Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 17.745
Filtrar
Más filtros

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(6): e2306549121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38300861

RESUMEN

Understanding and predicting the emergence and evolution of cultural tastes manifested in consumption patterns is of central interest to social scientists, analysts of culture, and purveyors of content. Prior research suggests that taste preferences relate to personality traits, values, shifts in mood, and immigration destination. Understanding everyday patterns of listening and the function music plays in life has remained elusive, however, despite speculation that musical nostalgia may compensate for local disruption. Using more than one hundred million streams of four million songs by tens of thousands of international listeners from a global music service, we show that breaches in personal routine are systematically associated with personal musical exploration. As people visited new cities and countries, their preferences diversified, converging toward their travel destinations. As people experienced the very different disruptions associated with COVID-19 lockdowns, their preferences diversified further. Personal explorations did not tend to veer toward the global listening average, but away from it, toward distinctive regional musical content. Exposure to novel music explored during periods of routine disruption showed a persistent influence on listeners' future consumption patterns. Across all of these settings, musical preference reflected rather than compensated for life's surprises, leaving a lasting legacy on tastes. We explore the relationship between these findings and global patterns of behavior and cultural consumption.


Asunto(s)
Música , Humanos , Afecto , Predicción
2.
Proc Natl Acad Sci U S A ; 121(11): e2317702121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38446850

RESUMEN

The electro-Fenton process is a state-of-the-art water treatment technology used to remove organic contaminants. However, the low O2 utilization efficiency (OUE, <1%) and high energy consumption remain the biggest obstacles to practical application. Here, we propose a local O2 concentrating (LOC) approach to increase the OUE by over 11-fold compared to the conventional simple O2 diffusion route. Due to the well-designed molecular structure, the LOC approach enables direct extraction of O2 from the bulk solution to the reaction interface; this eliminates the need to pump O2/air to overcome the sluggish O2 mass transfer and results in high Faradaic efficiencies (~50%) even under natural air diffusion conditions. Long-term operation of a flow-through pilot device indicated that the LOC approach saved more than 65% of the electric energy normally consumed in treating actual industrial wastewater, demonstrating the great potential of this system-level design to boost the electro-Fenton process for energy-efficient water remediation.

3.
Proc Natl Acad Sci U S A ; 121(23): e2400159121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38814870

RESUMEN

Lithium is an emerging strategic resource for modern energy transformation toward electrification and decarbonization. However, current mainstream direct lithium extraction technology via adsorption suffers from sluggish kinetics and intensive water usage, especially in arid/semiarid and cold salt-lake regions (natural land brines). Herein, an efficient proof-of-concept integrated solar microevaporator system is developed to realize synergetic solar-enhanced lithium recovery and water footprint management from hypersaline salt-lake brines. The 98% solar energy harvesting efficiency of the solar microevaporator system, elevating its local temperature, greatly promotes the endothermic Li+ extraction process and solar steam generation. Benefiting from the photothermal effect, enhanced water flux, and enriched local Li+ supply in nanoconfined space, a double-enhanced Li+ recovery capacity was delivered (increase from 12.4 to 28.7 mg g-1) under one sun, and adsorption kinetics rate (saturated within 6 h) also reached twice of that at 280 K (salt-lake temperature). Additionally, the self-assembly rotation feature endows the microevaporator system with distinct self-cleaning desalination ability, achieving near 100% water recovery from hypersaline brines for further self-sufficient Li+ elution. Outdoor comprehensive solar-powered experiment verified the feasibility of basically stable lithium recovery ability (>8 mg g-1) directly from natural hypersaline salt-lake brines with self-sustaining water recycling for Li+ elution (440 m3 water recovery per ton Li2CO3). This work offers an integrated solution for sustainable lithium recovery with near zero water/carbon consumption toward carbon neutrality.

4.
Immunity ; 46(4): 609-620, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28389069

RESUMEN

Immune cells communicate by exchanging cytokines to achieve a context-appropriate response, but the distances over which such communication happens are not known. Here, we used theoretical considerations and experimental models of immune responses in vitro and in vivo to quantify the spatial extent of cytokine communications in dense tissues. We established that competition between cytokine diffusion and consumption generated spatial niches of high cytokine concentrations with sharp boundaries. The size of these self-assembled niches scaled with the density of cytokine-consuming cells, a parameter that gets tuned during immune responses. In vivo, we measured interactions on length scales of 80-120 µm, which resulted in a high degree of cell-to-cell variance in cytokine exposure. Such heterogeneous distributions of cytokines were a source of non-genetic cell-to-cell variability that is often overlooked in single-cell studies. Our findings thus provide a basis for understanding variability in the patterning of immune responses by diffusible factors.


Asunto(s)
Comunicación Celular/inmunología , Citocinas/inmunología , Sistema Inmunológico/inmunología , Transducción de Señal/inmunología , Animales , Línea Celular Tumoral , Células Cultivadas , Citocinas/metabolismo , Difusión , Citometría de Flujo , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/metabolismo , Inmunohistoquímica , Interleucina-2/genética , Interleucina-2/inmunología , Interleucina-2/farmacología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Inmunológicos , Factor de Transcripción STAT5/inmunología , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(47): e2310070120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37956298

RESUMEN

The need for faster and deeper transitions toward more sustainable development pathways is now widely recognized. How to meet that need has been at the center of a growing body of academic research and real-world policy implementation. This paper presents our perspective on some of the most powerful insights that have emerged from this ongoing work. In particular, we highlight insights on how sustainability transitions can be usefully conceptualized, how they come about and evolve, and how they can be shaped and guided through deliberate policy interventions. Throughout the paper, we also highlight some of the many how questions that remain unresolved and on which progress would be especially helpful for the pursuit of sustainable development. Our approach to these "how" questions on sustainability transitions draws on two strands of solution-driven research and policy advice: one emerging from studies of how human societies interact with nature and the other emerging from studies of how those societies interact with their technologies. Consumption-production systems have been a focus of extensive work in both strands. To help build bridges between them, we recently brought together a cross-section of relevant scholars for a PNAS Special Feature on "Sustainability transitions in consumption-production systems." Their contributions are summarized in a companion paper we have written to introduce the Special Feature [F. W. Geels, F. Kern, W. C. Clark, Proc. Natl. Acad. Sci. U.S.A. (2023)]. We draw on that work in the Perspective we present here as well as our reading of the relevant literatures.

6.
Semin Cancer Biol ; 100: 28-38, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556040

RESUMEN

Mitochondria are the major sink for oxygen in the cell, consuming it during ATP production. Therefore, when environmental oxygen levels drop in the tumor, significant adaptation is required. Mitochondrial activity is also a major producer of biosynthetic precursors and a regulator of cellular oxidative and reductive balance. Because of the complex biochemistry, mitochondrial adaptation to hypoxia occurs through multiple mechanisms and has significant impact on other cellular processes such as macromolecule synthesis and gene regulation. In tumor hypoxia, mitochondria shift their location in the cell and accelerate the fission and quality control pathways. Hypoxic mitochondria also undergo significant changes to fundamental metabolic pathways of carbon metabolism and electron transport. These metabolic changes further impact the nuclear epigenome because mitochondrial metabolites are used as enzymatic substrates for modifying chromatin. This coordinated response delivers physiological flexibility and increased tumor cell robustness during the environmental stress of low oxygen.


Asunto(s)
Hipoxia , Mitocondrias , Humanos , Mitocondrias/metabolismo , Hipoxia/metabolismo , Oxígeno/metabolismo , Hipoxia de la Célula , Estrés Fisiológico , Adaptación Fisiológica
7.
Circulation ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836358

RESUMEN

BACKGROUND: Whether aortic valve stenosis (AS) can adversely affect systemic endothelial function independently of standard modifiable cardiovascular risk factors is unknown. METHODS: We therefore investigated endothelial and cardiac function in an experimental model of AS mice devoid of standard modifiable cardiovascular risk factors and human cohorts with AS scheduled for transcatheter aortic valve replacement. Endothelial function was determined by flow-mediated dilation using ultrasound. Extracellular hemoglobin (eHb) concentrations and NO consumption were determined in blood plasma of mice and humans by ELISA and chemiluminescence. This was complemented by measurements of aortic blood flow using 4-dimensional flow acquisition by magnetic resonance imaging and computational fluid dynamics simulations. The effects of plasma and red blood cell (RBC) suspensions on vascular function were determined in transfer experiments in a murine vasorelaxation bioassay system. RESULTS: In mice, the induction of AS caused systemic endothelial dysfunction. In the presence of normal systolic left ventricular function and mild hypertrophy, the increase in the transvalvular gradient was associated with elevated eryptosis, increased eHb and plasma NO consumption; eHb sequestration by haptoglobin restored endothelial function. Because the aortic valve orifice area in patients with AS decreased, postvalvular mechanical stress in the central ascending aorta increased. This was associated with elevated eHb, circulating RBC-derived microvesicles, eryptotic cells, lower haptoglobin levels without clinically relevant anemia, and consecutive endothelial dysfunction. Transfer experiments demonstrated that reduction of eHb by treatment with haptoglobin or elimination of fluid dynamic stress by transcatheter aortic valve replacement restored endothelial function. In patients with AS and subclinical RBC fragmentation, the remaining circulating RBCs before and after transcatheter aortic valve replacement exhibited intact membrane function, deformability, and resistance to osmotic and hypoxic stress. CONCLUSIONS: AS increases postvalvular swirling blood flow in the central ascending aorta, triggering RBC fragmentation with the accumulation of hemoglobin in the plasma. This increases NO consumption in blood, thereby limiting vascular NO bioavailability. Thus, AS itself promotes systemic endothelial dysfunction independent of other established risk factors. Transcatheter aortic valve replacement is capable of limiting NO scavenging and rescuing endothelial function by realigning postvalvular blood flow to near physiological patterns. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT05603520. URL: https://www.clinicaltrials.gov; Unique identifier: NCT01805739.

8.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38904082

RESUMEN

In real-life scenarios, joint consumption is common, particularly influenced by social relationships such as romantic ones. However, how romantic relationships affect consumption decisions and determine dominance remains unclear. This study employs electroencephalography hyperscanning to examine the neural dynamics of couples during joint-consumption decisions. Results show that couples, compared to friends and strangers, prefer healthier foods, while friends have significantly faster reaction times when selecting food. Time-frequency analysis indicates that couples exhibit significantly higher theta power, reflecting deeper emotional and cognitive involvement. Strangers show greater beta1 power, indicating increased cognitive effort and alertness due to unfamiliarity. Friends demonstrate higher alpha2 power when choosing unhealthy foods, suggesting increased cognitive inhibition. Inter-brain phase synchrony analysis reveals that couples display significantly higher inter-brain phase synchrony in the beta1 and theta bands across the frontal-central, parietal, and occipital regions, indicating more coordinated cognitive processing and stronger emotional bonds. Females in couples may be more influenced by emotions during consumption decisions, with detailed sensory information processing, while males exhibit higher cognitive control and spatial integration. Granger-causality analysis shows a pattern of male dominance and female dependence in joint consumption within romantic relationships. This study highlights gender-related neural synchronous patterns during joint consumption among couples, providing insights for further research in consumer decision-making.


Asunto(s)
Encéfalo , Conducta de Elección , Electroencefalografía , Relaciones Interpersonales , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Conducta de Elección/fisiología , Encéfalo/fisiología , Tiempo de Reacción/fisiología , Emociones/fisiología
9.
Proc Natl Acad Sci U S A ; 119(49): e2209422119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442111

RESUMEN

CYT-19 is a DEAD-box protein whose adenosine-triphosphate (ATP)-dependent helicase activity facilitates the folding of group I introns in precursor RNA (pre-RNA) of Neurospora crassa (N. crassa). In the process, they consume a substantial amount of ATP. While much of the mechanistic insight into CYT-19 activity has been gained through the studies on the folding of Tetrahymena group I intron ribozyme, the more biologically relevant issue, namely the effect of CYT-19 on the self-splicing of pre-RNA, remains largely unexplored. Here, we employ a kinetic network model, based on the generalized iterative annealing mechanism (IAM), to investigate the relation between CYT-19 activity, rate of ribozyme folding, and the kinetics of the self-splicing reaction. The network rate parameters are extracted by analyzing the recent biochemical data for CYT-19-facilitated folding of Tetrahymena ribozyme. We then build extended models to explore the metabolism of pre-RNA. We show that the timescales of chaperone-mediated folding of group I ribozyme and self-splicing reaction compete with each other. As a consequence, in order to maximize the self-splicing yield of group I introns in pre-RNA, the chaperone activity must be sufficiently large to unfold the misfolded structures, but not too large to unfold the native structures prior to the self-splicing event. We discover that despite the promiscuous action on structured RNAs, the helicase activity of CYT-19 on group I ribozyme gives rise to self-splicing yields that are close to the maximum.


Asunto(s)
ARN Catalítico , Tetrahymena , Precursores del ARN , ARN Catalítico/genética , Empalme del ARN , ARN/genética , Tetrahymena/genética , Adenosina Trifosfato
10.
Proc Natl Acad Sci U S A ; 119(38): e2207353119, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095218

RESUMEN

Radiative thermal management provides a zero-energy strategy to reduce the demands of fossil energy for active thermal management. However, whether solar heating or radiative cooling, one-way temperature control will exacerbate all-season energy consumption during hot summers or cold winters. Inspired by the Himalayan rabbit's hair and Mimosa pudica's leaves, we proposed a dual-mode thermal-management device with two differently selective electromagnetic spectrums. The combination of visible and infrared "thermochromism" enables this device to freely switch between solar heating and radiative cooling modes by spontaneously perceiving the temperature without any external energy consumption. Numerical prediction shows that a dual-mode device exhibits an outstanding potential for all-season energy saving in terms of thermal management beyond most static or single-wavelength, range-regulable, temperature-responsive designs. Such a scalable and cost-efficient device represents a more efficient radiative thermal-management strategy toward applying in a practical scenario with dynamic daily and seasonal variations.

11.
Proc Natl Acad Sci U S A ; 119(37): e2210853119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067298

RESUMEN

China is recognized as the largest energy consumer and is also the country with the largest and fastest-aging population. Ongoing demographic changes may reshape China's household-based energy consumption patterns because of the large gap in consumption behavior between the elderly and the young as well as varying attitudes toward the environment among generations. However, when the impact of China's aging population on energy consumption is projected, the heterogeneous cognitive norms of generations in the process of demographic transition are not well understood. In this study, we assessed the future impact of China's demographic transition on energy consumption using a proposed theoretical framework to distinguish between age and generational effects. Specifically, we used age-period-cohort (APC) detrended analysis to estimate age and generational effects based on China's urban household survey data from 1992 to 2015. The results indicated large differences in energy use propensity across ages and generations. The elderly and younger generations tended to be energy-intensive consumers, resulting in higher energy consumption in this aging society. Our results consequently show that future changes in China's elderly population will result in a substantial increase in energy consumption. By 2050, the changing consumption share of the elderly population will account for ∼17 to 26% of total energy consumption in the residential sector, which is close to 115 million tons of standard coal (Mtce). These findings highlight the need to interlace environmental education policies and demographic transitions to promote energy conservation behavior in children and youth for low-carbon, sustainable development.


Asunto(s)
Envejecimiento , Carbón Mineral , Conservación de los Recursos Energéticos , Dinámica Poblacional , Adolescente , Anciano , Niño , China , Humanos
12.
Nano Lett ; 24(35): 10957-10963, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39171725

RESUMEN

Logic-in-memory (LIM) architecture holds great potential to break the von Neumann bottleneck. Despite the extensive research on novel devices, challenges persist in developing suitable engineering building blocks for such designs. Herein, we propose a reconfigurable strategy for efficient implementation of Boolean logics based on a hafnium oxide-based ferroelectric field effect transistor (HfO2-based FeFET). The logic results are stored within the device itself (in situ) during the computation process, featuring the key characteristics of LIM. The fast switching speed and low power consumption of a HfO2-based FeFET enable the execution of Boolean logics with an ultralow energy of lower than 8 attojoule (aJ). This represents a significant milestone in achieving aJ-level computing energy consumption. Furthermore, the system demonstrates exceptional reliability with computing endurance exceeding 108 cycles and retention properties exceeding 1000 s. These results highlight the remarkable potential of a FeFET for the realization of high performance beyond the von Neumann LIM computing architectures.

13.
Nano Lett ; 24(35): 10767-10775, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39172999

RESUMEN

Low-power and fast artificial neural network devices represent the direction in developing analogue neural networks. Here, an ultralow power consumption (0.8 fJ) and rapid (100 ns) La0.1Bi0.9FeO3/La0.7Sr0.3MnO3 ferroelectric tunnel junction artificial synapse has been developed to emulate the biological neural networks. The visual memory and forgetting functionalities have been emulated based on long-term potentiation and depression with good linearity. Moreover, with a single device, logical operations of "AND" and "OR" are implemented, and an artificial neural network was constructed with a recognition accuracy of 96%. Especially for noisy data sets, the recognition speed is faster after preprocessing by the device in the present work. This sets the stage for highly reliable and repeatable unsupervised learning.

14.
Traffic ; 23(5): 270-286, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35261124

RESUMEN

Mitochondria and intermediate filament (IF) accumulations often occur during imbalanced axonal transport leading to various types of neurological diseases. It is still poorly understood whether a link between neuronal IFs and mitochondrial mobility exist. In Caenorhabditis elegans, among the 11 cytoplasmic IF family proteins, IFB-1 is of particular interest as it is expressed in a subset of sensory neurons. Depletion of IFB-1 leads to mild dye-filling and significant chemotaxis defects as well as reduced life span. Sensory neuron development is affected and mitochondrial transport is slowed down leading to reduced densities of these organelles. Mitochondria tend to cluster in neurons of IFB-1 mutants likely independent of the fission and fusion machinery. Oxygen consumption and mitochondrial membrane potential is measurably reduced in worms carrying mutations in the ifb-1 gene. Membrane potential also seems to play a role in transport such as carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone treatment led to increased directional switching of mitochondria. Mitochondria co-localize with IFB-1 in worm neurons and appear in a complex with IFB-1 in pull-down assays. In summary, we propose a model in which neuronal IFs may serve as critical (transient) anchor points for mitochondria during their long-range transport in neurons for steady and balanced transport.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Filamentos Intermedios/metabolismo , Mitocondrias/metabolismo , Células Receptoras Sensoriales/metabolismo
15.
J Physiol ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299739

RESUMEN

On the 70th anniversary of the first climb of Mount Everest by Edmund Hillary and Tensing Norgay, we discuss the physiological bases of climbing Everest with or without supplementary oxygen. After summarizing the data of the 1953 expedition and the effects of oxygen administration, we analyse the reasons why Reinhold Messner and Peter Habeler succeeded without supplementary oxygen in 1978. The consequences of this climb for physiology are briefly discussed. An overall analysis of maximal oxygen consumption ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ) at altitude follows. In this section, we discuss the reasons for the non-linear fall of V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ at altitude, we support the statement that it is a mirror image of the oxygen equilibrium curve, and we propose an analogue of Hill's model of the oxygen equilibrium curve to analyse the V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ fall. In the following section, we discuss the role of the ventilatory and pulmonary resistances to oxygen flow in limiting V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , which becomes progressively greater while moving toward higher altitudes. On top of Everest, these resistances provide most of the V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ limitation, and the oxygen equilibrium curve and the respiratory system provide linear responses. This phenomenon is more accentuated in athletes with elevated V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , due to exercise-induced arterial hypoxaemia. The large differences in V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ that we observe at sea level disappear at altitude. There is no need for a very high V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ at sea level to climb the highest peaks on Earth.

16.
J Physiol ; 602(3): 445-459, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38048175

RESUMEN

Maximal oxygen (O2 ) uptake ( V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ ) is an important parameter with utility in health and disease. However, the relative importance of O2 transport and utilization capacities in limiting muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ before and after endurance exercise training is not well understood. Therefore, the present study aimed to identify the mechanisms determining muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ pre- and post-endurance exercise training in initially sedentary participants. In five initially sedentary young males, radial arterial and femoral venous P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ (blood samples), leg blood flow (thermodilution), and myoglobin (Mb) desaturation (1 H nuclear magnetic resonance spectroscopy) were measured during maximal single-leg knee-extensor exercise (KE) breathing either 12%, 21% or 100% O2 both pre and post 8 weeks of KE training (1 h, 3 times per week). Mb desaturation was converted to intracellular P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ using an O2  half-saturation pressure of 3.2 mmHg. Pre-training muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ was not significantly different across inspired O2 conditions (12%: 0.47 ± 0.10; 21%: 0.52 ± 0.13; 100%: 0.54 ± 0.01 L min-1 , all q > 0.174), despite significantly greater muscle mean capillary-intracellular P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ gradients in normoxia (34 ± 3 mmHg) and hyperoxia (40 ± 7 mmHg) than hypoxia (29 ± 5 mmHg, both q < 0.024). Post-training muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ was significantly different across all inspired O2 conditions (12%: 0.59 ± 0.11; 21%: 0.68 ± 0.11; 100%: 0.76 ± 0.09 mmHg, all q < 0.035), as were the muscle mean capillary-intracellular P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ gradients (12%: 32 ± 2; 21%: 37 ± 2; 100%: 45 ± 7 mmHg, all q < 0.029). In these initially sedentary participants, endurance exercise training changed the basis of limitation on muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ in normoxia from the mitochondrial capacity to utilize O2 to the capacity to transport O2 to the mitochondria. KEY POINTS: Maximal O2 uptake is an important parameter with utility in health and disease. The relative importance of O2 transport and utilization capacities in limiting muscle maximal O2 uptake before and after endurance exercise training is not well understood. We combined the direct measurement of active muscle maximal O2 uptake with the measurement of muscle intracellular P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ before and after 8 weeks of endurance exercise training. We show that increasing O2 availability did not increase muscle maximal O2 uptake before training, whereas increasing O2 availability did increase muscle maximal O2 uptake after training. The results suggest that, in these initially sedentary participants, endurance exercise training changed the basis of limitation on muscle maximal O2 uptake in normoxia from the mitochondrial capacity to utilize O2 to the capacity to transport O2 to the mitochondria.


Asunto(s)
Músculo Esquelético , Consumo de Oxígeno , Masculino , Humanos , Músculo Esquelético/fisiología , Consumo de Oxígeno/fisiología , Oxígeno/metabolismo , Ejercicio Físico/fisiología , Hipoxia
17.
Plant J ; 115(5): 1377-1393, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37243897

RESUMEN

In RNA interference (RNAi), small interfering RNAs (siRNAs) produced from double-stranded RNA guide ARGONAUTE (AGO) proteins to silence sequence-complementary RNA/DNA. RNAi can propagate locally and systemically in plants, but despite recent advances in our understanding of the underlying mechanisms, basic questions remain unaddressed. For instance, RNAi is inferred to diffuse through plasmodesmata (PDs), yet how its dynamics in planta compares with that of established symplastic diffusion markers remains unknown. Also is why select siRNA species, or size classes thereof, are apparently recovered in RNAi recipient tissues, yet only under some experimental settings. Shootward movement of endogenous RNAi in micro-grafted Arabidopsis is also yet to be achieved, while potential endogenous functions of mobile RNAi remain scarcely documented. Here, we show (i) that temporal, localized PD occlusion in source leaves' companion cells (CCs) suffices to abrogate all systemic manifestations of CC-activated mobile transgene silencing, including in sink leaves; (ii) that the presence or absence of specific AGOs in incipient/traversed/recipient tissues likely explains the apparent siRNA length selectivity observed upon vascular movement; (iii) that stress enhancement allows endo-siRNAs of a single inverted repeat (IR) locus to translocate against the shoot-to-root phloem flow; and (iv) that mobile endo-siRNAs generated from this locus have the potential to regulate hundreds of transcripts. Our results close important knowledge gaps, rationalize previously noted inconsistencies between mobile RNAi settings, and provide a framework for mobile endo-siRNA research.


Asunto(s)
Arabidopsis , ARN Bicatenario , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Bicatenario/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Interferencia de ARN , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sesgo
18.
Am J Physiol Renal Physiol ; 326(2): F189-F201, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37994410

RESUMEN

To reabsorb >99% of the glomerular filtrate, the metabolic demand of the kidney is high. Interestingly, renal blood flow distribution exhibits marked inhomogeneity, with typical tissue oxygen tension (Po2) of 50-60 mmHg in the well-perfused cortex and 10-20 mmHg in the inner medulla. Cellular fluid composition and acidity also varies substantially. To understand how different renal epithelial cells adapt to their local environment, we have developed and applied computational models of mitochondrial function of proximal convoluted tubule cell (baseline Po2 = 50 mmHg, cytoplasmic pH = 7.20) and medullary thick ascending limb (mTAL) cell (baseline Po2 = 10 mmHg, cytoplasmic pH = 6.85). The models predict key cellular quantities, including ATP generation, P/O (phosphate/oxygen) ratio, proton motive force, electrical potential gradient, oxygen consumption, the redox state of key electron carriers, and ATP consumption. Model simulations predict that close to their respective baseline conditions, the proximal tubule and mTAL mitochondria exhibit qualitatively similar behaviors. Nonetheless, because the mTAL mitochondrion has adapted to a much lower Po2, it can sustain a sufficiently high ATP production at Po2 as low as 4-5 mmHg, whereas the proximal tubule mitochondria would not. Also, because the mTAL cytosol is already acidic under baseline conditions, the proton motive force (pmf) exhibits higher sensitivity to further acidification. Among the different pathways that lead to oxidative phosphorylation impairment, the models predict that both the proximal tubule and mTAL mitochondria are most sensitive to reductions in Complex III activity.NEW & NOTEWORTHY Tissue fluid composition varies substantially within the mammalian kidney. The renal cortex is well perfused and pH neutral, whereas some medullary regions are hypoxic and acidic. How do these environments affect the mitochondrial function of proximal convoluted tubule and medullary thick ascending limb cells, which reside in the cortex and medulla, respectively? This computational modeling study demonstrates that these mitochondria can adapt to their contrasting environments and exhibit different sensitivities to perturbations to local environments.


Asunto(s)
Túbulos Renales Proximales , Riñón , Ratas , Animales , Riñón/metabolismo , Túbulos Renales Proximales/metabolismo , Oxígeno/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Médula Renal/metabolismo , Mamíferos/metabolismo
19.
Am J Physiol Renal Physiol ; 326(3): F420-F437, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38205546

RESUMEN

Chronic kidney disease (CKD) is among the leading causes of death and disability, affecting an estimated 800 million adults globally. The underlying pathophysiology of CKD is complex creating challenges to its management. Primary risk factors for the development and progression of CKD include diabetes mellitus, hypertension, age, obesity, diet, inflammation, and physical inactivity. The high prevalence of diabetes and hypertension in patients with CKD increases the risk for secondary consequences such as cardiovascular disease and peripheral neuropathy. Moreover, the increased prevalence of obesity and chronic levels of systemic inflammation in CKD have downstream effects on critical cellular functions regulating homeostasis. The combination of these factors results in the deterioration of health and functional capacity in those living with CKD. Exercise offers protective benefits for the maintenance of health and function with age, even in the presence of CKD. Despite accumulating data supporting the implementation of exercise for the promotion of health and function in patients with CKD, a thorough description of the responses and adaptations to exercise at the cellular, system, and whole body levels is currently lacking. Therefore, the purpose of this review is to provide an up-to-date comprehensive review of the effects of exercise training on vascular endothelial progenitor cells at the cellular level; cardiovascular, musculoskeletal, and neural factors at the system level; and physical function, frailty, and fatigability at the whole body level in patients with CKD.


Asunto(s)
Hipertensión , Insuficiencia Renal Crónica , Adulto , Humanos , Insuficiencia Renal Crónica/complicaciones , Ejercicio Físico , Hipertensión/complicaciones , Obesidad/complicaciones , Inflamación
20.
Int J Cancer ; 154(12): 2054-2063, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38346920

RESUMEN

Coffee consumption has been associated with a reduced risk of developing colorectal cancer (CRC). However, it is not clear whether coffee consumption is related to CRC progression. Hence, we assessed the association of coffee consumption with CRC recurrence and all-cause mortality using data from a prospective cohort study of 1719 stage I-III CRC patients in the Netherlands. Coffee consumption and other lifestyle characteristics were self-reported using questionnaires at the time of diagnosis. We retrieved recurrence and all-cause mortality data from the Netherlands Cancer Registry and the Personal Records Database, respectively. Cox proportional hazard regression models with and without restricted cubic splines were used to calculate hazard ratios (HR) and 95% confidence intervals (CI) adjusted for age, sex, education, smoking status, cancer stage and tumor location. We observed 257 recurrences during a 6.2-year median follow-up and 309 deaths during a 6.6-year median follow-up. Consuming more than 4 cups/d of coffee compared to an intake of <2 cups/d was associated with a 32% lower risk of CRC recurrence (95% CI: 0.49, 0.94,). The association between coffee consumption and all-cause mortality was U-shaped; coffee intake seemed optimal at 3-5 cups/d with the lowest risk at 4 cups/d (HR: 0.68, 95% CI: 0.53, 0.88). Our results suggest that coffee consumption may be associated with a lower risk of CRC recurrence and all-cause mortality. The association between coffee consumption and all-cause mortality appeared nonlinear. More studies are needed to understand the mechanism by which coffee consumption might improve CRC prognosis.


Asunto(s)
Café , Neoplasias Colorrectales , Humanos , Factores de Riesgo , Estudios Prospectivos , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/prevención & control , Causas de Muerte , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda