Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Nano Lett ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598773

RESUMEN

The practical application of microsized anodes is hindered by severe volume changes and fast capacity fading. Herein, we propose a gradient composite strategy and fabricate a silicon suboxide-based composite anode (d-SiO@SiOx/C@C) consisting of a disproportionated microsized SiO inner core, a homogeneous composite SiOx/C interlayer (x ≈ 1.5), and a highly graphitized carbon outer layer. The robust SiOx/C interlayer can realize a gradient abatement of stress and simultaneously connect the inner SiO core and carbon outer layer through covalent bonds. As a result, d-SiO@SiOx/C@C delivers a specific capacity of 1023 mAh/g after 300 cycles at 1 A/g with a retention of >90% and an average Coulombic efficiency of >99.7%. A full cell assembled with a LiNi0.8Co0.15Al0.05O2 cathode displays a remarkable specific energy density of 569 Wh/kg based on total active materials as well as excellent cycling stability. Our strategy provides a promising alternative for designing structurally and electrochemically stable microsized anodes with high capacity.

2.
Small ; 20(23): e2307669, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38168885

RESUMEN

The unique anionic redox mechanism provides, high-capacity, irreversible oxygen release and voltage/capacity degradation to Li-rich cathode materials (LRO, Li1.2Mn0.54Co0.13Ni0.13O2). In this study, an integrated stabilized carbon-rock salt/spinel composite heterostructured layers (C@spinel/MO) is constructed by in situ self-reconstruction, and the generation mechanism of the in situ reconstructed surface is elucidated. The formation of atomic-level connections between the surface-protected phase and bulk-layered phase contributes to electrochemical performance. The best-performing sample shows a high increase (63%) of capacity retention compared to that of the pristine sample after 100 cycles at 1C, with an 86.7% reduction in surface oxygen release shown by differential electrochemical mass spectrometry. Soft X-ray results show that Co3+ and Mn4+ are mainly reduce in the carbothermal reduction reaction and participate in the formation of the spinel/MO rock-salt phase. The results of oxygen release characterized by Differential electrochemical mass spectrometry (DEMS) strongly prove the effectiveness of surface reconstruction.

3.
Small ; : e2401497, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693067

RESUMEN

Manganese-based lithium-rich layered oxides (Mn-LLOs) are promising candidate cathode materials for lithium-ion batteries, however, the severe voltage decay during cycling is the most concern for their practical applications. Herein, an Mn-based composite nanostructure constructed Li2MnO3 (LMO@Li2MnO3) is developed via an ultrathin amorphous functional oxide LixMnOy coating at the grain surface. Due to the thin and universal LMO amorphous surface layer etched from the lithiation process by the high-concentration alkaline solution, the structural and interfacial stability of Li2MnO3 are enhanced apparently, showing the significantly improved voltage maintenance, cycle stability, and energy density. In particular, the LMO@Li2MnO3 cathode exhibits zero voltage decay over 200 cycles. Combining with ex situ spectroscopic and microscopic techniques, the Mn2+/4+ coexisted behavior of the amorphous LMO is revealed, which enables the stable electrochemistry of Li2MnO3. This work provides new possible routes for suppressing the voltage decay of Mn-LLOs by modifying with the composite functional unit construction.

4.
Mikrochim Acta ; 191(6): 301, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709350

RESUMEN

In the era of wearable electronic devices, which are quite popular nowadays, our research is focused on flexible as well as stretchable strain sensors, which are gaining humongous popularity because of recent advances in nanocomposites and their microstructures. Sensors that are stretchable and flexible based on graphene can be a prospective 'gateway' over the considerable biomedical speciality. The scientific community still faces a great problem in developing versatile and user-friendly graphene-based wearable strain sensors that satisfy the prerequisites of susceptible, ample range of sensing, and recoverable structural deformations. In this paper, we report the fabrication, development, detailed experimental analysis and electronic interfacing of a robust but simple PDMS/graphene/PDMS (PGP) multilayer strain sensor by drop casting conductive graphene ink as the sensing material onto a PDMS substrate. Electrochemical exfoliation of graphite leads to the production of abundant, fast and economical graphene. The PGP sensor selective to strain has a broad strain range of ⁓60%, with a maximum gauge factor of 850, detection of human physiological motion and personalized health monitoring, and the versatility to detect stretching with great sensitivity, recovery and repeatability. Additionally, recoverable structural deformation is demonstrated by the PGP strain sensors, and the sensor response is quite rapid for various ranges of frequency disturbances. The structural designation of graphene's overlap and crack structure is responsible for the resistance variations that give rise to the remarkable strain detection properties of this sensor. The comprehensive detection of resistance change resulting from different human body joints and physiological movements demonstrates that the PGP strain sensor is an effective choice for advanced biomedical and therapeutic electronic device utility.


Asunto(s)
Dimetilpolisiloxanos , Grafito , Dispositivos Electrónicos Vestibles , Grafito/química , Humanos , Dimetilpolisiloxanos/química , Movimiento
5.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 595-603, 2024 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-38932547

RESUMEN

The stiffness of an ideal fracture internal fixation implant should have a time-varying performance, so that the fracture can generate reasonable mechanical stimulation at different healing stages, and biodegradable materials meet this performance. A topology optimization design method for composite structures of fracture internal fixation implants with time-varying stiffness is proposed, considering the time-dependent degradation process of materials. Using relative density and degradation residual rate to describe the distribution and degradation state of two materials with different degradation rates and elastic modulus, a coupled mathematical model of degradation simulation mechanical analysis was established. Biomaterial composite structures were designed based on variable density method to exhibit time-varying stiffness characteristics. Taking the bone plate used for the treatment of tibial fractures as an example, a composite structure bone plate with time-varying stiffness characteristics was designed using the proposed method. The optimization results showed that material 1 with high stiffness formed a columnar support structure, while material 2 with low stiffness was distributed at the degradation boundary and inside. Using a bone remodeling simulation model, the optimized bone plates were evaluated. After 11 months of remodeling, the average elastic modulus of callus using degradable time-varying stiffness plates, titanium alloy plates, and stainless steel plates were 8 634 MPa, 8 521 MPa, and 8 412 MPa, respectively, indicating that the use of degradable time-varying stiffness plates would result in better remodeling effects on the callus.


Asunto(s)
Placas Óseas , Remodelación Ósea , Módulo de Elasticidad , Fijación Interna de Fracturas , Fracturas de la Tibia , Titanio , Fijación Interna de Fracturas/instrumentación , Fijación Interna de Fracturas/métodos , Humanos , Fracturas de la Tibia/cirugía , Titanio/química , Materiales Biocompatibles/química , Ensayo de Materiales , Estrés Mecánico , Aleaciones , Implantes Absorbibles
6.
Sensors (Basel) ; 23(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36850887

RESUMEN

Due to the complexity of the fracture mechanisms in composites, monitoring damage using a vibration-based structural response remains a challenging task. This is also complex when considering the physical implementation of a health monitoring system with its numerous uncertainties and constraints, including the presence of measurement noise, changes in boundary and environmental conditions of a tested object, etc. Finally, to balance such a system in terms of efficiency and cost, the sensor network needs to be optimized. The main aim of this study is to develop a cost- and performance-effective data-driven approach to monitor damage in composite structures and validate this approach through tests performed on a physically implemented structural health monitoring (SHM) system. In this study, we combined the mentioned research problems to develop and implement an SHM system to monitor delamination in composite plates using data combined from finite element models and laboratory experiments to ensure robustness to measurement noise with a simultaneous lack of necessity to perform multiple physical experiments. The developed approach allows the implementation of a cost-effective SHM system with validated predictive performance.

7.
Sensors (Basel) ; 23(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37447720

RESUMEN

Composite materials have been widely used in spacecraft structures. Due to the harsh environment in space, gas leakage will occur in the structure, so it is necessary to locate the leakage position in time. In this paper, a beamforming localization method based on a U-shaped sensor array is studied. The array can be divided into two subarrays, which can orientate the direction of leakage sources, respectively. To solve the problem of uneven wave velocity caused by the anisotropy of composite materials, this method modifies the relationship between wave velocity and direction and combines it with the dispersion curve to select a filtering frequency band to reduce the influence of dispersion. The experiment simulates vacuum leakage by pumping holes with a diameter of 3 mm with a vacuum pump. The results show that the U-shaped array beamforming algorithm proposed in this paper can obtain a positioning error of 2.21 cm, which provides a new idea for the structural health detection of spacecraft.

8.
Sensors (Basel) ; 23(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37447970

RESUMEN

Health monitoring of structures operating in ambient environments is performed through operational modal analysis, where the identified modal parameters, such as resonant frequencies, damping ratios and operation deflection shapes, characterize the state of structural integrity. The current study shows that, first, time-frequency methods, such as continuous wavelet transform, can be used to identify these parameters and may even provide a large amount of such data, increasing the reliability of structural health monitoring systems. Second, the identified resonant frequencies and damping ratios are used as features in a damage-detection scheme, utilizing the kernel density estimate (KDE) of an underlying probability distribution of features. The Euclidean distance between the centroids of the KDEs, at reference and in various other cases of structural integrity, is used as an indicator of deviation from reference. Validation of the algorithm was carried out in a vast experimental campaign on glass fibre-reinforced polymer samples with a cylindrical shell structure subjected to varying degrees of damage. The proposed damage indicator, when compared with the well-known Mahalanobis distance metric, yielded comparable damage detection accuracy, while at the same time being not only simpler to calculate but also able to capture the severity of damage.


Asunto(s)
Algoritmos , Polímeros , Reproducibilidad de los Resultados , Probabilidad , Análisis de Ondículas
9.
Sensors (Basel) ; 23(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36992037

RESUMEN

This paper presents the results of experimental and numerical studies of the dynamic parameters of composite cylindrical shells loaded under axial tension. Five composite structures were manufactured and loaded up to 4817 N. The static load test was carried out by hanging the load to the lower part of a cylinder. The natural frequencies and mode shapes were measured during testing using a network of 48 piezoelectric sensors that measure the strains of composite shells. The primary modal estimates were calculated with ARTeMIS Modal 7 software using test data. The methods of modal passport, including modal enhancement, were used to improve the accuracy of the primary estimates and reduce the influence of random factors. To estimate the effect of a static load on the modal properties of a composite structure, a numerical calculation and a comparative analysis of experimental and numerical data was carried out. The results of the numerical study confirmed that natural frequency increases with increasing tensile load. The data obtained from experimental results were not fully consistent with the results of numerical analysis, but showed a consistent pattern, repeating for all samples.

10.
Sensors (Basel) ; 22(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35632283

RESUMEN

Steel-concrete composite systems are an efficient alternative to mid- and high-rise building structures because of their high strength-to-weight ratio when compared to traditional concrete or steel constructive systems. Nevertheless, composite structural systems are susceptible to damage due to, for example, deficient construction processes, errors in design and detailing, steel corrosion, and the drying shrinkage of concrete. As a consequence, the overall strength of the structure may be significantly decreased. In view of the relevance of this subject, the present paper addresses the damage detection problem in a steel-concrete composite structure with an impact-hammer-based modal testing procedure. The mathematical formulation adopted in this work allows for the identification of regions where stiffness varies with respect to an initial virgin state without the need for theoretical models of the undamaged structure (such as finite element models). Since mode shape curvatures change due to the loss of stiffness at the presence of cracks, a change in curvature was adopted as a criterion to quantify stiffness reduction. A stiffness variability index based on two-dimensional mode shape curvatures is generated for several points on the structure, resulting in a damage distribution pattern. Our numerical predictions were compared with experimentally measured data in a full-scale steel-concrete composite beam subjected to bending and were successfully validated. The present damage detection strategy provides further insight into the failure mechanisms of steel-concrete composite structures, and promotes the future development of safer and more reliable infrastructures.

11.
Sensors (Basel) ; 22(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35632276

RESUMEN

Optimal sensor placement is one of the important issues in monitoring the condition of structures, which has a major influence on monitoring system performance and cost. Due to this, it is still an open problem to find a compromise between these two parameters. In this study, the problem of optimal sensor placement was investigated for a composite plate with simulated internal damage. To solve this problem, different sensor placement methods with different constraint variants were applied. The advantage of the proposed approach is that information for sensor placement was used only from the structure's healthy state. The results of the calculations according to sensor placement methods were subsets of possible sensor network candidates, which were evaluated using the aggregation of different metrics. The evaluation of selected sensor networks was performed and validated using machine learning techniques and visualized appropriately. Using the proposed approach, it was possible to precisely detect damage based on a limited number of strain sensors and mode shapes taken into consideration, which leads to efficient structural health monitoring with resource savings both in costs and computational time and complexity.


Asunto(s)
Monitoreo Fisiológico , Humanos , Aprendizaje Automático , Monitoreo Fisiológico/métodos , Reproducibilidad de los Resultados
12.
Sensors (Basel) ; 22(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36146280

RESUMEN

Today, aircraft composite structures are generally over-dimensioned to avoid catastrophic failure by unseen damages. This leads to a higher system weight and therefore an unwanted increase in greenhouse gas emissions. To reduce this parasitic mass, load monitoring can play an important role in damage detection. Additionally, the weight and volume of future aircraft structures can also be reduced by energy storing and load carrying structures: so-called power composites. In this study a novel method of combining both approaches for maximum weight reduction is shown. This is achieved by using power composites as load monitoring sensors and energy suppliers. Therefore, supercapacitors are integrated into fiber reinforced polymers and are then used to investigate the mechanical load influence. By using four-point bending experiments and in situ electrochemical impedance spectroscopy, a strong relation between the mechanical load and the electrochemical system is found and analyzed using a model. For the first time, it is possible to detect small strain values down to 0.2% with a power composite. This strain is considerably lower than the conventional system load. The developed model and the impedance data indicate the possibility of using the composite as an energy storage as well as a strain sensor.

13.
Molecules ; 27(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36364265

RESUMEN

Rational design and constructing earth-abundant electrocatalysts for efficient electrocatalytic water splitting is a crucial challenge. Herein, we report a simple and efficient one-step electrochemical synthetic route of the NiFe2O4@FeOOH composite electrocatalyst for the oxygen evolution reaction. The unique morphology of the NiFe2O4 nanoflowers loaded on FeOOH nanosheets allows more active sites to be exposed and promote charge transfer as well as gas release, and the resulting electrode enables a current density of 10 mA cm-2 at a low overpotential of 255 mV with outstanding stability at a current density of 100 mA cm-2 for 300 h.

14.
Sensors (Basel) ; 21(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207521

RESUMEN

Flexible sensors have attracted increasing research interest due to their broad application potential in the fields of human-computer interaction, medical care, sports monitoring, etc. Constructing an integrated sensor system with high performance and being capable of discriminating different stimuli remains a challenge. Here, we proposed a flexible integrated sensor system for motion monitoring that can measure bending strain and pressure independently with a low-cost and simple fabrication process. The resistive bending strain sensor in the system is fabricated by sintering polyimide (PI), demonstrating a gauge factor of 9.54 and good mechanical stability, while the resistive pressure sensor is constructed based on a composite structure of silver nanowires (AgNWs) and polydimethylsiloxane (PDMS)-expandable microspheres with a tunable sensitivity and working range. Action recognition is demonstrated by attaching the flexible integrated sensor system on the wrist with independent strain and pressure information recorded from corresponding sensors. It shows a great application potential in motion monitoring and intelligent human-machine interfaces.


Asunto(s)
Nanocables , Dispositivos Electrónicos Vestibles , Humanos , Movimiento (Física) , Plata , Muñeca
15.
Sensors (Basel) ; 21(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34960329

RESUMEN

This manuscript deals with the detection of internal cracks and defects in aeronautical fibreglass structures. In technical practice, it is problematic to accurately determine the service life or MTBF (Mean Time Between Failure) of composite materials by the methods used in metallic materials. The problem is mainly the inhomogeneous and anisotropic structure of composites, possibly due to the differences in the macrostructure during production, production processes, etc. Diagnostic methods for detecting internal cracks and damage are slightly different, and in practice, it is more difficult to detect defects using non-destructive testing (NDT). The article deals with the use of Radio frequency identification (RFID) technology integrated in the fibreglass laminates of aircraft structures to detect internal defects based on deformation behaviour of passive RFID tag antenna. The experiments proved the potential of using RFID technology in fibreglass composite laminates when using tensile tests applied on specimens with different structural properties. Therefore, the implementation of passive RFID tags into fibreglass composite structures presents the possibilities of detecting internal cracks and structural health monitoring. The result and conclusion of the basic research is determination of the application conditions for our proposed technology in practice. Moreover, the basic research provides recommendations for the applied research in terms of the use in real composite airframe structures.


Asunto(s)
Dispositivo de Identificación por Radiofrecuencia , Investigación
16.
Sensors (Basel) ; 21(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562626

RESUMEN

The demand for waterproofing of polymer (parylene) coating encapsulation has increased in a wide variety of applications, especially in the waterproof protection of electronic devices. However, parylene coatings often produce pinholes and cracks, which will reduce the waterproof effect as a protective barrier. This characteristic has a more significant influence on sensors and actuators with movable parts. Thus, a defect filling method of micro-nano composite structure is proposed to improve the waterproof ability of parylene coatings. The defect filling method is composed of a nano layer of Al2O3 molecules and a micro layer of parylene polymer. Based on the diffusion mechanism of water molecules in the polymer membrane, defects on the surface of polymer encapsulation will be filled and decomposed into smaller areas by Al2O3 nanoparticles to delay or hinder the penetration of water molecules. Accordingly, the dense Al2O3 nanoparticles are utilized to fill and repair the surface of the organic polymer by low-rate atomic layer deposition. This paper takes the pressure sensor as an example to carry out the corresponding research. Experimental results show that the proposed method is very effective and the encapsulated sensors work properly in a saline solution after a period of time equivalent to 153.9 days in body temperature, maintaining their accuracy and precision of 2 mmHg. Moreover, the sensors could improve accuracy by about 43% after the proposed encapsulation. Therefore, the water molecule anti-permeability encapsulation would have broad application prospects in micro/nano-device protection.

17.
Sensors (Basel) ; 21(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34502810

RESUMEN

In order to reduce the influence of the optical window on the image quality of a hypersonic visible light optical remote sensor, we propose a method of adding a double-layer semicircular honeycomb core microstructure with flexible support of a high temperature elastic alloy between a window glass and a frame to reduce the influence of complex thermal stress on the surface accuracy of the optical window. An equivalent model of a semicircular honeycomb structure was established, the elastic parameters of the semicircular honeycomb sandwich microstructure were derived by an analytical method, and a numerical verification and finite element simulation were carried out. The results show that the equivalent model is in good agreement with the detailed model. The optical-mechanical-thermal integrated simulation analysis of the optical window assembly with flexible supporting microstructure proves that the semicircular honeycomb sandwich flexible supporting structure has a positive effect on stress attenuation of the window glass and ensures the wave aberration accuracy of the transmitted optical path difference of the optical window (PV < 0.665 λ, RMS < 0.156 λ, λ = 632.8 nm). Combined with the actual optical system, the optical performance of the window assembly under the flexible support structure is verified. The simulation results show that the spatial frequency of the modulation transfer function (MTF) of the optical system after focusing is not less than 0.58 in the range of 0-63 cycle/mm and the relative decline of MTF is not more than 0.01, which meet the imaging requirements of a remote sensor. The study results show that the proposed metal-based double-layer semicircular honeycomb sandwich flexible support microstructure ensures the imaging quality of the optical window under ultra-high temperature conditions.

18.
Sensors (Basel) ; 20(15)2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32726902

RESUMEN

A surface acoustic wave (SAW) device with an aluminum nitride (AlN) composite structure of Al2O3/IDTs/AlN/Metal/Si was proposed for sensing at extreme high-temperature in this work. Optimization allowing determination of optimal design parameters for SAW devices was conducted using the typical coupling of modes (COM) model. The SAW propagation characteristics in the layered structure were investigated theoretically by employing the finite element method (FEM). Multiple acoustic-wave modes that occurred in the AlN composite structure was analyzed, and the corresponding suppression of spurious mode was proposed. The COM simulation parameters corresponding to the effective acoustic-wave mode were extracted, and the optimized parameters of the one-port SAW resonator with a high-quality factor were determined.

19.
Sensors (Basel) ; 20(19)2020 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-32993141

RESUMEN

Detailed information about temperature distribution can be important to understand structural behavior in fire. This study develops a method to image three-dimensional temperature distributions in steel-concrete composite slabs using distributed fiber optic sensors. The feasibility of the method is explored using six 1.2 m × 0.9 m steel-concrete composite slabs instrumented with distributed sensors and thermocouples subjected to fire for over 3 h. Dense point clouds of temperature in the slabs were measured using the distributed sensors. The results show that the distributed sensors operated at material temperatures up to 960 °C with acceptable accuracy for many structural fire applications. The measured non-uniform temperature distributions indicate a spatially distributed thermal response in steel-concrete composite slabs, which can only be adequately captured using approaches that provide a high density of through-depth data points.

20.
Molecules ; 25(13)2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32635346

RESUMEN

In this study, sulfur-free expanded graphite (EG) was obtained by using flake graphite as the raw material, and EG/Fe3O4 composites with excellent microwave absorption properties were prepared by a facile one-pot co-precipitation method. The structure and properties of as-prepared EG/Fe3O4 were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Raman, X-ray photoelectron spectrometry (XPS), thermogravimetric (TG), and vibrating sample magnetometry (VSM) characterizations. The Fe3O4 intercalated between the layers of expanded graphite forms a sandwich-like structure which is superparamagnetic and porous. When applied as a microwave absorber, the reflection loss (RL) of EG/Fe3O4 reaches -40.39 dB with a thickness of 3.0 mm (10 wt% loading), and the effective absorption bandwidth (EAB < -10 dB) with RL exceeding -10 dB is 4.76-17.66 GHz with the absorber thickness of 1.5-4.0 mm. Considering its non-toxicity, easy operation, low cost, suitability for large-scale industrial production, and excellent microwave absorbing performance, EG/Fe3O4 is expected to be a promising candidate for industrialized electromagnetic absorbing materials.


Asunto(s)
Compuestos Férricos/química , Grafito/química , Microondas , Espectroscopía de Fotoelectrones , Fenómenos Físicos , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda