Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.132
Filtrar
Más filtros

Publication year range
1.
J Virol ; 98(2): e0150423, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289119

RESUMEN

Coxsackievirus B3 (CVB3) is known to cause acute myocarditis and pancreatitis in humans. We investigated the microRNAs (miRNAs) that can potentially govern the viral life cycle by binding to the untranslated regions (UTRs) of CVB3 RNA. MicroRNA-22-3p was short-listed, as its potential binding site overlapped with the region crucial for recruiting internal ribosome entry site trans-acting factors (ITAFs) and ribosomes. We demonstrate that miR-22-3p binds CVB3 5' UTR, hinders recruitment of key ITAFs on viral mRNA, disrupts the spatial structure required for ribosome recruitment, and ultimately blocks translation. Likewise, cells lacking miR-22-3p exhibited heightened CVB3 infection compared to wild type, confirming its role in controlling infection. Interestingly, miR-22-3p level was found to be increased at 4 hours post-infection, potentially due to the accumulation of viral 2A protease in the early phase of infection. 2Apro enhances the miR-22-3p level to dislodge the ITAFs from the SD-like sequence, rendering the viral RNA accessible for binding of replication factors to switch to replication. Furthermore, one of the cellular targets of miR-22-3p, protocadherin-1 (PCDH1), was significantly downregulated during CVB3 infection. Partial silencing of PCDH1 reduced viral replication, demonstrating its proviral role. Interestingly, upon CVB3 infection in mice, miR-22-3p level was found to be downregulated only in the small intestine, the primary target organ, indicating its possible role in influencing tissue tropism. It appears miR-22-3p plays a dual role during infection by binding viral RNA to aid its life cycle as a viral strategy and by targeting a proviral protein to restrict viral replication as a host response.IMPORTANCECVB3 infection is associated with the development of end-stage heart diseases. Lack of effective anti-viral treatments and vaccines for CVB3 necessitates comprehensive understanding of the molecular players during CVB3 infection. miRNAs have emerged as promising targets for anti-viral strategies. Here, we demonstrate that miR-22-3p binds to 5' UTR and inhibits viral RNA translation at the later stage of infection to promote viral RNA replication. Conversely, as host response, it targets PCDH1, a proviral factor, to discourage viral propagation. miR-22-3p also influences CVB3 tissue tropism. Deciphering the multifaced role of miR-22-3p during CVB3 infection unravels the necessary molecular insights, which can be exploited for novel intervening strategies to curb infection and restrict viral pathogenesis.


Asunto(s)
Regiones no Traducidas 5' , Infecciones por Coxsackievirus , Enterovirus Humano B , Interacciones Microbiota-Huesped , MicroARNs , Biosíntesis de Proteínas , ARN Viral , Animales , Humanos , Ratones , Regiones no Traducidas 5'/genética , Antivirales/metabolismo , Infecciones por Coxsackievirus/genética , Infecciones por Coxsackievirus/virología , Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidad , Enterovirus Humano B/fisiología , Células HeLa , Intestino Delgado/metabolismo , Intestino Delgado/virología , MicroARNs/genética , MicroARNs/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Tropismo Viral/genética , Replicación Viral/genética , Cisteína Endopeptidasas/metabolismo , Protocadherinas/deficiencia , Protocadherinas/genética , Miocarditis , Interacciones Microbiota-Huesped/genética
2.
J Virol ; : e0080524, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194244

RESUMEN

Coxsackievirus group B3 (CVB3) belongs to the genus Enteroviruses of the family Picornaviridae and is the main pathogen underlying viral myocarditis (VMC). No specific therapeutic is available for this condition. Argininosuccinate synthase 1 (ASS1) is a key enzyme in the urea cycle that converts citrulline and aspartic acid to argininosuccinate. Here, we found that CVB3 and its capsid protein VP2 inhibit the autophagic degradation of ASS1 and that CVB3 consumes citrulline to upregulate ASS1, triggers urea cycle metabolic reprogramming, and then activates macrophages to develop pro-inflammatory polarization, thereby promoting the occurrence and development of VMC. Conversely, citrulline supplementation to prevent depletion can downregulate ASS1, rescue macrophage polarization, and alleviate the pathogenicity of VMC. These findings provide a new perspective on the occurrence and development of VMC, revealing ASS1 as a potential new target for treating this disease. IMPORTANCE: Viral myocarditis (VMC) is a common and potentially life-threatening myocardial inflammatory disease, most commonly caused by CVB3 infection. So far, the pathogenesis of VMC caused by CVB3 is mainly focused on two aspects: one is the direct myocardial injury caused by a large number of viral replication in the early stage of infection, and the other is the local immune cell infiltration and inflammatory damage of the myocardium in the adaptive immune response stage. There are few studies on the early innate immunity of CVB3 infection in myocardial tissue, but the appearance of macrophages in the early stage of CVB3 infection suggests that they can play a regulatory role as early innate immune response cells in myocardial tissue. Here, we discovered a possible new mechanism of VMC caused by CVB3, revealed new drug targets for anti-CVB3, and discovered the therapeutic potential of citrulline for VMC.

3.
J Virol ; 98(2): e0135823, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38226810

RESUMEN

Hand, foot, and mouth disease (HFMD) is caused by more than 20 pathogenic enteroviruses belonging to the Picornaviridae family and Enterovirus genus. Since the introduction of the enterovirus-71 (EV71) vaccine in 2016, the number of HFMD cases caused by EV71 has decreased. However, cases of infections caused by other enteroviruses, such as coxsackievirus A6 (CA6) and coxsackievirus A10, have been increasing accordingly. In this study, we used a clinical isolate of CA6 to establish an intragastric infection mouse model using 7-day-old mice to mimic the natural transmission route, by which we investigated the differential gene expression profiles associated with virus infection and pathogenicity. After intragastric infection, mice exhibited hind limb paralysis symptoms and weight loss, similar to those reported for EV71 infection in mice. The skeletal muscle was identified as the main site of virus replication, with a peak viral load reaching 2.31 × 107 copies/mg at 5 dpi and increased infiltration of inflammatory cells. RNA sequencing analysis identified differentially expressed genes (DEGs) after CA6 infection. DEGs in the blood, muscle, brain, spleen, and thymus were predominantly enriched in immune system responses, including pathways such as Toll-like receptor signaling and PI3K-Akt signaling. Our study has unveiled the genes involved in the host immune response during CA6 infection, thereby enhancing our comprehension of the pathological mechanism of HFMD.IMPORTANCEThis study holds great significance for the field of hand, foot, and mouth disease (HFMD). It not only delves into the disease's etiology, transmission pathways, and severe complications but also establishes a novel mouse model that mimics the natural coxsackievirus A6 infection process, providing a pivotal platform to delve deeper into virus replication and pathogenic mechanisms. Additionally, utilizing RNA-seq technology, it unveils the dynamic gene expression changes during infection, offering valuable leads for identifying novel therapeutic drug targets. This research has the potential to enhance our understanding of HFMD, offering fresh perspectives for disease prevention and treatment and positively impacting children's health worldwide.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Animales , Niño , Humanos , Ratones , Anticuerpos Antivirales , Modelos Animales de Enfermedad , Enterovirus/patogenicidad , Enterovirus/fisiología , Enterovirus Humano A , Infecciones por Enterovirus/patología , Infecciones por Enterovirus/virología , Expresión Génica , Enfermedad de Boca, Mano y Pie/genética , Fosfatidilinositol 3-Quinasas , Virulencia
4.
Diabetologia ; 67(5): 811-821, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38369573

RESUMEN

AIMS/HYPOTHESIS: Infection with coxsackie B viruses (CVBs) can cause diseases ranging from mild common cold-type symptoms to severe life-threatening conditions. CVB infections are considered to be prime candidates for environmental triggers of type 1 diabetes. This, together with the significant disease burden of acute CVB infections and their association with chronic diseases other than diabetes, has prompted the development of human CVB vaccines. The current study evaluated the safety and immunogenicity of the first human vaccine designed against CVBs associated with type 1 diabetes in a double-blind randomised placebo-controlled Phase I trial. METHODS: The main eligibility criteria for participants were good general health, age between 18 and 45 years, provision of written informed consent and willingness to comply with all trial procedures. Treatment allocation (PRV-101 or placebo) was based on a computer-generated randomisation schedule and people assessing the outcomes were masked to group assignment. In total, 32 participants (17 men, 15 women) aged 18-44 years were randomised to receive a low (n=12) or high (n=12) dose of a multivalent, formalin-inactivated vaccine including CVB serotypes 1-5 (PRV-101), or placebo (n=8), given by intramuscular injections at weeks 0, 4 and 8 at a single study site in Finland. The participants were followed for another 24 weeks. Safety and tolerability were the primary endpoints. Anti-CVB IgG and virus-neutralising titres were analysed using an ELISA and neutralising plaque reduction assays, respectively. RESULTS: Among the 32 participants (low dose, n=12; high dose, n=12; placebo, n=8) no serious adverse events or adverse events leading to study treatment discontinuation were observed. Treatment-emergent adverse events considered to be related to the study drug occurred in 37.5% of the participants in the placebo group and 62.5% in the PRV-101 group (injection site pain, headache, injection site discomfort and injection site pruritus being most common). PRV-101 induced dose-dependent neutralising antibody responses against all five CVB serotypes included in the vaccine in both the high- and low-dose groups. Protective titres ≥8 against all five serotypes were seen in >90% of participants over the entire follow-up period. CONCLUSIONS/INTERPRETATION: The results indicate that the tested multivalent CVB vaccine is well tolerated and immunogenic, supporting its further clinical development. TRIAL REGISTRATION: ClinicalTrials.gov NCT04690426. FUNDING: This trial was funded by Provention Bio, a Sanofi company.


Asunto(s)
Diabetes Mellitus Tipo 1 , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Método Doble Ciego , Vacunación , Vacunas Combinadas
5.
Apoptosis ; 29(7-8): 1271-1287, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38127284

RESUMEN

Viral myocarditis (VMC) is the major reason for sudden cardiac death among both children and young adults. Of these, coxsackievirus B3 (CVB3) is the most common causative agent of myocarditis. Recently, the role of signaling pathways in the pathogenesis of VMC has been evaluated in several studies, which has provided a new perspective on identifying potential therapeutic targets for this hitherto incurable disease. In the present study, in vivo and in vitro experiments showed that CVB3 infection leads to increased Bim expression and triggers apoptosis. In addition, by knocking down Bim using RNAi, we further confirmed the biological function of Bim in apoptosis induced by CVB3 infection. We additionally found that Bim and forkhead box O1 class (FOXO1) inhibition significantly increased the viability of CVB3-infected cells while blocking viral replication and viral release. Moreover, CVB3-induced Bim expression was directly dependent on FOXO1 acetylation, which is catalyzed by the co-regulation of CBP and SirTs. Furthermore, the acetylation of FOXO1 was an important step in Bim activation and apoptosis induced by CVB3 infection. The findings of this study suggest that CVB3 infection induces apoptosis through the FOXO1 acetylation-Bim pathway, thus providing new insights for developing potential therapeutic targets for enteroviral myocarditis.


Asunto(s)
Apoptosis , Proteína 11 Similar a Bcl2 , Infecciones por Coxsackievirus , Enterovirus Humano B , Proteína Forkhead Box O1 , Miocarditis , Miocitos Cardíacos , Proteína 11 Similar a Bcl2/metabolismo , Proteína 11 Similar a Bcl2/genética , Apoptosis/genética , Miocitos Cardíacos/virología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Animales , Miocarditis/virología , Miocarditis/metabolismo , Miocarditis/genética , Miocarditis/patología , Enterovirus Humano B/fisiología , Infecciones por Coxsackievirus/genética , Infecciones por Coxsackievirus/virología , Infecciones por Coxsackievirus/metabolismo , Infecciones por Coxsackievirus/patología , Acetilación , Humanos , Masculino , Ratones , Transducción de Señal , Ratas
6.
Antimicrob Agents Chemother ; : e0005424, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687016

RESUMEN

Human enteroviruses are the major pathogens causing hand-foot-and-mouth disease in infants and young children throughout the world, and infection with enterovirus is also associated with severe complications, such as aseptic meningitis and myocarditis. However, there are no antiviral drugs available to treat enteroviruses infection at present. In this study, we found that 4'-fluorouridine (4'-FlU), a nucleoside analog with low cytotoxicity, exhibited broad-spectrum activity against infections of multiple enteroviruses with EC50 values at low micromolar levels, including coxsackievirus A10 (CV-A10), CV-A16, CV-A6, CV-A7, CV-B3, enterovirus A71 (EV-A71), EV-A89, EV-D68, and echovirus 6. With further investigation, the results indicated that 4'-FlU directly interacted with the RNA-dependent RNA polymerase of enterovirus, the 3D pol, and impaired the polymerase activity of 3D pol, hence inhibiting viral RNA synthesis and significantly suppressing viral replication. Our findings suggest that 4'-FlU could be promisingly developed as a broad-spectrum direct-acting antiviral agent for anti-enteroviruses therapy.

7.
Biol Proced Online ; 26(1): 11, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664647

RESUMEN

BACKGROUND: The efficacy of oncolytic viruses (OV) in cancer treatment depends on their ability to successfully infect and destroy tumor cells. However, patients' tumors vary, and in the case of individual insensitivity to an OV, therapeutic efficacy is limited. Here, we present a protocol for rapid generation of tumor cell-specific adapted oncolytic coxsackievirus B3 (CVB3) with enhanced oncolytic potential and a satisfactory safety profile. This is achieved by combining directed viral evolution (DVE) with genetic modification of the viral genome and the use of a microRNA-dependent regulatory tool. METHODS: The oncolytic CVB3 variant PD-H was adapted to the refractory colorectal carcinoma cell line Colo320 through serial passaging. XTT assays and virus plaque assays were used to determine virus cytotoxicity and virus replication in vitro. Recombinant PD-H variants were generated through virus mutagenesis. Apoptosis was detected by Western blots, Caspase 3/7 assays, and DAPI staining. The therapeutic efficacy and safety of the adapted recombinant OV PD-SK-375TS were assessed in vivo using a subcutaneous Colo320 xenograft mouse model. RESULTS: PD-H was adapted to the colorectal cancer cell line Colo320 within 10 passages. Sequencing of passage 10 virus P-10 revealed a heterogenous virus population with five nucleotide mutations resulting in amino acid substitutions. The genotypically homogeneous OV PD-SK was generated by inserting the five detected mutations of P-10 into the genome of PD-H. PD-SK showed significantly stronger replication and cytotoxicity than PD-H in Colo320 cells, but not in other colorectal carcinoma cell lines. Increase of apoptosis induction was detected as key mechanisms of Colo320 cell-specific adaptation of PD-SK. For in vivo safety PD-SK was engineered with target sites of the miR-375 (miR-375TS) to exclude virus replication in normal tissues. PD-SK-375TS, unlike the PD-H-375TS not adapted homolog suppressed the growth of subcutaneous Colo320 tumors in nude mice without causing any side effects. CONCLUSION: Taken together, here we present an optimized protocol for the rapid generation of tumor cell-specific adapted oncolytic CVB3 based on the oncolytic CVB3 strain PD-H. The protocol is promising for the generation of personalized OV for tumor therapy and has the potential to be applied to other OV.

8.
J Virol ; 97(5): e0044823, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37074194

RESUMEN

Coxsackievirus B3 (CVB3) is an enterovirus that causes diseases such as pancreatitis and myocarditis in humans. Approximately 10% of the CVB3 RNA genome consists of a highly structured 5' untranslated region (5' UTR) that is organized into six domains and contains a type I internal ribosome entry site (IRES). These features are common to all enteroviruses. Each RNA domain plays a vital role in translation and replication during the viral multiplication cycle. We used SHAPE-MaP chemistry to generate secondary structures of the 5' UTR from the avirulent strain CVB3/GA and the virulent strain CVB3/28. Our comparative models show how key nucleotide substitutions cause major restructuring of domains II and III of the 5' UTR in CVB3/GA. Despite these structural shifts, the molecule maintains several well-characterized RNA elements, which allows persistence of the unique avirulent strain. The results shed light on the 5' UTR regions serving as virulence determinants and those required for fundamental viral mechanisms. We used the SHAPE-MaP data to produce theoretical tertiary models using 3dRNA v2.0. These models suggest a compact conformation of the 5' UTR from the virulent strain CVB3/28 that brings critical domains into close contact. In contrast, the model of the 5' UTR from the avirulent strain CVB3/GA suggests a more extended conformation where the same critical domains are more separated. Our results suggest that the structure and orientation of RNA domains in the 5' UTR are responsible for low-efficiency translation, low viral titers, and absence of virulence observed during infection by CVB3/GA. IMPORTANCE Human enteroviruses, which include five different species and over 100 serotypes, are responsible for diseases ranging from mild respiratory infections to serious infections of pancreas, heart, and neural tissue. All enteroviral RNA genomes have a long and highly structured 5' untranslated region (5' UTR) containing an internal ribosome entry site (IRES). Major virulence determinants are located in the 5' UTR. We present RNA structure models that directly compare the 5' UTR derived from virulent and avirulent strains of the enterovirus coxsackievirus B3 (CVB3). The secondary-structure models show rearrangement of RNA domains known to be virulence determinants and conservation of structure in RNA elements known to be vital for translation and replication in the avirulent strain CVB3/GA. The tertiary-structure models reveal reorientation of RNA domains in CVB3/GA. Identifying the details of structure in these critical RNA domains will help direct antiviral approaches to this major human pathogen.


Asunto(s)
Infecciones por Coxsackievirus , Enterovirus Humano B , ARN Viral , Humanos , Regiones no Traducidas 5' , Infecciones por Coxsackievirus/genética , Enterovirus Humano B/genética , Células HeLa , Sitios Internos de Entrada al Ribosoma , Fenotipo , ARN Viral/genética , ARN Viral/metabolismo , Virulencia , Factores de Virulencia
9.
J Virol ; 97(5): e0030923, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37070982

RESUMEN

Coxsackievirus A21 (CVA21) is a naturally occurring RNA virus that, in preclinical studies and clinical trials, has demonstrated promising potential in treating a range of malignancies. Other oncolytic viruses, such as adenovirus, vesicular stomatitis virus, herpesvirus, and vaccinia virus, all can be engineered to carry one or more transgenes for various purposes, including immune modulation, virus attenuation, and induction of apoptosis of tumor cells. However, it remained unknown whether CVA21 can express therapeutic or immunomodulatory payloads due to its small size and high mutation rate. Using reverse genetics techniques, we demonstrated that a transgene encoding a truncated green fluorescent protein (GFP) of up to 141 amino acids (aa) can be successfully carried in the 5' end of the coding region. Furthermore, a chimeric virus carrying an eel fluorescent protein, UnaG (139 aa), was also made and shown to be stable, and it maintained efficient tumor cell-killing activity. Similar to other oncolytic viruses, the likelihood of delivering CVA21 by the intravenous route is low due to issues like blood absorption, neutralizing antibodies, and liver clearance. To address this problem, we designed the CVA21 cDNA under the control of a weak RNA polymerase II promoter, and subsequently, a stable cell pool in 293T cells was made by integrating the resulting CVA21 cDNA into the cell genome. We showed that the cells are viable and able to persistently generate rCVA21 de novo. The carrier cell approach described here may pave the way to designing new cell therapy strategies by arming with oncolytic viruses. IMPORTANCE As a naturally occurring virus, coxsackievirus A21 is a promising oncolytic virotherapy modality. In this study, we first used reverse genetics to determine whether A21 can stably carry transgenes and found that it could express up to 141 amino acids of foreign GFP. The chimeric virus carrying another fluorescent eel protein UnaG (139 amino acids) gene also appeared to be stable over at least 7 passages. Our results provided guidance on how to select and engineer therapeutic payloads for future A21 anticancer research. Second, the challenges of delivering oncolytic viruses by the intravenous route hamper the broader use of oncolytic viruses in the clinic. Here, we used A21 to show that cells could be engineered to stably carry and persistently release the virus by harboring the viral cDNA in the genome. The approach we presented here may pave a new way for oncolytic virus administration using cells as carriers.


Asunto(s)
Enterovirus Humano A , Virus Oncolíticos , Aminoácidos/genética , Línea Celular Tumoral , ADN Complementario , Enterovirus Humano A/genética , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Transgenes
10.
J Virol ; 97(1): e0142622, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36475766

RESUMEN

Group B enteroviruses, including coxsackievirus B3 (CVB3), can persistently infect cardiac tissue and cause dilated cardiomyopathy. Persistence is linked to 5' terminal deletions of viral genomic RNAs that have been detected together with minor populations of full-length genomes in human infections. In this study, we explored the functions and interactions of the different viral RNA forms found in persistently infected patients and their putative role(s) in pathogenesis. Since enterovirus cardiac pathogenesis is linked to the viral proteinase 2A, we investigated the effect of different terminal genomic RNA deletions on 2A activity. We discovered that 5' terminal deletions in CVB3 genomic RNAs decreased the levels of 2A proteinase activity but could not abrogate it. Using newly generated viral reporters encoding nano-luciferase, we found that 5' terminal deletions resulted in decreased levels of viral protein and RNA synthesis in singly transfected cardiomyocyte cultures. Unexpectedly, when full-length and terminally deleted forms were cotransfected into cardiomyocytes, a cooperative interaction was observed, leading to increased viral RNA and protein production. However, when viral infections were carried out in cells harboring 5' terminally deleted CVB3 RNAs, a decrease in infectious particle production was observed. Our results provide a possible explanation for the necessity of full-length viral genomes during persistent infection, as they would stimulate efficient viral replication compared to that of the deleted genomes alone. To avoid high levels of viral particle production that would trigger cellular immune activation and host cell death, the terminally deleted RNA forms act to limit the production of viral particles, possibly as trans-dominant inhibitors. IMPORTANCE Enteroviruses like coxsackievirus B3 are able to initiate acute infections of cardiac tissue and, in some cases, to establish a long-term persistent infection that can lead to serious disease sequelae, including dilated cardiomyopathy. Previous studies have demonstrated the presence of 5' terminally deleted forms of enterovirus RNAs in heart tissues derived from patients with dilated cardiomyopathy. These deleted RNAs are found in association with very low levels of full-length enterovirus genomic RNAs, an interaction that may facilitate continued persistence while limiting virus particle production. Even in the absence of detectable infectious virus particle production, these deleted viral RNA forms express viral proteinases at levels capable of causing viral pathology. Our studies provide mechanistic insights into how full-length and deleted forms of enterovirus RNA cooperate to stimulate viral protein and RNA synthesis without stimulating infectious viral particle production. They also highlight the importance of targeting enteroviral proteinases to inhibit viral replication while at the same time limiting the long-term pathologies they trigger.


Asunto(s)
Cardiomiopatía Dilatada , Infecciones por Coxsackievirus , Enterovirus Humano B , Humanos , Antígenos Virales , Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/virología , Infecciones por Coxsackievirus/complicaciones , Enterovirus Humano B/metabolismo , Genómica , Miocitos Cardíacos/virología , Péptido Hidrolasas , Infección Persistente , ARN Viral/genética , Proteínas Virales/metabolismo , Replicación Viral
11.
J Virol ; 97(3): e0143322, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36916989

RESUMEN

Cathelicidin antimicrobial peptides (mouse, CRAMP; human, LL-37) have broad-spectrum antiviral activities against enveloped viruses, but their mechanisms of action against nonenveloped viruses remain to be elucidated. Coxsackievirus B3 (CVB3), a member of nonenveloped virus belonging to the Enterovirus genus of Picornaviridae, is an important pathogen of viral myocarditis and dilated cardiomyopathy. Here, we observed that cardiac CRAMP expression was significantly upregulated in mice after CVB3 infection. The administration of CRAMP or LL-37 markedly suppressed CVB3 infection in mice, and CRAMP deficiency increased the susceptibility of mice to CVB3. CRAMP and LL-37 inhibited CVB3 replication in primary cardiomyocytes. However, they did not inactivate CVB3 particles and did not regulate the response of cardiomyocytes against CVB3 infection. Intriguingly, they inhibited CVB3 transmission through the exosome, but not virus receptor. In detail, CRAMP and LL-37 directly induced the lysis of exosomes by interfering with exosomal heat shock protein 60 (HSP60) and then blocked the diffusion of exosomes to recipient cells and inhibited the establishment of productive infection by exosomes. In addition, the interaction of CRAMP and LL-37 with HSP60 simultaneously inhibited HSP60-induced apoptosis in cardiomyocytes and reduced HSP60-enhanced CVB3 replication. Our findings reveal a novel mechanism of cathelicidins against viral infection and provide a new therapeutic strategy for CVB3-induced viral myocarditis. IMPORTANCE The relative mechanisms that cathelicidin antimicrobial peptides use to influence nonenveloped virus infection are unclear. We show here that cathelicidin antimicrobial peptides (CRAMP and LL-37) directly target exosomal HSP60 to destroy exosomes, which in turn block the diffusion of exosomes to recipient cardiomyocytes and reduced HSP60-induced apoptosis, thus restricting coxsackievirus B3 infection. Our results provide new insights into the mechanisms cathelicidin antimicrobial peptides use against viral infection.


Asunto(s)
Catelicidinas , Infecciones por Coxsackievirus , Exosomas , Miocitos Cardíacos , Animales , Humanos , Ratones , Apoptosis/efectos de los fármacos , Catelicidinas/administración & dosificación , Chaperonina 60/antagonistas & inhibidores , Infecciones por Coxsackievirus/tratamiento farmacológico , Enterovirus Humano B/fisiología , Exosomas/efectos de los fármacos , Miocarditis , Miocitos Cardíacos/efectos de los fármacos , Replicación Viral
12.
J Virol ; 97(11): e0107523, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37847581

RESUMEN

IMPORTANCE: Coxsackievirus A6 (CV-A6) is a major emerging pathogen associated with atypical hand, foot, and mouth disease and can cause serious complications such as encephalitis, acute flaccid paralysis, and neurorespiratory syndrome. Therefore, revealing the associated pathogenic mechanisms could benefit the control of CV-A6 infections. In this study, we demonstrate that the nonstructural 2CCV-A6 suppresses IFN-ß production, which supports CV-A6 infection. This is achieved by depleting RNA sensors such as melanoma differentiation-associated gene 5 and retinoic acid-inducible gene I (RIG-I) through the lysosomal pathway. Such a function is shared by 2CEV-A71 and 2CCV-B3 but not 2CCV-A16, suggesting the latter might have an alternative way to promote viral replication. This study broadens our understanding of enterovirus 2C protein regulation of the RIG-I-like receptor signaling pathway and reveals a novel mechanism by which CV-A6 and other enteroviruses evade the host innate immune response. These findings on 2C may provide new therapeutic targets for the development of effective inhibitors against CV-A6 and other enterovirus infections.


Asunto(s)
Infecciones por Coxsackievirus , Humanos , Enterovirus Humano A/genética , Infecciones por Enterovirus/metabolismo , Infecciones por Enterovirus/virología , Enfermedad de Boca, Mano y Pie/virología , Inmunidad Innata , Infecciones por Coxsackievirus/metabolismo , Infecciones por Coxsackievirus/virología , Interferón beta/metabolismo
13.
Basic Res Cardiol ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38834767

RESUMEN

Nuclear factor of activated T cells 5 (NFAT5) is an osmosensitive transcription factor that is well-studied in renal but rarely explored in cardiac diseases. Although the association of Coxsackievirus B3 (CVB3) with viral myocarditis is well-established, the role of NFAT5 in this disease remains largely unexplored. Previous research has demonstrated that NFAT5 restricts CVB3 replication yet is susceptible to cleavage by CVB3 proteases. Using an inducible cardiac-specific Nfat5-knockout mouse model, we uncovered that NFAT5-deficiency exacerbates cardiac pathology, worsens cardiac function, elevates viral load, and reduces survival rates. RNA-seq analysis of CVB3-infected mouse hearts revealed the significant impact of NFAT5-deficiency on gene pathways associated with cytokine signaling and inflammation. Subsequent in vitro and in vivo investigation validated the disruption of the cytokine signaling pathway in response to CVB3 infection, evidenced by reduced expression of key cytokines such as interferon ß1 (IFNß1), C-X-C motif chemokine ligand 10 (CXCL10), interleukin 6 (IL6), among others. Furthermore, NFAT5-deficiency hindered the formation of stress granules, leading to a reduction of important stress granule components, including plakophilin-2, a pivotal protein within the intercalated disc, thereby impacting cardiomyocyte structure and function. These findings unveil a novel mechanism by which NFAT5 inhibits CVB3 replication and pathogenesis through the promotion of antiviral type I interferon signaling and the formation of cytoplasmic stress granules, collectively identifying NFAT5 as a new cardio protective protein.

14.
J Med Virol ; 96(1): e29399, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38235792

RESUMEN

The infection with coxsackievirus B4 (CVB4) can be enhanced in vitro by antibodies directed against the viral capsid protein VP4. In peripheral blood mononuclear cells, antibody-dependent enhancement (ADE) of CVB4 infection leads to the production of interferon alpha (IFN-α). To investigate ADE of CVB4-induced production of IFN-α, an agent-based model was constructed with enhancing and neutralizing antibodies. The model recapitulates viral neutralization and ADE in silico. The enhancing and neutralizing activities of serum samples were evaluated in vitro to confront the model predictions with experimental results. Increasing the incubation time of CVB4 with serum samples improves virus neutralization in silico as well as in vitro. It also results in ADE at lower antibody numbers in silico, which is confirmed in vitro with IFN-α production at lower serum concentrations. Furthermore, incubation of CVB4 with serum at a low temperature does not induce IFN-α production in vitro. Thus, taken together our results suggest that enhancing antibodies bind cryptic epitopes, more accessible with longer incubation time and at higher temperature due to changes in capsid conformation, consistent with previous results indicating that enhancing antibodies are anti-VP4 antibodies.


Asunto(s)
Enterovirus Humano B , Leucocitos Mononucleares , Humanos , Acrecentamiento Dependiente de Anticuerpo , Anticuerpos Bloqueadores , Anticuerpos Antivirales , Interferón-alfa
15.
J Med Virol ; 96(6): e29707, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932451

RESUMEN

Coxsackievirus B1 (CVB1), an enterovirus with multiple clinical presentations, has been associated with potential long-term consequences, including hand, foot, and mouth disease (HFMD), in some patients. However, the related animal models, transmission dynamics, and long-term tissue tropism of CVB1 have not been systematically characterized. In this study, we established a model of CVB1 respiratory infection in rhesus macaques and evaluated the clinical symptoms, viral load, and immune levels during the acute phase (0-14 days) and long-term recovery phase (15-30 days). We also investigated the distribution, viral clearance, and pathology during the long-term recovery period using 35 postmortem rhesus macaque tissue samples collected at 30 days postinfection (d.p.i.). The results showed that the infected rhesus macaques were susceptible to CVB1 and exhibited HFMD symptoms, viral clearance, altered cytokine levels, and the presence of neutralizing antibodies. Autopsy revealed positive viral loads in the heart, spleen, pancreas, soft palate, and olfactory bulb tissues. HE staining demonstrated pathological damage to the liver, spleen, lung, soft palate, and tracheal epithelium. At 30 d.p.i., viral antigens were detected in visceral, immune, respiratory, and muscle tissues but not in intestinal or neural tissues. Brain tissue examination revealed viral meningitis-like changes, and CVB1 antigen expression was detected in occipital, pontine, cerebellar, and spinal cord tissues at 30 d.p.i. This study provides the first insights into CVB1 pathogenesis in a nonhuman primate model of HFMD and confirms that CVB1 exhibits tissue tropism following long-term infection.


Asunto(s)
Modelos Animales de Enfermedad , Enterovirus Humano B , Enfermedad de Boca, Mano y Pie , Macaca mulatta , Carga Viral , Tropismo Viral , Animales , Enfermedad de Boca, Mano y Pie/virología , Enfermedad de Boca, Mano y Pie/patología , Enterovirus Humano B/fisiología , Enterovirus Humano B/patogenicidad , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Animales Recién Nacidos , Citocinas/metabolismo
16.
Exp Dermatol ; 33(9): e15169, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39207089

RESUMEN

Despite rising melanoma incidence in recent decades, there is a trend towards overall decreased mortality, reflecting multiple factors including improved treatment options for metastatic disease. While local treatments are the mainstay for early-stage melanoma, metastatic disease necessitates systemic treatment, with oncolytic virotherapy emerging as a promising option. For this review, articles were retrieved from PubMed from 1964 through 2024. We conducted title, abstract and full-text screening in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to identify articles describing the use of coxsackievirus A21 (V937), either as monotherapy or as part of combination therapy for malignant melanoma. Fifteen articles met inclusion criteria, offering preclinical and clinical data on V937's efficacy in reducing tumour burden. In addition to reporting manageable safety profiles, clinical trial data examining intratumoral V937 combination therapy with pembrolizumab and ipilimumab also endorsed favourable objective response rates compared to immune checkpoint inhibitor monotherapy (47% vs. 38% and 21% vs. 10%, respectively). In contrast, intravenous V937 monotherapy failed to yield additional benefit in a cohort of patients with Stage IIIC/IV melanoma (n = 3) despite achieving detectable levels in tumour tissue (1 × 109 TCID50). Although small subsets of patients experienced severe adverse effects and study design limitations imposed constraints on collected data, evidence for the efficacy of V937 remains encouraging. With few clinical trials evaluating V937 in melanoma, additional data is required before routine usage in standard treatment for metastatic lesions.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Melanoma , Viroterapia Oncolítica , Neoplasias Cutáneas , Humanos , Melanoma/terapia , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/patología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Enterovirus , Ipilimumab/uso terapéutico , Terapia Combinada , Virus Oncolíticos
17.
Virol J ; 21(1): 122, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816865

RESUMEN

Hand, Foot and Mouth Disease (HFMD) is a highly contagious viral illness primarily affecting children globally. A significant epidemiological transition has been noted in mainland China, characterized by a substantial increase in HFMD cases caused by non-Enterovirus A71 (EV-A71) and non-Coxsackievirus A16 (CVA16) enteroviruses (EVs). Our study conducts a retrospective examination of 36,461 EV-positive specimens collected from Guangdong, China, from 2013 to 2021. Epidemiological trends suggest that, following 2013, Coxsackievirus A6 (CVA6) and Coxsackievirus A10 (CVA10) have emerged as the primary etiological agents for HFMD. In stark contrast, the incidence of EV-A71 has sharply declined, nearing extinction after 2018. Notably, cases of CVA10 infection were considerably younger, with a median age of 1.8 years, compared to 2.3 years for those with EV-A71 infections, possibly indicating accumulated EV-A71-specific herd immunity among young children. Through extensive genomic sequencing and analysis, we identified the N136D mutation in the 2 A protein, contributing to a predominant subcluster within genogroup C of CVA10 circulating in Guangdong since 2017. Additionally, a high frequency of recombination events was observed in genogroup F of CVA10, suggesting that the prevalence of this lineage might be underrecognized. The dynamic landscape of EV genotypes, along with their potential to cause outbreaks, underscores the need to broaden surveillance efforts to include a more diverse spectrum of EV genotypes. Moreover, given the shifting dominance of EV genotypes, it may be prudent to re-evaluate and optimize existing vaccination strategies, which are currently focused primarily target EV-A71.


Asunto(s)
Genoma Viral , Genotipo , Enfermedad de Boca, Mano y Pie , Filogenia , China/epidemiología , Humanos , Enfermedad de Boca, Mano y Pie/epidemiología , Enfermedad de Boca, Mano y Pie/virología , Preescolar , Lactante , Estudios Retrospectivos , Femenino , Masculino , Niño , Epidemiología Molecular , Enterovirus/genética , Enterovirus/clasificación , Enterovirus/aislamiento & purificación , Enterovirus Humano A/genética , Enterovirus Humano A/aislamiento & purificación , Genómica , Incidencia , Adolescente , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/virología
18.
Virol J ; 21(1): 89, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641810

RESUMEN

Coxsackievirus-A10 (CV-A10), responsible for the hand, foot and mouth disease (HFMD) pandemic, could cause serious central nervous system (CNS) complications. The underlying molecular basis of CV-A10 and host interactions inducing neuropathogenesis is still unclear. The Hippo signaling pathway, historically known for a dominator of organ development and homeostasis, has recently been implicated as an immune regulator. However, its role in host defense against CV-A10 has not been investigated. Herein, it was found that CV-A10 proliferated in HMC3 cells and promoted the release of inflammatory cytokines. Moreover, pattern recognition receptors (PRRs)-mediated pathways, including TLR3-TRIF-TRAF3-TBK1-NF-κB axis, RIG-I/MDA5-MAVS-TRAF3-TBK1-NF-κB axis and TLR7-MyD88-IRAK1/IRAK4-TRAF6-TAK1-NF-κB axis, were examined to be elevated under CV-A10 infection. Meanwhile, it was further uncovered that Hippo signaling pathway was inhibited in HMC3 cells with CV-A10 infection. Previous studies have been reported that there exist complex relations between innate immune and Hippo signaling pathway. Then, plasmids of knockdown and overexpression of MST1/2 were transfected into HMC3 cells. Our results showed that MST1/2 suppressed the levels of inflammatory cytokines via interacting with TBK1 and IRAK1, and also enhanced virus production via restricting IRF3 and IFN-ß expressions. Overall, these data obviously pointed out that CV-A10 accelerated the formation of neuroinflammation by the effect of the Hippo pathway on the PRRs-mediated pathway, which delineates a negative immunoregulatory role for MST1/2 in CV-A10 infection and the potential for this pathway to be pharmacologically targeted to treat CV-A10.


Asunto(s)
Bencenoacetamidas , Infecciones por Coxsackievirus , FN-kappa B , Piperidonas , Humanos , FN-kappa B/metabolismo , Factor 3 Asociado a Receptor de TNF/metabolismo , Enfermedades Neuroinflamatorias , Inmunidad Innata , Citocinas/metabolismo
19.
Vet Res ; 55(1): 23, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374082

RESUMEN

According to previous studies, three representative avian adenoviral strains utilize coxsackievirus-adenovirus receptor (CAR) as a receptor and seem to exhibit diverse binding affinities and modes. Thus, further revealing the exact molecular mechanism underlying the interaction between different FAdVs and the attachment receptor CAR is necessary. In this study, we successfully solved the crystal structure of the FAdV-4 fiber1 knob at 1.6 Šresolution. The interaction between the fibre knob and different domains of CAR was verified by confocal microscopy, coimmunoprecipitation and surface plasmon resonance (SPR) analysis. The fibre knobs of the three representative fowl adenoviruses specifically recognized CAR domain 1 (D1), but the recognition of CAR domain 2 (D2) by chicken embryo lethal orphan (CELO) strains was weak. These results provide insights into the differences in adenovirus‒host cell interactions and have important implications for the exploration of viral invasion mechanisms.


Asunto(s)
Aviadenovirus , Adenovirus A Aviar , Embrión de Pollo , Animales , Receptores Virales/química , Receptores Virales/metabolismo , Pollos/metabolismo , Adenovirus A Aviar/metabolismo
20.
Fish Shellfish Immunol ; 146: 109438, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38341116

RESUMEN

The global aquaculture industry of tilapia (Oreochromis niloticus) has been significantly impacted by the emergence of tilapia lake virus (TiLV). However, effective prevention and control measures are still not available due to a lack of unclear pathogenesis of TiLV. Our previous transcriptome found that coxsackievirus and adenovirus receptor (CAR) was in response to TiLV infection in tilapia. To explore the potential function of OnCAR, the effect of OnCAR on TiLV proliferation was analyzed in this study. The OnCAR open reading frame (ORF) sequence of tilapia was 516 bp in length that encoded 171 amino acids with an Ig-like domain and transmembrane region. The OnCAR gene showed widespread expression in all investigated tissues, with the highest levels in the heart. Moreover, the OnCAR gene in the liver and muscle of tilapia exhibited dynamic expression levels upon TiLV challenge. Subcellular localization analysis indicated that OnCAR protein was mainly localized on the membrane of tilapia brain (TiB) cells. Importantly, the gene transcripts, genome copy number, S8-encoded protein, cytopathic effect, and internalization of TiLV were obviously decreased in the TiB cells overexpressed with OnCAR, indicating that OnCAR could inhibit TiLV replication. Mechanically, OnCAR could interact with viral S8 and S10-encoded protein. To the best of our knowledge, OnCAR is the first potential anti-TiLV cellular surface molecular receptor discovered for inhibiting TiLV infection. This finding is beneficial for better understanding the antiviral mechanism of tilapia and lays a foundation for establishing effective prevention and control strategies against tilapia lake virus disease (TiLVD).


Asunto(s)
Enfermedades de los Peces , Infecciones por Orthomyxoviridae , Receptores Virales , Tilapia , Virus , Animales , Tilapia/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda