Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 20.210
Filtrar
Más filtros

Publication year range
1.
Cell ; 185(22): 4206-4215.e11, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36206754

RESUMEN

Mucus protects the epithelial cells of the digestive and respiratory tracts from pathogens and other hazards. Progress in determining the molecular mechanisms of mucus barrier function has been limited by the lack of high-resolution structural information on mucins, the giant, secreted, gel-forming glycoproteins that are the major constituents of mucus. Here, we report how mucin structures we determined enabled the discovery of an unanticipated protective role of mucus: managing the toxic transition metal copper. Using two juxtaposed copper binding sites, one for Cu2+ and the other for Cu1+, the intestinal mucin, MUC2, prevents copper toxicity by blocking futile redox cycling and the squandering of dietary antioxidants, while nevertheless permitting uptake of this important trace metal into cells. These findings emphasize the value of molecular structure in advancing mucosal biology, while introducing mucins, produced in massive quantities to guard extensive mucosal surfaces, as extracellular copper chaperones.


Asunto(s)
Cobre , Mucinas , Mucinas/metabolismo , Mucina 2 , Cobre/análisis , Cobre/metabolismo , Intestinos , Moco/metabolismo , Mucosa Intestinal/metabolismo
2.
Annu Rev Biochem ; 87: 645-676, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29668305

RESUMEN

Copper-binding metallophores, or chalkophores, play a role in microbial copper homeostasis that is analogous to that of siderophores in iron homeostasis. The best-studied chalkophores are members of the methanobactin (Mbn) family-ribosomally produced, posttranslationally modified natural products first identified as copper chelators responsible for copper uptake in methane-oxidizing bacteria. To date, Mbns have been characterized exclusively in those species, but there is genomic evidence for their production in a much wider range of bacteria. This review addresses the current state of knowledge regarding the function, biosynthesis, transport, and regulation of Mbns. While the roles of several proteins in these processes are supported by substantial genetic and biochemical evidence, key aspects of Mbn manufacture, handling, and regulation remain unclear. In addition, other natural products that have been proposed to mediate copper uptake as well as metallophores that have biologically relevant roles involving copper binding, but not copper uptake, are discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quelantes/metabolismo , Cobre/metabolismo , Imidazoles/metabolismo , Oligopéptidos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Fenómenos Biofísicos , Quelantes/química , Genoma Bacteriano , Homeostasis , Imidazoles/química , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Modelos Biológicos , Estructura Molecular , Oligopéptidos/química , Oligopéptidos/genética , Operón , Transporte de Proteínas
3.
Physiol Rev ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172219

RESUMEN

In the past decade, evidence for numerous roles of copper (Cu) in mammalian physiology has grown exponentially. The discoveries of Cu involvement in cell signaling, autophagy, cell motility, differentiation, and regulated cell death (cuproptosis) have markedly extended the list of already known functions of Cu, such as a cofactor of essential metabolic enzymes, a protein structural component, and a regulator of protein trafficking. Novel and unexpected functions of Cu transporting proteins and enzymes have been identified, and new disorders of Cu homeostasis have been described. Significant progress has been made in the mechanistic studies of two classic disorders of Cu metabolism, Menkes disease and Wilson disease, which paved ways to novel approaches to their treatment. Discovery of cuproptosis and the role of Cu in cells metastatic growth have markedly increased interest in targeting Cu homeostatic pathways to treat cancer. In this review, we summarize the established concepts in the field of mammalian Cu physiology, and discuss how new discoveries of the past decade expand and modify these concepts. The roles of Cu in brain metabolism, in cells' functional speciation and a recently discovered regulated cell death have attracted significant attention and are highlighted in this review.

4.
Annu Rev Biochem ; 84: 923-46, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25784051

RESUMEN

Polysaccharide monooxygenases (PMOs), also known as lytic PMOs (LPMOs), enhance the depolymerization of recalcitrant polysaccharides by hydrolytic enzymes and are found in the majority of cellulolytic fungi and actinomycete bacteria. For more than a decade, PMOs were incorrectly annotated as family 61 glycoside hydrolases (GH61s) or family 33 carbohydrate-binding modules (CBM33s). PMOs have an unusual surface-exposed active site with a tightly bound Cu(II) ion that catalyzes the regioselective hydroxylation of crystalline cellulose, leading to glycosidic bond cleavage. The genomes of some cellulolytic fungi contain more than 20 genes encoding cellulose-active PMOs, suggesting a diversity of biological activities. PMOs show great promise in reducing the cost of conversion of lignocellulosic biomass to fermentable sugars; however, many questions remain about their reaction mechanism and biological function. This review addresses, in depth, the structural and mechanistic aspects of oxidative depolymerization of cellulose by PMOs and considers their biological function and phylogenetic diversity.


Asunto(s)
Celulosa/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Bacterias/metabolismo , Hongos/enzimología , Hongos/metabolismo , Filogenia , Células Vegetales/química , Células Vegetales/metabolismo , Plantas/metabolismo , Polisacáridos/metabolismo
5.
Mol Cell ; 81(12): 2520-2532.e16, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33930333

RESUMEN

The tRNA ligase complex (tRNA-LC) splices precursor tRNAs (pre-tRNA), and Xbp1-mRNA during the unfolded protein response (UPR). In aerobic conditions, a cysteine residue bound to two metal ions in its ancient, catalytic subunit RTCB could make the tRNA-LC susceptible to oxidative inactivation. Here, we confirm this hypothesis and reveal a co-evolutionary association between the tRNA-LC and PYROXD1, a conserved and essential oxidoreductase. We reveal that PYROXD1 preserves the activity of the mammalian tRNA-LC in pre-tRNA splicing and UPR. PYROXD1 binds the tRNA-LC in the presence of NAD(P)H and converts RTCB-bound NAD(P)H into NAD(P)+, a typical oxidative co-enzyme. However, NAD(P)+ here acts as an antioxidant and protects the tRNA-LC from oxidative inactivation, which is dependent on copper ions. Genetic variants of PYROXD1 that cause human myopathies only partially support tRNA-LC activity. Thus, we establish the tRNA-LC as an oxidation-sensitive metalloenzyme, safeguarded by the flavoprotein PYROXD1 through an unexpected redox mechanism.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , ARN Ligasa (ATP)/metabolismo , ARN de Transferencia/metabolismo , Animales , Antioxidantes/fisiología , Dominio Catalítico , Femenino , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NAD/metabolismo , NADP/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/fisiología , ARN Ligasa (ATP)/química , ARN Ligasa (ATP)/genética , Empalme del ARN/genética , Empalme del ARN/fisiología , Respuesta de Proteína Desplegada/fisiología , Proteína 1 de Unión a la X-Box/metabolismo
6.
Immunol Rev ; 321(1): 211-227, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37715546

RESUMEN

Copper is an essential nutrient for maintaining enzyme activity and transcription factor function. Excess copper results in the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), which correlates to the mitochondrial tricarboxylic acid (TCA) cycle, resulting in proteotoxic stress and eliciting a novel cell death modality: cuproptosis. Cuproptosis exerts an indispensable role in cancer progression, which is considered a promising strategy for cancer therapy. Cancer immunotherapy has gained extensive attention owing to breakthroughs in immune checkpoint blockade; furthermore, cuproptosis is strongly connected to the modulation of antitumor immunity. Thus, a thorough recognition concerning the mechanisms involved in the modulation of copper metabolism and cuproptosis may facilitate improvement in cancer management. This review outlines the cellular and molecular mechanisms and characteristics of cuproptosis and the links of the novel regulated cell death modality with human cancers. We also review the current knowledge on the complex effects of cuproptosis on antitumor immunity and immune response. Furthermore, potential agents that elicit cuproptosis pathways are summarized. Lastly, we discuss the influence of cuproptosis induction on the tumor microenvironment as well as the challenges of adding cuproptosis regulators to therapeutic strategies beyond traditional therapy.


Asunto(s)
Cobre , Neoplasias , Humanos , Neoplasias/terapia , Inmunoterapia , Muerte Celular , Homeostasis , Apoptosis , Microambiente Tumoral
7.
Proc Natl Acad Sci U S A ; 121(39): e2320611121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39288174

RESUMEN

Cuprous copper [Cu(I)] is an essential cofactor for enzymes that support many fundamental cellular functions including mitochondrial respiration and suppression of oxidative stress. Neurons are particularly reliant on mitochondrial production of ATP, with many neurodegenerative diseases, including Parkinson's disease, associated with diminished mitochondrial function. The gene MBLAC1 encodes a ribonuclease that targets pre-mRNA of replication-dependent histones, proteins recently found in yeast to reduce Cu(II) to Cu(I), and when mutated disrupt ATP production, elevates oxidative stress, and severely impacts cell growth. Whether this process supports neuronal and/or systemic physiology in higher eukaryotes is unknown. Previously, we identified swip-10, the putative Caenorhabditis elegans ortholog of MBLAC1, establishing a role for glial swip-10 in limiting dopamine (DA) neuron excitability and sustaining DA neuron viability. Here, we provide evidence from computational modeling that SWIP-10 protein structure mirrors that of MBLAC1 and locates a loss of function coding mutation at a site expected to disrupt histone RNA hydrolysis. Moreover, we find through genetic, biochemical, and pharmacological studies that deletion of swip-10 in worms negatively impacts systemic Cu(I) levels, leading to deficits in mitochondrial respiration and ATP production, increased oxidative stress, and neurodegeneration. These phenotypes can be offset in swip-10 mutants by the Cu(I) enhancing molecule elesclomol and through glial expression of wildtype swip-10. Together, these studies reveal a glial-expressed pathway that supports systemic mitochondrial function and neuronal health via regulation of Cu(I) homeostasis, a mechanism that may lend itself to therapeutic strategies to treat devastating neurodegenerative diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cobre , Homeostasis , Mitocondrias , Neuroglía , Estrés Oxidativo , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Mitocondrias/metabolismo , Cobre/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neuroglía/metabolismo , Neuronas Dopaminérgicas/metabolismo , Supervivencia Celular , Neuronas/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(4): e2311630121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38232278

RESUMEN

Copper is an essential trace element for the human body, and its requirement for optimistic immune functions has been recognized for decades. How copper is involved in the innate immune pathway, however, remains to be clarified. Here, we report that copper serves as a signal molecule to regulate the kinase activity of alpha-kinase 1 (ALPK1), a cytosolic pattern-recognition receptor (PRR), and therefore promotes host cell defense against bacterial infection. We show that in response to infection, host cells actively accumulate copper in the cytosol, and the accumulated cytosolic copper enhances host cell defense against evading pathogens, including intracellular and, unexpectedly, extracellular bacteria. Subsequently, we demonstrate that copper activates the innate immune pathway of host cells in an ALPK1-dependent manner. Further mechanistic studies reveal that copper binds to ALPK1 directly and is essential for the kinase activity of this cytosolic PRR. Moreover, the binding of copper to ALPK1 enhances the sensitivity of ALPK1 to the bacterial metabolite ADP-heptose and eventually prompts host cells to elicit an enhanced immune response during bacterial infection. Finally, using a zebrafish in vivo model, we show that a copper-treated host shows an increased production of proinflammatory cytokines, enhanced recruitment of phagosome cells, and promoted bacterial clearance. Our findings uncover a previously unrecognized role of copper in the modulation of host innate immune response against bacterial pathogens and advance our knowledge on the cross talk between cytosolic copper homeostasis and immune system.


Asunto(s)
Infecciones Bacterianas , Cobre , Animales , Humanos , Pez Cebra , Inmunidad Innata , Citocinas , Receptores de Reconocimiento de Patrones
9.
Proc Natl Acad Sci U S A ; 121(35): e2408183121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39172778

RESUMEN

The conversion of CO2 into liquid fuels, using only sunlight and water, offers a promising path to carbon neutrality. An outstanding challenge is to achieve high efficiency and product selectivity. Here, we introduce a wireless photocatalytic architecture for conversion of CO2 and water into methanol and oxygen. The catalytic material consists of semiconducting nanowires decorated with core-shell nanoparticles, with a copper-rhodium core and a chromium oxide shell. The Rh/CrOOH interface provides a unidirectional channel for proton reduction, enabling hydrogen spillover at the core-shell interface. The vectorial transfer of protons, electrons, and hydrogen atoms allows for switching the mechanism of CO2 reduction from a proton-coupled electron transfer pathway in aqueous solution to hydrogenation of CO2 with a solar-to-methanol efficiency of 0.22%. The reported findings demonstrate a highly efficient, stable, and scalable wireless system for synthesis of methanol from CO2 that could provide a viable path toward carbon neutrality and environmental sustainability.

10.
Proc Natl Acad Sci U S A ; 121(42): e2408770121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39388271

RESUMEN

Catalytic oxidation through the transfer of lattice oxygen from metal oxides to reactants, namely the Mars-van Krevelen mechanism, has been widely reported. In this study, we evidence the overlooked oxidation route that features the in situ formation of surface OH species on Cu catalysts and its selective addition to the reactant carbonyl group. We observed that glucose oxidation to gluconic acid in air (21% O2) was favored on low-valence Cu sites according to X-ray spectroscopic analyses. Molecular O2 was activated in situ on Cu0/Cu+ forming localized, adsorbed hydroxyl radicals (*OH) which played the primary reactive oxygen species as confirmed by the kinetic isotope effect (KIE) study in D2O and in situ Raman experiments. Combined with DFT calculations, we proposed a mechanism of O2-to-*OH activation through the *OOH intermediate. The localized *OH exhibited higher selectivity toward glucose oxidation at C1HO to form gluconic acid (up to 91% selectivity), in comparison with free radicals in bulk environment that emerged from thermal, noncatalytic hydrogen peroxide decomposition (40% selectivity). The KIE measurements revealed a lower glucose oxidation rate in D2O than in H2O, highlighting the role of water (H2O/D2O) or its derivatives (e.g., *OH/*OD) in the rate-determining step. After proving the C1-H activation step kinetically irrelevant, we proposed the oxidation mechanism that was characterized by the rate-limiting addition of *OH to C1=O in glucose. Our findings advocate that by maneuvering the coverage and activity of surface *OH, high-performance oxidation of carbonyl compounds beyond biomass molecules can be achieved in water and air using nonprecious metal catalysts.

11.
Proc Natl Acad Sci U S A ; 121(42): e2402862121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39378088

RESUMEN

Copper homeostasis mechanisms are critical for bacterial resistance to copper-induced stress. The Escherichia coli multicopper oxidase copper efflux oxidase (CueO) is part of the copper detoxification system in aerobic conditions. CueO contains a methionine-rich (Met-rich) domain believed to interact with copper, but its exact function and the importance of related copper-binding sites remain unclear. This study investigates these open questions by employing a multimodal and multiscale approach. Through the design of various E. coli CueO (EcCueO) variants with altered copper-coordinating residues and domain deletions, we employ biological, biochemical, and physico-chemical approaches to unravel in vitro CueO catalytic properties and in vivo copper resistance. Strong correlation between the different methods enables evaluation of EcCueO variants' activity as a function of Cu+ availability. Our findings demonstrate the Met-rich domain is not essential for cuprous oxidation, but it facilitates Cu+ recruitment from strongly chelated forms, acting as transient copper binding domain thanks to multiple methionines. They also indicate that the Cu6/7 copper-binding sites previously observed within the Met-rich domain play a negligible role. Meanwhile, Cu5, located at the interface with the Met-rich domain, emerges as the primary and sole substrate-binding active site for cuprous oxidation. The Cu5 coordination sphere strongly affects the enzyme activity and the in vivo copper resistance. This study provides insights into the nuanced role of CueO Met-rich domain, enabling the functions of copper-binding sites and the entire domain itself to be decoupled. This paves the way for a deeper understanding of Met-rich domains in the context of bacterial copper homeostasis.


Asunto(s)
Cobre , Proteínas de Escherichia coli , Escherichia coli , Metionina , Cobre/metabolismo , Cobre/química , Metionina/metabolismo , Metionina/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Sitios de Unión , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidación-Reducción , Dominios Proteicos
12.
Proc Natl Acad Sci U S A ; 121(26): e2316422121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38900790

RESUMEN

Nitrous oxide is a potent greenhouse gas whose production is catalyzed by nitric oxide reductase (NOR) members of the heme-copper oxidoreductase (HCO) enzyme superfamily. We identified several previously uncharacterized HCO families, four of which (eNOR, sNOR, gNOR, and nNOR) appear to perform NO reduction. These families have novel active-site structures and several have conserved proton channels, suggesting that they might be able to couple NO reduction to energy conservation. We isolated and biochemically characterized a member of the eNOR family from the bacterium Rhodothermus marinus and found that it performs NO reduction. These recently identified NORs exhibited broad phylogenetic and environmental distributions, greatly expanding the diversity of microbes in nature capable of NO reduction. Phylogenetic analyses further demonstrated that NORs evolved multiple times independently from oxygen reductases, supporting the view that complete denitrification evolved after aerobic respiration.


Asunto(s)
Óxido Nítrico , Oxidación-Reducción , Oxidorreductasas , Filogenia , Óxido Nítrico/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Archaea/metabolismo , Archaea/genética , Rhodothermus/metabolismo , Rhodothermus/enzimología , Rhodothermus/genética , Evolución Molecular , Bacterias/metabolismo , Bacterias/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química
13.
Traffic ; 25(1): e12920, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37886910

RESUMEN

Wilson disease (WD) is caused by mutations in the ATP7B gene that encodes a copper (Cu) transporting ATPase whose trafficking from the Golgi to endo-lysosomal compartments drives sequestration of excess Cu and its further excretion from hepatocytes into the bile. Loss of ATP7B function leads to toxic Cu overload in the liver and subsequently in the brain, causing fatal hepatic and neurological abnormalities. The limitations of existing WD therapies call for the development of new therapeutic approaches, which require an amenable animal model system for screening and validation of drugs and molecular targets. To achieve this objective, we generated a mutant Caenorhabditis elegans strain with a substitution of a conserved histidine (H828Q) in the ATP7B ortholog cua-1 corresponding to the most common ATP7B variant (H1069Q) that causes WD. cua-1 mutant animals exhibited very poor resistance to Cu compared to the wild-type strain. This manifested in a strong delay in larval development, a shorter lifespan, impaired motility, oxidative stress pathway activation, and mitochondrial damage. In addition, morphological analysis revealed several neuronal abnormalities in cua-1 mutant animals exposed to Cu. Further investigation suggested that mutant CUA-1 is retained and degraded in the endoplasmic reticulum, similarly to human ATP7B-H1069Q. As a consequence, the mutant protein does not allow animals to counteract Cu toxicity. Notably, pharmacological correctors of ATP7B-H1069Q reduced Cu toxicity in cua-1 mutants indicating that similar pathogenic molecular pathways might be activated by the H/Q substitution and, therefore, targeted for rescue of ATP7B/CUA-1 function. Taken together, our findings suggest that the newly generated cua-1 mutant strain represents an excellent model for Cu toxicity studies in WD.


Asunto(s)
Degeneración Hepatolenticular , Animales , Humanos , Degeneración Hepatolenticular/genética , Degeneración Hepatolenticular/tratamiento farmacológico , Degeneración Hepatolenticular/metabolismo , Cobre/toxicidad , Cobre/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo , Hepatocitos/metabolismo
14.
J Cell Sci ; 137(5)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38032054

RESUMEN

The homologous P-type copper-ATPases (Cu-ATPases) ATP7A and ATP7B are the key regulators of copper homeostasis in mammalian cells. In polarized epithelia, upon copper treatment, ATP7A and ATP7B traffic from the trans-Golgi network (TGN) to basolateral and apical membranes, respectively. We characterized the sorting pathways of Cu-ATPases between TGN and the plasma membrane and identified the machinery involved. ATP7A and ATP7B reside on distinct domains of TGN in limiting copper conditions, and in high copper, ATP7A traffics to basolateral membrane, whereas ATP7B traverses common recycling, apical sorting and apical recycling endosomes en route to apical membrane. Mass spectrometry identified regulatory partners of ATP7A and ATP7B that include the adaptor protein-1 complex. Upon knocking out pan-AP-1, sorting of both Cu-ATPases is disrupted. ATP7A loses its trafficking polarity and localizes on both apical and basolateral surfaces in high copper. By contrast, ATP7B loses TGN retention but retained its trafficking polarity to the apical domain, which became copper independent. Using isoform-specific knockouts, we found that the AP-1A complex provides directionality and TGN retention for both Cu-ATPases, whereas the AP-1B complex governs copper-independent trafficking of ATP7B solely. Trafficking phenotypes of Wilson disease-causing ATP7B mutants that disrupts putative ATP7B-AP1 interaction further substantiates the role of AP-1 in apical sorting of ATP7B.


Asunto(s)
Cobre , Degeneración Hepatolenticular , Animales , Humanos , Adenosina Trifosfatasas/metabolismo , Membrana Celular/metabolismo , Cobre/metabolismo , ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo , Degeneración Hepatolenticular/genética , Mamíferos/metabolismo , Fragmentos de Péptidos/metabolismo , Factor de Transcripción AP-1/metabolismo
15.
Annu Rev Microbiol ; 75: 175-197, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34343021

RESUMEN

Competition shapes evolution. Toxic metals and metalloids have exerted selective pressure on life since the rise of the first organisms on the Earth, which has led to the evolution and acquisition of resistance mechanisms against them, as well as mechanisms to weaponize them. Microorganisms exploit antimicrobial metals and metalloids to gain competitive advantage over other members of microbial communities. This exerts a strong selective pressure that drives evolution of resistance. This review describes, with a focus on arsenic and copper, how microorganisms exploit metals and metalloids for predation and how metal- and metalloid-dependent predation may have been a driving force for evolution of microbial resistance against metals and metalloids.


Asunto(s)
Metaloides , Cobre/toxicidad
16.
Proc Natl Acad Sci U S A ; 120(4): e2214175120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649419

RESUMEN

Copper is distinctive in electrocatalyzing reduction of CO2 into various energy-dense forms, but it often suffers from limited product selectivity including ethanol in competition with ethylene. Here, we describe systematically designed, bimetallic electrocatalysts based on copper/gold heterojunctions with a faradaic efficiency toward ethanol of 60% at currents in excess of 500 mA cm-2. In the modified catalyst, the ratio of ethanol to ethylene is enhanced by a factor of 200 compared to copper catalysts. Analysis by ATR-IR measurements under operating conditions, and by computational simulations, suggests that reduction of CO2 at the copper/gold heterojunction is dominated by generation of the intermediate OCCOH*. The latter is a key contributor in the overall, asymmetrical electrohydrogenation of CO2 giving ethanol rather than ethylene.

17.
Proc Natl Acad Sci U S A ; 120(40): e2305961120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37751556

RESUMEN

α-lipoic acid (LA) is an essential cofactor for mitochondrial dehydrogenases and is required for cell growth, metabolic fuel production, and antioxidant defense. In vitro, LA binds copper (Cu) with high affinity and as an endogenous membrane permeable metabolite could be advantageous in mitigating the consequences of Cu overload in human diseases. We tested this hypothesis in 3T3-L1 preadipocytes with inactivated Cu transporter Atp7a; these cells accumulate Cu and show morphologic changes and mitochondria impairment. Treatment with LA corrected the morphology of Atp7a-/- cells similar to the Cu chelator bathocuproinedisulfonate (BCS) and improved mitochondria function; however, the mechanisms of LA and BCS action were different. Unlike BCS, LA did not decrease intracellular Cu but instead increased selenium levels that were low in Atp7a-/- cells. Proteome analysis confirmed distinct cell responses to these compounds and identified upregulation of selenoproteins as the major effect of LA on preadipocytes. Upregulation of selenoproteins was associated with an improved GSH:GSSG ratio in cellular compartments, which was lowered by elevated Cu, and reversal of protein oxidation. Thus, LA diminishes toxic effects of elevated Cu by improving cellular redox environment. We also show that selenium levels are decreased in tissues of a Wilson disease animal model, especially in the liver, making LA an attractive candidate for supplemental treatment of this disease.


Asunto(s)
Selenio , Ácido Tióctico , Animales , Humanos , Ácido Tióctico/farmacología , Cobre , Selenio/farmacología , Oxidación-Reducción , Selenoproteínas/genética
18.
Proc Natl Acad Sci U S A ; 120(10): e2216722120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848556

RESUMEN

Recent studies have uncovered the therapeutic potential of elesclomol (ES), a copper-ionophore, for copper deficiency disorders. However, we currently do not understand the mechanism by which copper brought into cells as ES-Cu(II) is released and delivered to cuproenzymes present in different subcellular compartments. Here, we have utilized a combination of genetic, biochemical, and cell-biological approaches to demonstrate that intracellular release of copper from ES occurs inside and outside of mitochondria. The mitochondrial matrix reductase, FDX1, catalyzes the reduction of ES-Cu(II) to Cu(I), releasing it into mitochondria where it is bioavailable for the metalation of mitochondrial cuproenzyme- cytochrome c oxidase. Consistently, ES fails to rescue cytochrome c oxidase abundance and activity in copper-deficient cells lacking FDX1. In the absence of FDX1, the ES-dependent increase in cellular copper is attenuated but not abolished. Thus, ES-mediated copper delivery to nonmitochondrial cuproproteins continues even in the absence of FDX1, suggesting alternate mechanism(s) of copper release. Importantly, we demonstrate that this mechanism of copper transport by ES is distinct from other clinically used copper-transporting drugs. Our study uncovers a unique mode of intracellular copper delivery by ES and may further aid in repurposing this anticancer drug for copper deficiency disorders.


Asunto(s)
Cobre , Complejo IV de Transporte de Electrones , Hidrazinas , Ionóforos , Ferredoxinas/metabolismo
19.
Proc Natl Acad Sci U S A ; 120(23): e2215195120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37253004

RESUMEN

The gaseous hormone ethylene is perceived in plants by membrane-bound receptors, the best studied of these being ETR1 from Arabidopsis. Ethylene receptors can mediate a response to ethylene concentrations at less than one part per billion; however, the mechanistic basis for such high-affinity ligand binding has remained elusive. Here we identify an Asp residue within the ETR1 transmembrane domain that plays a critical role in ethylene binding. Site-directed mutation of the Asp to Asn results in a functional receptor that has a reduced affinity for ethylene, but still mediates ethylene responses in planta. The Asp residue is highly conserved among ethylene receptor-like proteins in plants and bacteria, but Asn variants exist, pointing to the physiological relevance of modulating ethylene-binding kinetics. Our results also support a bifunctional role for the Asp residue in forming a polar bridge to a conserved Lys residue in the receptor to mediate changes in signaling output. We propose a new structural model for the mechanism of ethylene binding and signal transduction, one with similarities to that found in a mammalian olfactory receptor.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Receptores de Superficie Celular/metabolismo , Etilenos/metabolismo , Transducción de Señal/fisiología
20.
Genes Dev ; 32(13-14): 944-952, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29945887

RESUMEN

The levels of copper, which is an essential element in living organisms, are under tight homeostatic control. Inactivating mutations in ATP7B, a P-type Cu-ATPase that functions in copper excretion, promote aberrant accumulation of the metal, primarily the in liver and brain. This condition underlies Wilson's disease, a severe autosomal recessive disorder characterized by profound hepatic and neurological deficits. Current treatment regimens rely on the use of broad specificity metal chelators as "decoppering" agents; however, there are side effects that limit their effectiveness. Here, we present the characterization of DPM-1001 {methyl 4-[7-hydroxy-10,13-dimethyl-3-({4-[(pyridin-2-ylmethyl)amino]butyl}amino)hexadecahydro-1H-cyclopenta[a]phenanthren-17-yl] pentanoate} as a potent and highly selective chelator of copper that is orally bioavailable. Treatment of cell models, including fibroblasts derived from Wilson's disease patients, eliminated adverse effects associated with copper accumulation. Furthermore, treatment of the toxic milk mouse model of Wilson's disease with DPM-1001 lowered the levels of copper in the liver and brain, removing excess copper by excretion in the feces while ameliorating symptoms associated with the disease. These data suggest that it may be worthwhile to investigate DPM-1001 further as a new therapeutic agent for the treatment of Wilson's disease, with potential for application in other indications associated with elevated copper, including cancer and neurodegenerative diseases.


Asunto(s)
Quelantes/farmacología , Cobre/metabolismo , Degeneración Hepatolenticular/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Línea Celular , Quelantes/uso terapéutico , Cobre/toxicidad , ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Degeneración Hepatolenticular/fisiopatología , Hígado/efectos de los fármacos , Hígado/patología , Ratones
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda