Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Plant Dis ; 108(2): 359-364, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37578367

RESUMEN

The prospect of incorporating pennycress as an oilseed cover crop in the Midwest's corn-soybean rotation system has drawn researcher and farmer attention. The inclusion of pennycress will be beneficial as it provides an excellent soil cover to reduce soil erosion and nutrient leaching while serving as an additional source for oilseed production and income. However, pennycress is an alternative host for soybean cyst nematode (SCN), which is a major biological threat to soybean that needs to be addressed for sustainable pennycress adoption into our current production systems. To develop a standardized SCN resistance screening strategy in pennycress, we tested and optimized five parameters: (i) germination stimulants, (ii) inoculation timing, (iii) inoculation rate, (iv) experimental incubation time, and (v) susceptible checks. The standardized SCN resistance screening protocol includes the following: (i) treating pennycress seeds with gibberellic acid for 24 h, (ii) transplanting seedlings 12 to 15 days after initiating germination and inoculating 10 to 12 days after transplantation, (iii) inoculating at a rate of 1,500 eggs/100 cc soil (1,500 eggs per plant), (iv) processing roots at 30 days after inoculation, and (v) using susceptible pennycress accession Ames 32869 to calculate the female index. The standardized protocol was used to quantify the response of a diverse set of pennycress accessions for response against SCN HG type 1.2.5.7 and HG type 7. While there were no highly resistant pennycress lines identified, 15 were rated as moderately resistant to HG type 1.2.5.7, and eight were rated moderately resistant to HG type 7. The resistant lines identified in this study could be utilized to develop SCN-resistant pennycress cultivars. The study also opens a new avenue for research to understand SCN-pennycress interactions through molecular and genomic studies. This knowledge could aid in the successful inclusion of pennycress as a beneficial cover/oilseed crop in the United States Midwest.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Quistes , Nematodos , Animales , Glycine max , Suelo , Semillas
2.
Plant Dis ; 108(2): 302-310, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37773328

RESUMEN

The effects of crop rotation and winter cover crops on soybean yield and colony-forming (CFU) units of Macrophomina phaseolina, the causal agent of charcoal rot (CR), are poorly understood. A field trial was conducted from 2011 to 2015 to evaluate (i) the impact of crop rotation consisting of soybean (Glycine max [L.] Merr.) following cotton (Gossypium hirsutum L.), soybean following corn (Zea mays L.), and soybean following soybean over a 2-year rotation and its interaction with cover crop and (ii) the impact of different cover crops on a continuous soybean crop over a 5-year period. This trial was conducted in a field with 10 subsequent years of cover crop and rotation treatments. Cover crops consisted of winter wheat (Triticum aestivum L.) and Austrian winter pea (Pisum sativum L. subsp. sativum var. arvense), hairy vetch (Vicia villosa Roth), and a fallow treatment was evaluated with and without poultry litter application (bio-cover). Tissue CFU of M. phaseolina varied significantly between crop rotation treatments: plots where soybean was grown following cotton had significantly greater tissue CFU than plots following soybean. Poultry litter and hairy vetch cover cropping caused increased tissue CFU, though this effect differed by year and crop rotation treatment. Soil CFU in 2015 was substantially lower compared with 2011. However, under some crop rotation sequences, plots in the fallow treatment had significantly greater soil CFU than plots where hairy vetch and wheat was grown as a cover crop. Yield was greater in 2015 compared with 2011. There was a significant interaction of the previous crop in the rotation with year, and greater yield was observed in plots planted following cotton in the rotation in 2015 but not in 2011. The result from the continuous soybean planted over 5 years showed that there were no significant overall effects of any of the cover crop treatments nor was there interaction between cover crop treatment and year on yield. The lack of significant interaction between crop rotation and cover crop and the absence of significant differences between cover crop treatments in continuous soybean planting suggest that cover crop recommendations for midsouthern soybean growers may need to be independent of crop rotation and be based on long-term crop needs.


Asunto(s)
Ascomicetos , Suelo , Agricultura , Glycine max , Productos Agrícolas , Zea mays , Producción de Cultivos
3.
J Environ Manage ; 350: 119661, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38029497

RESUMEN

Soil aggregation contributes to the stability of soil structure and the sequestration of soil organic carbon (SOC), making it an important indicator of soil health in agroecosystems. Crop diversification is considered a rational management practice for promoting sustainable agriculture. However, the complexity of cropping systems and crop species across different regions limits our comprehensive understanding of soil aggregation and associated carbon (C) content under crop diversification. Therefore, we conducted a meta-analysis by integrating 1924 observations from three diversification strategies (cover crops, crop rotation, and intercropping) in global agroecosystems to explore the effects of crop diversification on soil aggregates and associated C content. The results showed that compared to monoculture, crop diversification significantly increased the mean weight diameter and bulk soil C by 7.5% and 3.3%, respectively. Furthermore, there was a significant increase in the proportion of macroaggregates and their associated C content by 5.0% and 12.5%, while there was a significant decrease in the proportion of microaggregates as well as silt-clay fractions along with their associated C under crop diversification. Through further analysis, we identified several important factors that influence changes in soil aggregation and C content induced by crop diversification including climatic conditions, soil properties, crop species, and agronomic practices at the experimental sites. Interestingly, no significant differences were found among the three cropping systems (cover crops, crop rotation, and intercropping), while the effects induced by crop diversifications showed relatively consistent results for monoculture crops as well as additive crops and crop diversity. Moreover, the impact of crop diversification on soil aggregates and associated C content is influenced by soil properties such as pH and SOC. In general, our findings demonstrate that crop diversification promotes soil aggregation and enhances SOC levels in agroecosystems worldwide.


Asunto(s)
Carbono , Suelo , Suelo/química , Carbono/análisis , Agricultura/métodos , Arcilla , Productos Agrícolas
4.
J Environ Manage ; 355: 120431, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38457890

RESUMEN

Cover crops (CC) can improve phosphorus (P) cycling by reducing water related P losses and contributing to P nutrition of a rotational crop. This is particularly important in claypan soils with freeze-thaw cycles in early spring in the Midwest U.S. This 4-year study (2019-2022) examined the impact of CC monoculture and mix of CC species on P losses from a fertilizer application, and determined the P balance in soil compared to no cover crop (noCC). The CC mix consisted of wheat (Triticum aestivum L.), radish (Raphanus raphanistrum subsp. Sativus), and turnip (Brassica rapa subsp. Rapa) (3xCCmix) in 2019 and 2021 before corn, and cereal rye (Secale cereale L.) was planted as monoculture before soybean in 2020 and 2022. The 3xCCmix had no effect on total phosphorus (TP) and dissolved reactive phosphorus (PO4-P) concentration or load in 2019 and 2021. Cereal rye reduced TP and PO4-P load 70% and 73%, respectively, compared to noCC. The variation in soil moisture, temperature, and net precipitation from fertilizer application until CC termination affected available soil P pools due to variability in CC species P uptake, residue decomposition, and P loss in surface water runoff. Overall, the P budget calculations showed cereal rye had 2.4 kg ha-1 greater P uptake compared to the 3xCCmix species which also reduced P loss in water and had greater differences in soil P status compared to noCC. This study highlights the benefit of CCs in reducing P loss in surface runoff and immobilizing P through plant uptake. However, these effects were minimal with 3xCCmix species and variability in crop residue decomposition from different CC species could affect overall P-soil balance.


Asunto(s)
Agricultura , Fósforo , Fertilizantes , Suelo , Productos Agrícolas , Grano Comestible , Zea mays , Secale , Agua
5.
Glob Chang Biol ; 29(3): 794-807, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36345737

RESUMEN

Cover crops are gaining traction in many agricultural regions, partly driven by increased public subsidies and by private markets for ecosystem services. These payments are motivated by environmental benefits, including improved soil health, reduced erosion, and increased soil organic carbon. However, previous work based on experimental plots or crop modeling indicates cover crops may reduce crop yields. It remains unclear, though, how recent cover crop adoption has affected productivity in commercial agricultural systems. Here we perform the first large-scale, field-level analysis of observed yield impacts from cover cropping as implemented across the US Corn Belt. We use validated satellite data products at sub-field scales to analyze maize and soybean yield outcomes for over 90,000 fields in 2019-2020. Because we lack data on cover crop species or timing, we seek to quantify the yield impacts of cover cropping as currently practiced in aggregate. Using causal forests analysis, we estimate an average maize yield loss of 5.5% on fields where cover crops were used for 3 or more years, compared with fields that did not adopt cover cropping. Maize yield losses were larger on fields with better soil ratings, cooler mid-season temperatures, and lower spring rainfall. For soybeans, average yield losses were 3.5%, with larger impacts on fields with warmer June temperatures, lower spring and late-season rainfall, and, to a lesser extent, better soils. Estimated impacts are consistent with multiple mechanisms indicated by experimental and simulation-based studies, including the effects of cover crops on nitrogen dynamics, water consumption, and soil oxygen depletion. Our results suggest a need to improve cover crop management to reduce yield penalties, and a potential need to target subsidies based on likely yield impacts. Ultimately, avoiding substantial yield penalties is important for realizing widespread adoption and associated benefits for water quality, erosion, soil carbon, and greenhouse gas emissions.


Asunto(s)
Suelo , Zea mays , Estados Unidos , Glycine max , Ecosistema , Carbono , Agricultura/métodos , Productos Agrícolas
6.
Glob Chang Biol ; 29(9): 2572-2590, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36764676

RESUMEN

Cover crops have been reported as one of the most effective practices to increase soil organic carbon (SOC) for agroecosystems. Impacts of cover crops on SOC change vary depending on soil properties, climate, and management practices, but it remains unclear how these control factors affect SOC benefits from cover crops, as well as which management practices can maximize SOC benefits. To address these questions, we used an advanced process-based agroecosystem model, ecosys, to assess the impacts of winter cover cropping on SOC accumulation under different environmental and management conditions. We aimed to answer the following questions: (1) To what extent do cover crops benefit SOC accumulation, and how do SOC benefits from cover crops vary with different factors (i.e., initial soil properties, cover crop types, climate during the cover crop growth period, and cover crop planting and terminating time)? (2) How can we enhance SOC benefits from cover crops under different cover crop management options? Specifically, we first calibrated and validated the ecosys model at two long-term field experiment sites with SOC measurements in Illinois. We then applied the ecosys model to six cover crop field experiment sites spanning across Illinois to assess the impacts of different factors on SOC accumulation. Our modeling results revealed the following findings: (1) Growing cover crops can bring SOC benefits by 0.33 ± 0.06 MgC ha-1  year-1 in six cover crop field experiment sites across Illinois, and the SOC benefits are species specific to legume and non-legume cover crops. (2) Initial SOC stocks and clay contents had overall small influences on SOC benefits from cover crops. During the cover crop growth period (i.e., winter and spring in the US Midwest), high temperature increased SOC benefits from cover crops, while the impacts from larger precipitation on SOC benefits varied field by field. (3) The SOC benefits from cover crops can be maximized by optimizing cover crop management practices (e.g., selecting cover crop types and controlling cover crop growth period) for the US Midwestern maize-soybean rotation system. Finally, we discussed the economic and policy implications of adopting cover crops in the US Midwest, including that current economic incentives to grow cover crops may not be sufficient to cover costs. This study systematically assessed cover crop impacts for SOC change in the US Midwest context, while also demonstrating that the ecosys model, with rigorous validation using field experiment data, can be an effective tool to guide the adaptive management of cover crops and quantify SOC benefits from cover crops. The study thus provides practical tools and insights for practitioners and policy-makers to design cover crop related government agricultural policies and incentive programs for farmers and agri-food related industries.


Asunto(s)
Carbono , Suelo , Agricultura , Productos Agrícolas , Zea mays
7.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36626768

RESUMEN

AIMS: Assess bacterial community changes over time in soybean (Glycine max) crop fields following cover crop (CC) and no-till (NT) implementation under natural abiotic stressors. METHOD AND RESULTS: Soil bacterial community composition was obtained by amplifying, sequencing, and analysing the V4 region of the 16S rRNA gene. Generalized linear mixed models were used to assess the effects of tillage, CC, and time on bacterial community response. The most abundant phyla present were Acidobacteria, Actinobacteria, Bacteroidetes, and Verrucomicrobia. Bacterial diversity increased in periods with abundant water. Reduced tillage (RT) increased overall bacterial diversity, but NT with a CC was not significantly different than RT treatments under drought conditions. CCs shifted abundances of Firmicutes and Bacteroidetes depending on abiotic conditions. CONCLUSIONS: In the Lower Mississippi Alluvial Valley (LMAV), USA, NT practices lower diversity and influence long-term community changes while cover crops enact a seasonal response to environmental conditions. NT and RT management affect soil bacterial communities differently than found in other regions of the country.


Asunto(s)
Microbiología del Suelo , Suelo , ARN Ribosómico 16S/genética , Mississippi , Agricultura , Bacterias/genética , Bacteroidetes/genética , Productos Agrícolas/microbiología
8.
Environ Monit Assess ; 195(3): 366, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36745291

RESUMEN

Vane trapping is one of the most effective methods for sampling flower-visiting arthropods. Despite its importance in pollinator studies, the effects of trap color on the abundance and richness of pollinators are less understood. To test this, we conducted a 3-season field experiment over 2 years with two types of vane traps: yellow and colorless. We set up twelve traps each in three field sites within the Lower Rio Grande Valley in south Texas, planted with Vigna unguiculata, Crotalaria juncea, Raphanus raphanistrum, and Sorghum drummondii. At each site, six colorless vane and six yellow vane traps were placed equidistant from each other. The experiment was replicated three times across three seasons, first during the pre-flowering season, when the crops were in full bloom, and when there was no crop on the field. In total, we collected 1912 insects, out of which 76.7% were pollinators. Generalized Linear Regression analyses showed that yellow traps consistently attracted significantly more arthropods and pollinators, but these differences were also season dependent. Furthermore, we noticed that Hymenoptera, followed by Coleoptera, were the most prevalent orders in both the yellow vane and colorless vane traps. Interestingly, although there was no significant difference in species richness of the arthropods in the yellow and colorless vane traps, our results suggest that trap color plays a significant role in capturing pollinators, including non-target arthropods. Our data add another line of evidence suggesting that trap color should be accounted for designing experiments that estimate pollinator and arthropod community diversity.


Asunto(s)
Artrópodos , Escarabajos , Animales , Monitoreo del Ambiente , Estaciones del Año , Productos Agrícolas
9.
Glob Chang Biol ; 28(15): 4736-4749, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35583665

RESUMEN

The global increases in the surface and groundwater nitrate (NO3 - ) concentrations due to synthetic fertilizer input have emerged as major sustainability threats to terrestrial and aquatic ecosystems. Cover crops can reportedly reduce nitrate leaching from croplands. However, the underlying mechanisms and the effectiveness of cover crops in reducing nitrate leaching across species, soil types, agronomic management, and climates remain elusive. We conducted a global meta-analysis to evaluate the effects of cover crops on nitrate leaching and water drainage. A random-effects analysis was established to investigate seven moderating variables in 41 articles. Results showed that globally, cover crops reduced nitrate leaching by 69% compared with fallow while demonstrating no effect on water drainage. Overall, cover crops from Brassicaceae and Poaceae families showed the greatest effect with 75% and 52% reduction in nitrate leaching, respectively. Cover cropping on Ultisols, Histosols, and Inceptisols resulted in the greatest reduction in nitrate leaching (77%, 78%, and 77%, respectively). Greater efficacy of cover crops at reducing nitrate leaching was evident with increasing soil sand content. In general, cover crops appeared to perform better to reduce nitrate leaching in vegetable systems compared to field crops. Cover cropping on conventional tillage resulted in a 63% reduction in nitrate leaching compared with no-tillage (50%) and reduced tillage (38%) systems. The impact of cover crops on water drainage was nonsignificant which implies that nitrate leaching control by cover crops is unlikely exerted through reducing water drainage. This study brings further insight into the intrinsic factors affecting cover crop efficacy and management practices that enhance cover crop potential in reducing nitrate leaching from agricultural systems.


Asunto(s)
Ecosistema , Nitratos , Agricultura/métodos , Productos Agrícolas , Humanos , Nitratos/análisis , Óxidos de Nitrógeno , Suelo , Agua/análisis
10.
Environ Res ; 209: 112884, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35131319

RESUMEN

The vitality and diversity of soil microbial metabolism are the core of soil function expression, cover crop is an environmentally friendly agricultural production practice; however, shifts in soil microbial metabolic activities along time gradient of cover crop remain unclear. Here, we used metagenomic and biological techniques to investigate soil microbial potential function and carbon (C) source utilization capacity in the time series of white clover (WC, Trifolium repens L.) for 6, 10, and 15 years in a typical semiarid apple orchard. Conventional tillage (CT) was taken as the control. This study demonstrated that living mulch 6 years of WC had little effect on soil microbial functions. However, after 10 and 15 years of crop cover, an enrichment of genes related to amino acid metabolism, carbon cycle, and nitrogen metabolism was observed in soil microorganisms. Furthermore, average well color development (AWCD) was increased in 10 and 15 years of cover crop, soil microbiome exhibited a stronger preference for carbohydrates, amino acids, and polymers as C sources. The results mainly provided insight into the variation character of microbial metabolic function under increasing duration of cover crop.


Asunto(s)
Microbiología del Suelo , Suelo , Agricultura/métodos , Biodegradación Ambiental , Carbono , Suelo/química
11.
Plant Dis ; 106(1): 114-120, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34253039

RESUMEN

Terminating winter cereal rye (Secale cereale L.) cover crops ≥10 days before planting (DBP) corn is recommended to minimize seedling disease and potential yield loss. In Iowa, cold temperatures and frequent precipitation can prevent farmers from following that recommendation and sometimes force them to plant corn while the rye plants are still green, referred to as "planting green" (PG). A field trial was established to evaluate the effect of rye termination shortly before or after corn planting on growth, seedling root disease, and yield of corn. A rye cover crop was terminated 17 and 3 DBP and 6 and 12 days after planting (DAP) corn; corn planted following no rye was included as a control. Rye biomass, C/N ratio, and N accumulation increased when terminated 6 or 12 DAP corn compared with rye terminated 17 or 3 DBP corn. Corn seedlings were taller from the PG treatments. More radicle root rot was observed when rye was terminated 3 DBP, 6 DAP, and 12 DAP corn than for the 17 DBP treatment and the no-rye control. Generally, greater Pythium clade B populations were detected on radicles and seminal roots of corn from the PG treatments. Corn populations, ears, or barren plants were not affected by the treatments. In both years, the no-rye control had the greatest corn yield and the 12 DAP treatment had the lowest yield. Our results suggest that PG increased corn seedling root disease and contributed to reduced corn yield.


Asunto(s)
Plantones , Zea mays , Grano Comestible , Crecimiento y Desarrollo , Secale
12.
Int J Phytoremediation ; 24(4): 342-349, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35180014

RESUMEN

Copper (Cu) contents in vineyard soils due to the application of cupric fungicides cause changes in the native covering flora. Under these conditions, the surviving individuals accumulate the metal in and decrease its availability in the soil, reducing the potential toxicity to grapevine. We have identified spontaneous plant species and their phytoremediation potential from vineyards of Isabella (Vitis labrusca) on two distinct soil types (Inceptisol and Entisol) contaminated with Cu. The results demonstrated that wild species displayed higher Cu contents in the roots than in the shoot, but had low bioaccumulation potential. During summer, the plants were unable to extract and stabilize the metal, although during the winter, Lolium multiflorum, Cyperus compressus and Chrysanthemum leucanthemum demonstrated phytostabilization potential. Among the investigated species, dry matter production and Cu accumulation by Lolium multiflorum indicated that the species is effective to decrease Cu availability in the soil.


Asunto(s)
Contaminantes del Suelo , Suelo , Biodegradación Ambiental , Cobre , Granjas , Contaminantes del Suelo/análisis
13.
Ecol Appl ; 31(7): e02403, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34231260

RESUMEN

Soil fertility in organic agriculture relies on microbial cycling of nutrient inputs from legume cover crops and animal manure. However, large quantities of labile carbon (C) and nitrogen (N) in these amendments may promote the production and emission of nitrous oxide (N2 O) from soils. Better ecological understanding of the N2 O emission controls may lead to new management strategies to reduce these emissions. We measured soil N2 O emission for two growing seasons in four corn-soybean-winter grain rotations with tillage, cover crop, and manure management variations typical of organic agriculture in temperate and humid North America. To identify N2 O production pathways and mitigation opportunities, we supplemented N2 O flux measurements with determinations of N2 O isotopomer composition and microbiological genomic DNA abundances in microplots where we manipulated cover crop and manure additions. The N input from legume-rich cover crops and manure prior to corn planting made the corn phase the main source of N2 O emissions, averaging 9.8 kg/ha of N2 O-N and representing 80% of the 3-yr rotations' total emissions. Nitrous oxide emissions increased sharply when legume cover crop and manure inputs exceeded 1.8 and 4 Mg/ha (dry matter), respectively. Removing the legume aboveground biomass before corn planting to prevent co-location of fresh biomass and manure decreased N2 O emissions by 60% during the corn phase. The co-occurrence of peak N2 O emission and high carbon dioxide emission suggests that oxygen (O2 ) consumption likely caused hypoxia and bacterial denitrification. This interpretation is supported by the N2 O site preference values trending towards denitrification during peak emissions with limited N2 O reduction, as revealed by the N2 O δ15 N and δ18 O and the decrease in clade I nosZ gene abundance following incorporation of cover crops and manure. Thus, accelerated microbial O2 consumption seems to be a critical control of N2 O emissions in systems with large additions of decomposable C and N substrates. Because many agricultural systems rely on combined fertility inputs from legumes and manures, our research suggests that controlling the rate and timing of organic input additions, as well as preventing the co-location of legume cover crops and manure, could mitigate N2 O emissions.


Asunto(s)
Desnitrificación , Óxido Nitroso , Agricultura , Animales , Productos Agrícolas , Nitrógeno/análisis , Óxido Nitroso/análisis , Suelo
14.
Ecol Appl ; 31(3): e02278, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33320994

RESUMEN

Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high-quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta-analysis approach to quantify the effect of cover crops on soil C stocks from the 0-30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta-analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks (P < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20-30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha-1 ·yr-1 ) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO2 ) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision-support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets.


Asunto(s)
Carbono , Suelo , Agricultura , Producción de Cultivos , Productos Agrícolas
15.
Plant Dis ; 105(3): 538-541, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32830593

RESUMEN

Yield loss of corn following a winter rye cover crop (CC) has been associated with increases in seedling disease caused by Pythium spp. We hypothesized that physical separation between the CC and corn could reduce the risk of seedling disease, and benefit corn growth and development. In a growth chamber experiment, corn seedlings were planted at 0 cm and 8 to 10 cm from terminated winter rye plants. Root rot severity was assessed at crop development stage V2, and quantitative PCR was used to estimate the abundance of Pythium clade B and clade F members present in corn roots. Radicle and seminal root rot severity was numerically greater when seedlings were planted 0 cm from terminated rye plants compared with seedlings planted 8 to 10 cm away. Moreover, a greater abundance of Pythium clade B was detected in corn grown within the terminated winter rye compared with corn planted further away (P = 0.0003). No effect of distance between corn and winter rye was detected for Pythium clade F. These data contribute to our understanding of the effect of a winter rye cover crop on corn and will inform field trial management practices for farmers to reduce occasional yield loss of corn following a winter rye cover crop.


Asunto(s)
Pythium , Zea mays , Estaciones del Año , Secale , Plantones
16.
Plant Dis ; 105(12): 4014-4024, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34253043

RESUMEN

Despite numerous environmental benefits associated with cover crop (CC) use, some farmers are reluctant to include CCs in their production systems because of reported yield declines in corn. There are numerous potential reasons for this yield decline, including seedling disease. A winter rye CC can serve as a "green bridge" for corn seedling pathogens. We hypothesized that proximity of corn seedling roots to decaying rye CC roots contributes to corn seeding disease. An experimental field plot and an on-farm study were conducted over 2 years to evaluate growth, development, and disease severity of corn seedlings planted at various distances from decaying winter rye CC plants. The experimental field plot study was conducted in a no-till corn-soybean rotation with five replications of a winter rye CC treatment seeded as (i) no-CC control, (ii) broadcast, (iii) 19-cm drilled rows, and (iv) 76-cm drilled rows. The on-farm study was no-till corn-soybean rotation with four replications of a winter rye CC seeded as 38-cm drilled rows, 76-cm drilled rows, and no-CC control. The corn was planted on 76-cm rows shortly after rye was terminated. With multiple seeding arrangements of winter rye, corn was planted at different distances from winter rye. Corn radicle root rot severity and incidence, shoot height, shoot dry weight, corn height and chlorophyll at VT (tasseling), ear parameters, and yield were collected. Soil samples were taken in the corn row and the interrow at winter rye termination, corn planting, and corn growth stage V3 (three leaves with fully developed collars) to estimate the abundance of Pythium clade B members present in soil samples. Our results showed that increased distance between winter rye residue and corn reduced seedling disease and Pythium clade B populations in the radicles and soil and increased shoot dry weight, leaf chlorophyll, plant height, and yield. This suggests that physically distancing the corn crop from the winter rye CC is one way to reduce the negative effects of a winter rye CC on corn.


Asunto(s)
Plantones , Zea mays , Estaciones del Año , Secale , Suelo
17.
J Insect Sci ; 21(1)2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33638987

RESUMEN

Ground beetles are natural predators of insect pests and small seeds in agroecosystems. In semiarid cropping systems of the Northern Great Plains, there is a lack of knowledge to how ground beetles are affected by diversified cover crop rotations. In a 2-yr study (2018 and 2019), our experiment was a restricted-randomization strip-plot design, comprising summer fallow, an early-season cover crop mixture (five species), and a mid-season cover crop mixture (seven species), with three cover crop termination methods (i.e., herbicide, grazing, and haying). Using pitfall traps, we sampled ground beetles in five 48-h intervals throughout the growing season (n = 135 per year) using growing degree day (GDD) accumulations to better understand changes to ground beetle communities. Data analysis included the use of linear mixed-effects models, perMANOVA, and non-metric multidimensional scaling ordinations. We did not observe differences among cover crop termination methods; however, activity density in the early-season cover crop mixture decreased and in summer fallow increased throughout the growing season, whereas the mid-season cover crop mixture peaked in the middle of the summer. Ground beetle richness and evenness showed a nonlinear tendency, peaking in the middle of the growing season, with marginal differences between cover crops or fallow after the termination events. Also, differences in ground beetle composition were greatest in the early- and mid-season cover crop mixtures earlier in the growing season. Our study supports the use of cover crop mixtures to enhance ground beetle communities, with potential implications for pest management in dryland cropping systems.


Asunto(s)
Biota , Escarabajos , Producción de Cultivos/métodos , Animales , Productos Agrícolas/crecimiento & desarrollo , Montana
18.
Plant Dis ; 104(3): 677-687, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31958247

RESUMEN

The effects of winter cover crops on root disease and growth of corn and soybeans are poorly understood. A 3-year field experiment investigated the effect of winter cereal rye (Secale cereale L.) and winter camelina (Camelina sativa [L.] Crantz), used either in all three years or in rotation with each other, on corn (Zea mays L.) and soybean (Glycine max. [L.] Merr.) growth, root disease, and yield. Corn following a cover crop of camelina had reduced root disease, a lower Pythium population in seedling roots, and greater growth and yields compared with corn following a rye cover crop. Camelina and rye cover crops before soybean had either a positive or no effect on soybean growth and development, root disease, and yield. Moreover, Pythium clade B populations were greater in corn seedlings after a rye cover crop compared with those following a camelina cover crop, whereas clade F populations were greater on soybean seedlings following a camelina cover crop compared with seedlings following a rye cover crop. A winter camelina cover crop grown before corn had less-negative effects on corn seedling growth, root disease, and final yield than a winter rye cover crop before corn. Neither cover crop had negative effects on soybean, and the cover crop in the preceding spring had no measurable effects on either corn or soybean.


Asunto(s)
Glycine max , Zea mays , Agricultura , Producción de Cultivos , Crecimiento y Desarrollo , Plantones
19.
Glob Chang Biol ; 25(8): 2591-2606, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31002465

RESUMEN

Climate-smart agriculture (CSA) management practices (e.g., conservation tillage, cover crops, and biochar applications) have been widely adopted to enhance soil organic carbon (SOC) sequestration and to reduce greenhouse gas emissions while ensuring crop productivity. However, current measurements regarding the influences of CSA management practices on SOC sequestration diverge widely, making it difficult to derive conclusions about individual and combined CSA management effects and bringing large uncertainties in quantifying the potential of the agricultural sector to mitigate climate change. We conducted a meta-analysis of 3,049 paired measurements from 417 peer-reviewed articles to examine the effects of three common CSA management practices on SOC sequestration as well as the environmental controlling factors. We found that, on average, biochar applications represented the most effective approach for increasing SOC content (39%), followed by cover crops (6%) and conservation tillage (5%). Further analysis suggested that the effects of CSA management practices were more pronounced in areas with relatively warmer climates or lower nitrogen fertilizer inputs. Our meta-analysis demonstrated that, through adopting CSA practices, cropland could be an improved carbon sink. We also highlight the importance of considering local environmental factors (e.g., climate and soil conditions and their combination with other management practices) in identifying appropriate CSA practices for mitigating greenhouse gas emissions while ensuring crop productivity.


Asunto(s)
Secuestro de Carbono , Suelo , Agricultura , Carbono , Fertilizantes
20.
Glob Chang Biol ; 25(8): 2530-2543, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30955227

RESUMEN

Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N2 O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long-term studies were uncommon, with most data coming from studies lasting 2-3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased SOC sequestration without having significant (p > 0.05) effects on direct N2 O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO2 -eq ha-1  year-1 . One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non-legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions.


Asunto(s)
Gases de Efecto Invernadero , Agricultura , Producción de Cultivos , Productos Agrícolas , Nitrógeno , Suelo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda