Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Chemistry ; 30(18): e202303857, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38205617

RESUMEN

The methods for the cross-coupling of aryl(trialkyl)silanes are long-standing challenges due to the extreme inertness of C-Si(R3) bond, though the reaction is environmentally friendly and highly regioselective to synthesize biaryls. Herein, we report a copper-catalyzed cross-coupling of aryl(trialkyl)silanes and aryl via a radical mechanism. The reaction proceeds efficiently with aryl sulfonium salts as limiting reagents, exhibits broad substrate scope, and provides an important synthetic strategy to acquire biaryls, exemplified by unsymmetrical fluorescence probes and late-stage functionalization of drugs. Of note, the experimental and theoretical mechanistic studies revealed a radical mechanism where the copper catalyst and CsF play critical roles on the radical generation and desilylation process.

2.
Environ Sci Technol ; 58(24): 10852-10862, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38843408

RESUMEN

The Cu(II)/H2O2 system is recognized for its potential to degrade recalcitrant organic contaminants and inactivate microorganisms in wastewater. We investigated its unique dual oxidation strategy involving the selective oxidation of copper-complexing ligands and enhanced oxidation of nonchelated organic compounds. L-Histidine (His) and benzoic acid (BA) served as model compounds for basic biomolecular ligands and recalcitrant organic contaminants, respectively. In the presence of both His and BA, the Cu(II)/H2O2 system rapidly degraded His complexed with copper ions within 30 s; however, BA degraded gradually with a 2.3-fold efficiency compared with that in the absence of His. The primary oxidant responsible was the trivalent copper ion [Cu(III)], not hydroxyl radical (•OH), as evidenced by •OH scavenging, hydroxylated BA isomer comparison with UV/H2O2 (a •OH generating system), electron paramagnetic resonance, and colorimetric Cu(III) detection via periodate complexation. Cu(III) selectively oxidized His owing to its strong chelation with copper ions, even in the presence of excess tert-butyl alcohol. This selectivity extended to other copper-complexing ligands, including L-asparagine and L-aspartic acid. The presence of His facilitated H2O2-mediated Cu(II) reduction and increased Cu(III) production, thereby enhancing the degradation of BA and pharmaceuticals. Thus, the Cu(II)/H2O2 system is a promising option for dual-target oxidation in diverse applications.


Asunto(s)
Cobre , Histidina , Peróxido de Hidrógeno , Oxidación-Reducción , Cobre/química , Histidina/química , Peróxido de Hidrógeno/química , Catálisis , Hierro/química , Radical Hidroxilo/química , Ácido Benzoico/química
3.
Mol Divers ; 28(1): 125-131, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36881209

RESUMEN

Copper-catalyzed selective alkynylation with N-propargyl carboxamides as nucleophiles has been successfully developed for the synthesis of C2-functionalized chromanones. Under optimized reaction conditions, 21 examples were obtained in one-pot procedure through 1,4-conjugate addition. This protocol features readily available feedstocks, easy operations, and moderate to good yields, which provides viable access to pharmacologically active C2-functionalized chromanones.


Asunto(s)
Cromonas , Cobre , Estructura Molecular , Catálisis
4.
J Asian Nat Prod Res ; : 1-17, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829012

RESUMEN

Spirotryprostatins are representative members of medicinally interesting bioactive molecules of the spirooxindole natural products. In this communication, we present a novel enantioselective total synthesis of the spirooxindole alkaloid dihydrospirotryprostatin B. The synthesis takes advantage of copper-catalyzed tandem reaction of o-iodoanilide chiral sulfinamide derivatives with alkynone to rapidly construct the key quaternary carbon stereocenter of the natural product dihydrospirotryprostatin B.

5.
Molecules ; 29(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542827

RESUMEN

Incorporation of a trifluoromethyl group with 1,2,3-triazoles motifs was described. We explored a click reaction approach for regioselective synthesis of 1-susbstituted-4-trifluoromethyl-1,2,3-triazoles in which 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) reacts with commercial 2-bromo-3,3,3-trifluoropropene (BTP) to form 3,3,3-trifloropropyne (TFP) in situ. Arising from merits associated with the availability and stability of BTP, and the high efficiencies of CuI/1,10-Phenanthroline (Phen)-catalyzed cycloaddition reactions of azides with alkynes, this readily performed click process takes place to form the target 1,2,3-triazoles in high yields, and with a wide azide substrate scope. The potential value of this protocol was demonstrated by its application to a gram-scale reaction.

6.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675139

RESUMEN

A mild and efficient protocol for the synthesis of p-quinols under aqueous conditions was developed. The pivotal role of additives in the copper-catalyzed addition of aryl boronic and heteroaryl boronic acids to benzoquinones was observed. It was found that polyvinylpyrrolidone (PVP) was the most efficient additive used for the studied reaction. The noteworthy advantages of this procedure include its broad substrate scope, high yields up to 91%, atom economy, and usage of readily available starting materials. Another benefit of this method is the reusability of the catalytic system up to four times. Further, the obtained p-quinols were characterized on the basis of their antimicrobial activities against E. coli. Antimicrobial activity was further compared with the corresponding 4-benzoquinones and 4-hydroquinones. Among tested compounds, seven derivatives showed an antimicrobial activity profile similar to that observed for commonly used antibiotics such as ciprofloxacin, bleomycin, and cloxacillin. In addition, the obtained p-quinols constitute a suitable platform for further modifications, allowing for a convenient change in their biological activity profile.


Asunto(s)
Cobre , Hidroquinonas , Cobre/farmacología , Cobre/química , Escherichia coli , Ácidos Borónicos/farmacología , Ácidos Borónicos/química , Benzoquinonas , Antibacterianos/farmacología , Catálisis
7.
Molecules ; 28(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37110518

RESUMEN

Rhodium-catalyzed reactions of 2-ethynyl-3-pentamethyldisilanylpyridine derivatives (1 and 2) are reported. The reactions of compounds 1 and 2 in the presence of catalytic amounts of rhodium complexes at 110 °C gave the corresponding pyridine-fused siloles (3) and (4) through intramolecular trans-bis-silylation cyclization. The reaction of 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine with 3-phenyl-1-propyne in the presence of PdCl2(PPh3)2-CuI catalysts afforded 1:2 bis-silylation adduct 6. DFT calculations were also performed to understand the reaction mechanism for the production of compound 3 from compound 1.

8.
Angew Chem Int Ed Engl ; 62(25): e202304640, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37070236

RESUMEN

Chiral α,ß-unsaturated γ-lactams bearing simple γ- substituents are found in biologically active molecules and natural products, however, their synthesis still remains difficult. Herein, we report an efficient kinetic resolution (KR) of γ-substituted α,ß-unsaturated γ-lactams via a Cu-catalyzed asymmetric boron conjugate addition, which also leads to the efficient synthesis of chiral ß-hydroxy-γ-lactams with ß,γ-stereogenic carbon centers. The KR proceeded smoothly with a wide range of γ-alkyl or aryl substituted substrates including those bearing aromatic heterocycles and different N-protected substrates in up to 347 of s value. Their highly versatile transformations, synthetic utility in biologically active molecules, and inhibitory activities against cisplatin-sensitive ovarian cancer cell A2780 have also been demonstrated. Differing from the well-known mechanism involving Cu-B species in Cu-catalyzed boron conjugate additions, our mechanistic studies using density functional theory (DFT) calculations and experiments indicate that a Lewis acid CuI -catalyzed mechanism is the likely pathway in the catalytic reaction.


Asunto(s)
Neoplasias Ováricas , beta-Lactamas , Humanos , Femenino , Boro/química , Línea Celular Tumoral , Estereoisomerismo , Catálisis
9.
Chemistry ; 28(23): e202200128, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35226370

RESUMEN

Regioselective [3+3] annulation of alkynyl ketimines with α-cyano ketones for the synthesis of polysubstituted 4H-pyran derivatives with a quaternary CF3 -containing center has been realized by using Cu(OAc)2 as the catalyst. The novel strategy tolerates a wide range of α-CF3 alkynyl ketimines and α-cyano ketones with both aryl and alkyl substitutents. A preliminary asymmetric synthesis of chiral product 3 has been attempted by using copper and chiral thiourea as the cocatalyst with excellent yields (86-99 %) and good enantioselectivities (71-78 % ee). Furthermore, product 3 aa could be obtained on a gram-scale reaction with 75 % yield and 99 % ee after recrystallization. Several products were also transformed readily. Control experiments indicate that the reaction involves a process with a base-catalyzed or chiral thiourea-catalyzed Mannich-type reaction followed by a highly regioselective copper-catalyzed ring-closing reaction on the alkynyl moiety in a 6-endo-dig fashion.


Asunto(s)
Cobre , Cetonas , Catálisis , Cobre/química , Cetonas/química , Estructura Molecular , Piranos/química , Estereoisomerismo , Tiourea/química
10.
Chem Pharm Bull (Tokyo) ; 70(7): 498-504, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35786569

RESUMEN

Due to the importance of the RNA chemical modifications, methods for the selective chemical modification at a predetermined site of the internal position of RNA have attracted much attention. We have developed functional artificial nucleic acids that modify a specific site of RNA in a site- and base-selective manner. In addition, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) has been shown to introduce additional molecules on the alkynes attached to the pyridine ring. However, it was found that some azide compounds produced the cycloadduct in lower yields. Therefore, in this study, we synthesized the pyridinyl transfer group with the alkyne attached via a polyethylene glycol (PEG) linker with a different length and optimized its structure for both the transfer and CuAAC reaction. Three new transfer groups were synthesized by introducing an alkyne group at the end of the triethylene (11), tetraethylene (12) or pentaethylen glycol linker (13) at the 5-position of the pyridine ring of (E)-3-iodo-1-(pyridin-2-yl)prop-2-en-1-one. These transfer groups were introduced to the 6-thioguanine base in the oligodeoxynucleotide (ODN) in high yields. The transfer groups 11 and 12 more efficiently underwent the cytosine modification. For the CuAAC reaction, although 7 showed low adduct yields with the anionic azide compound, the new transfer groups, especially 12 and 13, significantly improved the yields. In conclusion, the transfer groups 12 and 13 were determined to be promising compounds for the modification of long RNAs.


Asunto(s)
Azidas , ARN , Alquinos/química , Azidas/química , Oligodesoxirribonucleótidos/química , Piridinas , ARN/química
11.
Molecules ; 27(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35335206

RESUMEN

A short and economical synthesis of various 2-methylaminopyidine amides (MAPA) from 2-bromopyridine has been developed using the catalytic Goldberg reaction. The effective catalyst was formed in situ by the reaction of CuI and 1,10-phenanthroline in a 1/1 ratio with a final loading of 0.5-3 mol%. The process affords high yields and can accommodate multigram-scale reactions. A modification of this method provides a new preparation of 2-N-substituted aminopyridines from various secondary N-alkyl(aryl)formamides and 2-bromopyridine. The intermediate aminopyridine formamide is cleaved in situ through methanolysis or hydrolysis to give 2-alkyl(aryl)aminopyridines in high yields.


Asunto(s)
Amidas , Aminopiridinas , Catálisis , Hidrólisis , Indicadores y Reactivos
12.
Angew Chem Int Ed Engl ; 61(28): e202202077, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35510403

RESUMEN

Chiral lactones are found in many natural products. The reaction of simple alkenes with iodoacetic acid is a powerful method to build lactones, but the enantioselective version of this reaction has not been implemented to date. Herein, we report the efficient catalytic radical enantioselective carbo-esterification of styrenes enabled by a newly developed CuI -perfluoroalkylated PyBox system. Simple styrenes have been converted to useful chiral lactones, whose synthetic applications are showcased. Mechanistic studies reveal that this reaction is a rare example of an efficient ligand-decelerated system, in which the ligand decelerates the reaction, but the reaction is still efficient with reduced amounts of ligand. This uncommon catalytic system may inspire further consideration of the effect of ligands in asymmetric catalysis.


Asunto(s)
Cobre , Estirenos , Catálisis , Carbón Orgánico , Esterificación , Lactonas , Ligandos , Estereoisomerismo
13.
Chembiochem ; 22(8): 1379-1384, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33350556

RESUMEN

Site-specific incorporation of unnatural amino acids (uAAs) bearing a bioorthogonal group has enabled the attachment - typically at a single site or at a few sites per protein - of chemical groups at precise locations for protein and biomaterial labeling, conjugation, and functionalization. Herein, we report the evolution of chromosomal Methanocaldococcus jannaschii tyrosyl-tRNA synthetase (aaRS) for the alkyne-bearing uAA, 4-propargyloxy-l-phenylalanine (pPR), with ∼30-fold increased production of green fluorescent protein containing three instances of pPR compared with a previously described M. jannaschii-derived aaRS for pPR, when expressed from a single chromosomal copy. We show that when expressed from multicopy plasmids, the evolved aaRSs enable the production - using a genomically recoded Escherichia coli and the non-recoded BL21 E. coli strain - of elastin-like polypeptides (ELPs) containing multiple pPR residues in high yields. We further show that the multisite incorporation of pPR in ELPs facilitates the rapid, robust, and nontoxic fluorescent labeling of these proteins in bacteria. The evolved variants described in this work can be used to produce a variety of protein and biomaterial conjugates and to create efficient minimal tags for protein labeling.


Asunto(s)
Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Materiales Biocompatibles/metabolismo , Methanocaldococcus/metabolismo , Aminoácidos/química , Aminoacil-ARNt Sintetasas/química , Materiales Biocompatibles/química , Methanocaldococcus/enzimología , Estructura Molecular , Fenilalanina/química , Fenilalanina/metabolismo
14.
J Labelled Comp Radiopharm ; 64(7): 271-281, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33870522

RESUMEN

The positive-charged lipophilic triphenylphosphonium cations (TPPs+ ) have been served as mitochondrial targeting vehicles for the delivery of various probes. In this study, we developed a new method for the preparation of radioiodine-labeled TPPs+ . Four 125 I-labeled TPPs+ , [125 I] 9-[125 I] 12, were prepared from the corresponding triphenylphosphine phenylborate precursors of B 5-B 8 via an optimized copper-catalyzed one-step procedure in high radiochemical yield (>95%). After radio-HPLC purification, the final products could be obtained with high specific activity. Their physicochemical properties, in vitro cellular uptake, and ex vivo mice biodistribution were investigated. The results suggested the 125 I-labeled TPPs+ were lipophilic and could specifically accumulate in the mitochondrial-rich myocardial cells through the mitochondrial membrane potential.


Asunto(s)
Compuestos Organofosforados
15.
Molecules ; 26(2)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451154

RESUMEN

A series of 12 silica gel-bound enaminones and their Cu(II) complexes were prepared and tested for their suitability as heterogeneous catalysts in azomethine imine-alkyne cycloadditions (CuAIAC). Immobilized Cu(II)-enaminone complexes showed promising catalytic activity in the CuAIAC reaction, but these new catalysts suffered from poor reusability. This was not due to the decoordination of copper ions, as the use of enaminone ligands with additional complexation sites resulted in negligible improvement. On the other hand, reusability was improved by the use of 4-aminobenzoic acid linker, attached to 3-aminopropyl silica gel via an amide bond to the enaminone over the more hydrolytically stable N-arylenamine C-N bond. The study showed that silica gel-bound Cu(II)-enaminone complexes are readily available and suitable heterogeneous catalysts for the synthesis of 6,7-dihydro-1H,5H-pyrazolo[1,2-a]pyrazoles.


Asunto(s)
Alquinos/química , Compuestos Azo/química , Cobre/química , Iminas/química , Tiosemicarbazonas/química , Catálisis , Reacción de Cicloadición , Estructura Molecular , Estereoisomerismo
16.
Molecules ; 26(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803417

RESUMEN

A series of hitherto unknown (1,4-disubstituted-1,2,3-triazol)-(E)-2-methyl-but-2-enyl nucleosides phosphonate prodrugs bearing 4-substituted-1,2,3-triazoles were prepared in a straight approach through an olefin acyclic cross metathesis as the key synthetic step. All novel compounds were evaluated for their antiviral activities against HBV, HIV and SARS-CoV-2. Among these molecules, only compound 15j, a hexadecyloxypropyl (HDP)/(isopropyloxycarbonyl-oxymethyl)-ester (POC) prodrug, showed activity against HBV in Huh7 cell cultures with 62% inhibition at 10 µM, without significant cytotoxicity (IC50 = 66.4 µM in HepG2 cells, IC50 = 43.1 µM in HepG2 cells) at 10 µM.


Asunto(s)
Antivirales/síntesis química , Antivirales/farmacología , Compuestos Azo/química , Nucleósidos/química , Organofosfonatos/química , Profármacos/síntesis química , Profármacos/farmacología , Alquenos/química , Animales , Línea Celular Tumoral , Chlorocebus aethiops , VIH-1/efectos de los fármacos , Virus de la Hepatitis B/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Metilación , SARS-CoV-2/efectos de los fármacos , Relación Estructura-Actividad , Triazoles/química , Células Vero
17.
Angew Chem Int Ed Engl ; 60(37): 20376-20382, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34146388

RESUMEN

The copper-catalyzed highly selective protoboration of CF3 -containing conjugated diene with proton source and B2 Pin2 has been developed. This chemistry could suppress the well-known defluorination and provide borated reagents with an intact CF3 -group. Further studies indicated that the functional group tolerance of this chemistry is very well, and the products could be used as versatile precursors for different types of transformations. Importantly, using chiral diphosphine ligand, we have developed the first example for using such starting material to synthesis allylic boron-reagents which bearing a CF3 -containing chiral center. Notably, the reaction mechanism was intensively studied by DFT calculations, which could reveal the reason that defluorination was inhibited.

18.
Angew Chem Int Ed Engl ; 60(50): 26368-26372, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34617656

RESUMEN

A regio- and diastereoselective copper-catalyzed carbomagnesiation of 1,2-dialkylated cyclopropenes is reported. The regioselectivity is controlled by a subtle tethered Lewis basic moiety. The chelating moieties allow the differentiation between two electronically tantamount organometallic intermediates. Further functionalization grants access to polysubstituted stereodefined cyclopropanes bearing up to five alkyl groups.

19.
Angew Chem Int Ed Engl ; 60(21): 11804-11808, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33742749

RESUMEN

Despite the highly strained nature of cyclopropanes possessing three vicinal quaternary carbon stereocenters, the regio- and diastereoselective copper-catalyzed carbomagnesiation reaction of cyclopropenes provides an easy and efficient access to these novel persubstituted cyclopropyl cores with a complete regio- and diastereoselectivity.

20.
Bioorg Med Chem Lett ; 30(2): 126817, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31810778

RESUMEN

Breast cancer is the most incident and mortal cancer type in women, with an estimated 2 million new cases expected by 2020 worldwide, with 600,000 deaths. As not all breast cancer types respond to the anti-hormonal therapy, the development of new antineoplastic drugs is necessary. Lawsone (2-hydroxy-1,4-naphtoquinone) is a natural bioactive naphtoquinone displaying a range of activities, with dozens of derivatives described in the literature, including some glycosides possessing antitumor activity. Here, a series of glycosides of lawsone are reported for the first time and all compounds displayed good activity against the SKBR-3 cell line, with IC50 below 10 µM. The most promising derivative was the glycosyl triazole derived from peracetylated d-glucose (11), which showed better cytotoxicity against SKBR-3 (IC50 = 0.78 µM), being the most selective toward this tumoral cell (SI > 20). All compounds described in this work were more active than lawsone, indicating the importance of the carbohydrate and glycosyl triazole moiety for activity.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Glicósidos/síntesis química , Glicósidos/uso terapéutico , Naftoquinonas/síntesis química , Naftoquinonas/uso terapéutico , Femenino , Humanos , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda