 95.46 to 95.36, the b* values from 1.84 to 1.51, and the haze values from 0.69% to 3.34% under the same UV aging conditions.

12.
ACS Appl Mater Interfaces ; 14(14): 16658-16668, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35352547

RESUMEN

Polymer cover windows are important components of flexible OLED displays but they easily generate wrinkles because of their weak folding resistance. Increasing the polymer thickness can improve the folding resistance but it decreases the touch sensitivity. Thus, fabricating highly foldable and supersensitive polymer cover windows is still challenging. Here, by incorporating cellulose nanocrystals (CNCs) and zirconia (ZrO2) into colorless polyimide (CPI), we developed a highly foldable and supersensitive hybrid cover window. Inspired by the theory of elasticity, we added rigid CNCs into CPI to improve the elastic modulus and hence the foldability. ZrO2 was introduced to improve dielectric properties, which leads to improved touch sensitivity. After these modifications, the elastic modulus of the cover windows was increased from 1432 to 2221 MPa, whereas its dielectric constant was increased from 2.95 to 3.46 (@1 × 106 Hz), resulting in significantly enhanced foldability and sensitivity. Meanwhile, because of the nano size of CNCs and ZrO2, the hybrid cover windows exhibit excellent optical properties with the transmittance of ∼88.1%@550 nm and haze of 2.39%. With improved and balanced mechanical, dielectric, and optical properties, these hybrid cover windows overcome current cover windows' defects and could be widely used in next-generation flexible displays.

13.
Polymers (Basel) ; 14(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36236080

RESUMEN

A new series of colorless polyimides (CPIs) with outstanding thermal properties and mechanical properties were fabricated by the copolymerization of a novel dianhydride and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) with 2,2'-bistrifluoromethyl benzidine (TFDB). The novel dianhydride, 10-oxo-9-phenyl-9-(trifluoromethyl)-9,10-dihydroanthracene-2,3,6,7-tetraacid dianhydride (3FPODA), possessed a rigid semi-alicyclic structure, -CF3 and phenyl side groups, and an active carbonyl group. Benefitting from the special structure of 3FPODA, the glass transition temperatures (Tg) of the new CPIs improved from 330 °C to 377 °C, the coefficient of thermal expansion (CTE) decreased from 46 ppm/K to 24 ppm/K, and the tensile strength (TS), tensile modulus (TM), and elongation at break (EB) increased from 84 MPa to 136 MPa, 3.2 GPa to 4.4 GPa, and 2.94% to 4.13% with the increasing amount of 3FPODA, respectively. Moreover, the active carbonyl group of the 3FPODA could enhance the CPI's adhesive properties. These results render the new dianhydride 3FPODA an ideal candidate monomer for the fabrication of high-performance CPIs.

14.
Micromachines (Basel) ; 12(3)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668908

RESUMEN

We fabricated transparent and flexible silicon oxycarbide (SiOC) hard coating (HC) films on a colorless polyimide substrate to use as cover window films for flexible and foldable displays using a reactive roll-to-roll (R2R) sputtering system at room temperature. At a SiOC thickness of 100 nm, the R2R-sputtered SiOC film showed a high optical transmittance of 87.43% at a visible range of 400 to 800 nm. The R2R-sputtered SiOC films also demonstrated outstanding flexibility, which is a key requirement of foldable and flexible displays. There were no cracks or surface defects on the SiOC films, even after bending (static folding), folding (dynamic folding), twisting, and rolling tests. Furthermore, the R2R-sputtered SiOC film showed good scratch resistance in a pencil hardness test (550 g) and steel wool test under a load of 250 g. To test the impact protection ability, we compared the performance of thin-film heaters (TFHs) and oxide-semiconductor-based thin-film transistors (TFTs) with and without SiOC cover films. The similar performance of the TFHs and TFTs with the SiOC cover window films demonstrate that the R2R-sputtered SiOC films offer promising cover window films for the next generation of flexible or foldable displays.

15.
Polymers (Basel) ; 12(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947855

RESUMEN

Enhancement of flame retardancy of a colorless and transparent semi-alicyclic polyimide (PI) film was carried out by the incorporation of phosphazene (PPZ) flame retardant (FR). For this purpose, PI-1 matrix was first synthesized from hydrogenated 3,3',4,4'-biphenyltetracarboxylic dianhydride (HBPDA) and 4,4'-oxydianiline (ODA). The soluble PI-1 resin was dissolved in N,N-dimethylacetamide (DMAc) to afford the PI-1 solution, which was then physically blended with PPZ FR with the loading amounts in the range of 0-25 wt.%. The PPZ FR exhibited good miscibility with the PI-1 matrix when its proportion was lower than 10 wt.% in the composite films. PI-3 composite film with the PPZ loading of 10 wt.% showed an optical transmittance of 75% at the wavelength of 450 nm with a thickness of 50 µm. More importantly, PI-3 exhibited a flame retardancy class of UL 94 VTM-0 and reduced total heat release (THR), heat release rate (HRR), smoke production rate (SPR), and rate of smoke release (RSR) values during combustion compared with the original PI-1 film. In addition, PI-3 film had a limiting oxygen index (LOI) of 30.9%, which is much higher than that of PI-1 matrix (LOI: 20.1%). Finally, incorporation of PPZ FR decreased the thermal stability of the PI films. The 10% weight loss temperature (T10%) and the glass transition temperature (Tg) of the PI-3 film were 411.6 °C and 227.4 °C, respectively, which were lower than those of the PI-1 matrix (T10%: 487.3 °C; Tg: 260.6 °C).

16.
Polymers (Basel) ; 12(2)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32054073

RESUMEN

Semi-alicyclic colorless and transparent polyimide (CPI) films usually suffer from the high linear coefficients of thermal expansion (CTEs) due to the intrinsic thermo-sensitive alicyclic segments in the polymers. A series of semi-alicyclic CPI films containing rigid-rod amide moieties were successfully prepared in the current work in order to reduce the CTEs of the CPI films while maintaining their original optical transparency and solution-processability. For this purpose, two alicyclic dianhydrides, hydrogenated pyromellitic anhydride (HPMDA, I), and hydrogenated 3,3',4,4'-biphenyltetracarboxylic dianhydride (HBPDA, II) were polymerized with two amide-bridged aromatic diamines, 2-methyl-4,4'-diaminobenzanilide (MeDABA, a) and 2-chloro-4,4'-diaminobenzanilide (ClDABA, b) respectively to afford four CPI resins. The derived CPI resins were all soluble in polar aprotic solvents, including N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc). Flexible and tough CPI films were successfully prepared by casing the PI solutions onto glass substrates followed by thermally cured at elevated temperatures from 80 °C to 250 °C. The MeDABA derived PI-Ia (HPMDA-MeDABA) and PI-IIa (HBPDA-MeDABA) exhibited superior optical transparency compared to those derived from ClDABA (PI-Ib and PI-IIb). PI-Ia and PI-IIa showed the optical transmittances of 82.3% and 85.8% at the wavelength of 400 nm with a thickness around 25 µm, respectively. Introduction of rigid-rod amide moiety endowed the HPMDA-PI films good thermal stability at elevated temperatures with the CTE values of 33.4 × 10-6/K for PI-Ia and 27.7 × 10-6/K for PI-Ib in the temperature range of 50-250 °C. Comparatively, the HBPDA-PI films exhibited much higher CTE values. In addition, the HPMDA-PI films exhibited good thermal stability with the 5% weight loss temperatures (T5%) higher than 430 °C and glass transition temperatures (Tg) in the range of 349-351 °C.

17.
ACS Appl Mater Interfaces ; 11(23): 21069-21077, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31094197

RESUMEN

A novel flexible transparent electrode (TE) having a trilayer-stacked geometry and high optoelectronic performance and operational stability was fabricated by the spin coating method. The trilayer was composed of an ultrathin graphene (Gr) film sandwiched between a transparent and colorless polyimide (TCPI) layer and a methanesulfonic acid (MSA)-treated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer containing dimethylsulfoxide and Zonyl fluorosurfactant (designated as MSA-PDZ film). The introduction of solution-processable TCPI enabled the direct formation of high-quality graphene on organic surfaces with a clean interface. Stable doping of graphene with the MSA-PDZ film enabled tuning of the inherent work function and optoelectronic properties of the PEDOT:PSS films, leading to a high figure of merit of ∼70 in the as-fabricated TEs. Particularly, from multivariate and repetitive harsh environmental tests ( T = -50 to 90 °C, over 90 RH%), the TCPI/Gr heterostructure exhibited excellent tolerance to mechanical and thermal stresses and gas barrier properties that protected the MSA-PDZ film from exposure to moisture. Owing to the synergetic effect from the TCPI/Gr/MSA-PDZ anode structure, the TCPI/Gr/MSA-PDZ-based polymer light-emitting diodes showed highly improved current and power efficiencies with maxima as high as 20.84 cd/A and 22.92 lm/W, respectively (comparable to those of indium tin oxide based PLEDs), in addition to much enhanced mechanical flexibility.

18.
ACS Appl Mater Interfaces ; 9(17): 14990-14997, 2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28397490

RESUMEN

Here we demonstrate a simple and effective method of fabricating polymeric scattering substrate for flexible organic light-emitting diodes (OLEDs) that require no costly patterning, etching, or molding processes, aspects that are desirable for the commercialization of large-scale lighting panels. Systematic study of the influences of relative index of refraction, particle size, and doping concentration on transmittance and haze of transparent colorless polyimide (cPI) films was carried out. It was found that the reduction of transmittance and haze of the doped films decreases along with the decrease of the difference of refractive index between the particles and polymer matrix, and it could be compensated by the increase of particle size or doping concentration.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda