Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 174(5): 1067-1081.e17, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30078707

RESUMEN

Long mammalian introns make it challenging for the RNA processing machinery to identify exons accurately. We find that LINE-derived sequences (LINEs) contribute to this selection by recruiting dozens of RNA-binding proteins (RBPs) to introns. This includes MATR3, which promotes binding of PTBP1 to multivalent binding sites within LINEs. Both RBPs repress splicing and 3' end processing within and around LINEs. Notably, repressive RBPs preferentially bind to evolutionarily young LINEs, which are located far from exons. These RBPs insulate the LINEs and the surrounding intronic regions from RNA processing. Upon evolutionary divergence, changes in RNA motifs within LINEs lead to gradual loss of their insulation. Hence, older LINEs are located closer to exons, are a common source of tissue-specific exons, and increasingly bind to RBPs that enhance RNA processing. Thus, LINEs are hubs for the assembly of repressive RBPs and also contribute to the evolution of new, lineage-specific transcripts in mammals. VIDEO ABSTRACT.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas/química , Elementos de Nucleótido Esparcido Largo , Proteínas Asociadas a Matriz Nuclear/química , Poliadenilación , Proteína de Unión al Tracto de Polipirimidina/química , Proteínas de Unión al ARN/química , ARN/química , Empalme Alternativo , Animales , Sitios de Unión , Exones , Células HeLa , Humanos , Intrones , Ratones , Mutación , Motivos de Nucleótidos , Filogenia , Unión Proteica , Mapeo de Interacción de Proteínas , Empalme del ARN
2.
Trends Genet ; 38(9): 889-891, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35773026

RESUMEN

Pathology formed by the protein TDP-43 (TAR DNA binding protein 43) is the hallmark of several neurodegenerative diseases. Recent studies by Ma et al. and Brown et al. reveal that loss of TDP-43 function causes inclusion of cryptic exons in specific mRNAs, including the synaptic gene UNC13A, a known genetic risk factor for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These findings suggest new disease mechanisms.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Exones , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Humanos , Enfermedades Neurodegenerativas/genética , ARN Mensajero/metabolismo
3.
Acta Neuropathol ; 147(1): 29, 2024 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-38308693

RESUMEN

The aggregation, mislocalization, and phosphorylation of TDP-43 are pathologic hallmarks of several neurodegenerative diseases and provide a defining criterion for the neuropathologic diagnosis of Limbic-predominant Age-related TDP-43 Encephalopathy (LATE). LATE neuropathologic changes (LATE-NC) are often comorbid with other neurodegenerative pathologies including Alzheimer's disease neuropathologic changes (ADNC). We examined whether TDP-43 regulated cryptic exons accumulate in the hippocampus of neuropathologically confirmed LATE-NC cases. We found that several cryptic RNAs are robustly expressed in LATE-NC cases with or without comorbid ADNC and correlate with pTDP-43 abundance; however, the accumulation of cryptic RNAs is more robust in LATE-NC with comorbid ADNC. Additionally, cryptic RNAs can robustly distinguish LATE-NC from healthy controls and AD cases. These findings expand our current understanding and provide novel potential biomarkers for LATE pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Demencia , Proteinopatías TDP-43 , Humanos , Encéfalo/patología , Proteinopatías TDP-43/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Envejecimiento/genética , Envejecimiento/patología , Proteínas de Unión al ADN/metabolismo , Exones
4.
Acta Neuropathol ; 147(1): 73, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641715

RESUMEN

The most prominent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a repeat expansion in the gene C9orf72. Importantly, the transcriptomic consequences of the C9orf72 repeat expansion remain largely unclear. Here, we used short-read RNA sequencing (RNAseq) to profile the cerebellar transcriptome, detecting alterations in patients with a C9orf72 repeat expansion. We focused on the cerebellum, since key C9orf72-related pathologies are abundant in this neuroanatomical region, yet TDP-43 pathology and neuronal loss are minimal. Consistent with previous work, we showed a reduction in the expression of the C9orf72 gene and an elevation in homeobox genes, when comparing patients with the expansion to both patients without the C9orf72 repeat expansion and control subjects. Interestingly, we identified more than 1000 alternative splicing events, including 4 in genes previously associated with ALS and/or FTLD. We also found an increase of cryptic splicing in C9orf72 patients compared to patients without the expansion and controls. Furthermore, we demonstrated that the expression level of select RNA-binding proteins is associated with cryptic splice junction inclusion. Overall, this study explores the presence of widespread transcriptomic changes in the cerebellum, a region not confounded by severe neurodegeneration, in post-mortem tissue from C9orf72 patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Cerebelo , Degeneración Lobar Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Cerebelo/patología , Expansión de las Repeticiones de ADN/genética , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Perfilación de la Expresión Génica , Transcriptoma
5.
Acta Neuropathol ; 147(1): 9, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175301

RESUMEN

Nuclear clearance and cytoplasmic accumulations of the RNA-binding protein TDP-43 are pathological hallmarks in almost all patients with amyotrophic lateral sclerosis (ALS) and up to 50% of patients with frontotemporal dementia (FTD) and Alzheimer's disease. In Alzheimer's disease, TDP-43 pathology is predominantly observed in the limbic system and correlates with cognitive decline and reduced hippocampal volume. Disruption of nuclear TDP-43 function leads to abnormal RNA splicing and incorporation of erroneous cryptic exons in numerous transcripts including Stathmin-2 (STMN2, also known as SCG10) and UNC13A, recently reported in tissues from patients with ALS and FTD. Here, we identify both STMN2 and UNC13A cryptic exons in Alzheimer's disease patients, that correlate with TDP-43 pathology burden, but not with amyloid-ß or tau deposits. We also demonstrate that processing of the STMN2 pre-mRNA is more sensitive to TDP-43 loss of function than UNC13A. In addition, full-length RNAs encoding STMN2 and UNC13A are suppressed in large RNA-seq datasets generated from Alzheimer's disease post-mortem brain tissue. Collectively, these results open exciting new avenues to use STMN2 and UNC13A as potential therapeutic targets in a broad range of neurodegenerative conditions with TDP-43 proteinopathy including Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedad de Pick , Humanos , Enfermedad de Alzheimer/genética , Proteínas de Unión al ADN/genética , Empalme del ARN , ARN Mensajero/genética , Estatmina/genética
6.
Brain ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079474

RESUMEN

TDP-43-positive inclusions in neurons are a hallmark of several neurodegenerative diseases including familial amyotrophic lateral sclerosis (fALS) caused by pathogenic TARDBP variants as well as more common non-Mendelian sporadic ALS (sALS). Here we report a G376V-TDP-43 missense variant in the C-terminal prion-like domain of the protein in two French families affected by an autosomal dominant myopathy but not fulfilling diagnostic criteria for ALS. Patients from both families presented with progressive weakness and atrophy of distal muscles, starting in their 5th-7th decade. Muscle biopsies revealed a degenerative myopathy characterized by accumulation of rimmed (autophagic) vacuoles, disruption of sarcomere integrity and severe myofibrillar disorganization. The G376 V variant altered a highly conserved amino acid residue and was absent in databases on human genome variation. Variant pathogenicity was supported by in silico analyses and functional studies. The G376 V mutant increased the formation of cytoplasmic TDP-43 condensates in cell culture models, promoted assembly into high molecular weight oligomers and aggregates in vitro, and altered morphology of TDP-43 condensates arising from phase separation. Moreover, the variant led to the formation of cytoplasmic TDP-43 condensates in patient-derived myoblasts and induced abnormal mRNA splicing in patient muscle tissue. The identification of individuals with TDP-43-related myopathy but not ALS implies that TARDBP missense variants may have more pleiotropic effects than previously anticipated and support a primary role for TDP-43 in skeletal muscle pathophysiology. We propose to include TARDBP screening in the genetic work-up of patients with late-onset distal myopathy. Further research is warranted to examine the precise pathogenic mechanisms of TARDBP variants causing either a neurodegenerative or myopathic phenotype.

7.
Acta Neuropathol ; 147(1): 4, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38133681

RESUMEN

LATE-NC, the neuropathologic changes of limbic-predominant age-related TAR DNA-binding protein 43 kDa (TDP-43) encephalopathy are frequently associated with Alzheimer's disease (AD) and cognitive impairment in older adults. The association of TDP-43 proteinopathy with AD neuropathologic changes (ADNC) and its impact on specific cognitive domains are not fully understood and whether loss of TDP-43 function occurs early in the aging brain remains unknown. Here, using a large set of autopsies from the Baltimore Longitudinal Study of Aging (BLSA) and another younger cohort, we were able to study brains from subjects 21-109 years of age. Examination of these brains show that loss of TDP-43 splicing repression, as judged by TDP-43 nuclear clearance and expression of a cryptic exon in HDGFL2, first occurs during the 6th decade, preceding by a decade the appearance of TDP-43+ neuronal cytoplasmic inclusions (NCIs). We corroborated this observation using a monoclonal antibody to demonstrate a cryptic exon-encoded neoepitope within HDGFL2 in neurons exhibiting nuclear clearance of TDP-43. TDP-43 nuclear clearance is associated with increased burden of tau pathology. Age at death, female sex, high CERAD neuritic plaque score, and high Braak neurofibrillary stage significantly increase the odds of LATE-NC. Faster rates of cognitive decline on verbal memory (California Verbal Learning Test immediate recall), visuospatial ability (Card Rotations Test), mental status (MMSE) and semantic fluency (Category Fluency Test) were associated with LATE-NC. Notably, the effects of LATE-NC on verbal memory and visuospatial ability are independent of ADNC. However, the effects of TDP-43 nuclear clearance in absence of NCI on the longitudinal trajectories and levels of cognitive measures are not significant. These results establish that loss of TDP-43 splicing repression is an early event occurring in the aging population during the development of TDP-43 proteinopathy and is associated with increased tau pathology. Furthermore, LATE-NC correlates with high levels of ADNC but also has an impact on specific memory and visuospatial functions in aging that is independent of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Proteinopatías TDP-43 , Humanos , Femenino , Anciano , Enfermedad de Alzheimer/patología , Estudios Longitudinales , Proteinopatías TDP-43/patología , Envejecimiento/genética , Disfunción Cognitiva/genética , Disfunción Cognitiva/complicaciones , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
8.
Acta Neuropathol ; 142(4): 609-627, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34274995

RESUMEN

Heterogeneous nuclear ribonucleoproteins (HnRNPs) are a group of ubiquitously expressed RNA-binding proteins implicated in the regulation of all aspects of nucleic acid metabolism. HnRNP K is a member of this highly versatile hnRNP family. Pathological redistribution of hnRNP K to the cytoplasm has been linked to the pathogenesis of several malignancies but, until now, has been underexplored in the context of neurodegenerative disease. Here we show hnRNP K mislocalisation in pyramidal neurons of the frontal cortex to be a novel neuropathological feature that is associated with both frontotemporal lobar degeneration and ageing. HnRNP K mislocalisation is mutually exclusive to TDP-43 and tau pathological inclusions in neurons and was not observed to colocalise with mitochondrial, autophagosomal or stress granule markers. De-repression of cryptic exons in RNA targets following TDP-43 nuclear depletion is an emerging mechanism of potential neurotoxicity in frontotemporal lobar degeneration and the mechanistically overlapping disorder amyotrophic lateral sclerosis. We silenced hnRNP K in neuronal cells to identify the transcriptomic consequences of hnRNP K nuclear depletion. Intriguingly, by performing RNA-seq analysis we find that depletion of hnRNP K induces 101 novel cryptic exon events. We validated cryptic exon inclusion in an SH-SY5Y hnRNP K knockdown and in FTLD brain exhibiting hnRNP K nuclear depletion. We, therefore, present evidence for hnRNP K mislocalisation to be associated with FTLD and for this to induce widespread changes in splicing.


Asunto(s)
Envejecimiento/metabolismo , Envejecimiento/patología , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Empalme del ARN/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Estudios de Casos y Controles , Femenino , Degeneración Lobar Frontotemporal/genética , Humanos , Masculino , Persona de Mediana Edad
9.
RNA ; 24(6): 761-768, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29581412

RESUMEN

The fidelity of RNA splicing is regulated by a network of splicing enhancers and repressors, although the rules that govern this process are not yet fully understood. One mechanism that contributes to splicing fidelity is the repression of nonconserved cryptic exons by splicing factors that recognize dinucleotide repeats. We previously identified that TDP-43 and PTBP1/PTBP2 are capable of repressing cryptic exons utilizing UG and CU repeats, respectively. Here we demonstrate that hnRNP L (HNRNPL) also represses cryptic exons by utilizing exonic CA repeats, particularly near the 5'SS. We hypothesize that hnRNP L regulates CA repeat repression for both cryptic exon repression and developmental processes such as T cell differentiation.


Asunto(s)
Exones , Ribonucleoproteína Heterogénea-Nuclear Grupo L/metabolismo , Precursores del ARN/genética , Empalme del ARN , Proteínas Represoras/metabolismo , Animales , Secuencia de Bases , Genoma , Ribonucleoproteína Heterogénea-Nuclear Grupo L/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células Jurkat , Ratones , Proteínas Represoras/genética
10.
Trends Mol Med ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39069396

RESUMEN

The identification of biomarkers for amyotrophic lateral sclerosis (ALS) is a central issue in disease research. In a recent article, Chatterjee et al. show that blood extracellular vesicles (EVs) with high levels of transactive response DNA-binding protein 43 (TDP-43) accurately discriminate patients with ALS from controls and correlate with disease severity, providing a promising biomarker for early diagnosis and monitoring.

11.
Mol Neurodegener ; 18(1): 16, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922834

RESUMEN

TDP-43 is an RNA-binding protein with a crucial nuclear role in splicing, and mislocalises from the nucleus to the cytoplasm in a range of neurodegenerative disorders. TDP-43 proteinopathy spans a spectrum of incurable, heterogeneous, and increasingly prevalent neurodegenerative diseases, including the amyotrophic lateral sclerosis and frontotemporal dementia disease spectrum and a significant fraction of Alzheimer's disease. There are currently no directed disease-modifying therapies for TDP-43 proteinopathies, and no way to distinguish who is affected before death. It is now clear that TDP-43 proteinopathy leads to a number of molecular changes, including the de-repression and inclusion of cryptic exons. Importantly, some of these cryptic exons lead to the loss of crucial neuronal proteins and have been shown to be key pathogenic players in disease pathogenesis (e.g., STMN2), as well as being able to modify disease progression (e.g., UNC13A). Thus, these aberrant splicing events make promising novel therapeutic targets to restore functional gene expression. Moreover, presence of these cryptic exons is highly specific to patients and areas of the brain affected by TDP-43 proteinopathy, offering the potential to develop biomarkers for early detection and stratification of patients. In summary, the discovery of cryptic exons gives hope for novel diagnostics and therapeutics on the horizon for TDP-43 proteinopathies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Proteinopatías TDP-43 , Humanos , Demencia Frontotemporal/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Proteinopatías TDP-43/metabolismo , Neuronas/metabolismo , Exones/genética , Enfermedades Neurodegenerativas/metabolismo
12.
Gigascience ; 10(12)2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34891161

RESUMEN

BACKGROUND: Fusion genes are typically identified by RNA sequencing (RNA-seq) without elucidating the causal genomic breakpoints. However, non-poly(A)-enriched RNA-seq contains large proportions of intronic reads that also span genomic breakpoints. RESULTS: We have developed an algorithm, Dr. Disco, that searches for fusion transcripts by taking an entire reference genome into account as search space. This includes exons but also introns, intergenic regions, and sequences that do not meet splice junction motifs. Using 1,275 RNA-seq samples, we investigated to what extent genomic breakpoints can be extracted from RNA-seq data and their implications regarding poly(A)-enriched and ribosomal RNA-minus RNA-seq data. Comparison with whole-genome sequencing data revealed that most genomic breakpoints are not, or minimally, transcribed while, in contrast, the genomic breakpoints of all 32 TMPRSS2-ERG-positive tumours were present at RNA level. We also revealed tumours in which the ERG breakpoint was located before ERG, which co-existed with additional deletions and messenger RNA that incorporated intergenic cryptic exons. In breast cancer we identified rearrangement hot spots near CCND1 and in glioma near CDK4 and MDM2 and could directly associate this with increased expression. Furthermore, in all datasets we find fusions to intergenic regions, often spanning multiple cryptic exons that potentially encode neo-antigens. Thus, fusion transcripts other than classical gene-to-gene fusions are prominently present and can be identified using RNA-seq. CONCLUSION: By using the full potential of non-poly(A)-enriched RNA-seq data, sophisticated analysis can reliably identify expressed genomic breakpoints and their transcriptional effects.


Asunto(s)
Genómica , ARN Ribosómico , Fusión Génica , Genoma , Análisis de Secuencia de ARN
13.
BMC Med Genomics ; 10(1): 38, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28549443

RESUMEN

BACKGROUND: Reliable exon recognition is key to the splicing of pre-mRNAs into mature mRNAs. TDP-43 is an RNA-binding protein whose nuclear loss and cytoplasmic aggregation are a hallmark pathology in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). TDP-43 depletion causes the aberrant inclusion of cryptic exons into a range of transcripts, but their extent, relevance to disease pathogenesis and whether they are caused by other RNA-binding proteins implicated in ALS/FTD are unknown. METHODS: We developed an analysis pipeline to discover and quantify cryptic exon inclusion and applied it to publicly available human and murine RNA-sequencing data. RESULTS: We detected widespread cryptic splicing in TDP-43 depletion datasets but almost none in another ALS/FTD-linked protein FUS. Sequence motif and iCLIP analysis of cryptic exons demonstrated that they are bound by TDP-43. Unlike the cryptic exons seen in hnRNP C depletion, those repressed by TDP-43 cannot be linked to transposable elements. Cryptic exons are poorly conserved and inclusion overwhelmingly leads to nonsense-mediated decay of the host transcript, with reduced transcript levels observed in differential expression analysis. RNA-protein interaction data on 73 different RNA-binding proteins showed that, in addition to TDP-43, 7 specifically bind TDP-43 linked cryptic exons. This suggests that TDP-43 competes with other splicing factors for binding to cryptic exons and can repress cryptic exon inclusion. CONCLUSIONS: Our quantitative analysis pipeline confirms the presence of cryptic exons during the depletion of TDP-43 but not FUS providing new insight into to RNA-processing dysfunction as a cause or consequence in ALS/FTD.


Asunto(s)
Proteínas de Unión al ADN/genética , Empalme del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Análisis de Secuencia de ARN/métodos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Expresión Génica , Humanos , Ratones , Proteínas de Unión al ARN/metabolismo
14.
Mol Neurodegener ; 12(1): 13, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28153034

RESUMEN

BACKGROUND: TDP-43 proteinopathy is a prominent pathological feature that occurs in a number of human diseases including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and inclusion body myositis (IBM). Our recent finding that TDP-43 represses nonconserved cryptic exons led us to ask whether cell type-specific cryptic exons could exist to impact unique molecular pathways in brain or muscle. METHODS: In the present work, we investigated TDP-43's function in various mouse tissues to model disease pathogenesis. We generated mice to conditionally delete TDP-43 in excitatory neurons or skeletal myocytes and identified the cell type-specific cryptic exons associated with TDP-43 loss of function. RESULTS: Comparative analysis of nonconserved cryptic exons in various mouse cell types revealed that only some cryptic exons were common amongst stem cells, neurons, and myocytes; the majority of these nonconserved cryptic exons were cell type-specific. CONCLUSIONS: Our results suggest that in human disease, TDP-43 loss of function may impair cell type-specific pathways.


Asunto(s)
Proteínas de Unión al ADN/genética , Exones/genética , Células Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Neuronas/metabolismo , Animales , Modelos Animales de Enfermedad , Immunoblotting , Inmunohistoquímica , Ratones , Ratones Noqueados , Ratones Transgénicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteinopatías TDP-43/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda