Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 39.896
Filtrar
Más filtros

Publication year range
1.
Annu Rev Immunol ; 39: 395-416, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902315

RESUMEN

Recent evidence supports the notion that mitochondrial metabolism is necessary for T cell activation, proliferation, and function. Mitochondrial metabolism supports T cell anabolism by providing key metabolites for macromolecule synthesis and generating metabolites for T cell function. In this review, we focus on how mitochondrial metabolism controls conventional and regulatory T cell fates and function.


Asunto(s)
Inmunidad Celular , Mitocondrias , Animales , Humanos
2.
Annu Rev Immunol ; 38: 289-313, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31986069

RESUMEN

A striking change has happened in the field of immunology whereby specific metabolic processes have been shown to be a critical determinant of immune cell activation. Multiple immune receptor types rewire metabolic pathways as a key part of how they promote effector functions. Perhaps surprisingly for immunologists, the Krebs cycle has emerged as the central immunometabolic hub of the macrophage. During proinflammatory macrophage activation, there is an accumulation of the Krebs cycle intermediates succinate and citrate, and the Krebs cycle-derived metabolite itaconate. These metabolites have distinct nonmetabolic signaling roles that influence inflammatory gene expression. A key bioenergetic target for the Krebs cycle, the electron transport chain, also becomes altered, generating reactive oxygen species from Complexes I and III. Similarly, alternatively activated macrophages require α-ketoglutarate-dependent epigenetic reprogramming to elicit anti-inflammatory gene expression. In this review, we discuss these advances and speculate on the possibility of targeting these events therapeutically for inflammatory diseases.


Asunto(s)
Ciclo del Ácido Cítrico , Inmunidad , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Susceptibilidad a Enfermedades , Metabolismo Energético , Humanos , Inmunomodulación , Activación de Macrófagos/inmunología , Transducción de Señal
3.
Annu Rev Biochem ; 93(1): 471-498, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38663033

RESUMEN

Three decades of studies on the multifunctional 6-deoxyerythronolide B synthase have laid a foundation for understanding the chemistry and evolution of polyketide antibiotic biosynthesis by a large family of versatile enzymatic assembly lines. Recent progress in applying chemical and structural biology tools to this prototypical assembly-line polyketide synthase (PKS) and related systems has highlighted several features of their catalytic cycles and associated protein dynamics. There is compelling evidence that multiple mechanisms have evolved in this enzyme family to channel growing polyketide chains along uniquely defined sequences of 10-100 active sites, each of which is used only once in the overall catalytic cycle of an assembly-line PKS. Looking forward, one anticipates major advances in our understanding of the mechanisms by which the free energy of a repetitive Claisen-like reaction is harnessed to guide the growing polyketide chain along the assembly line in a manner that is kinetically robust yet evolutionarily adaptable.


Asunto(s)
Dominio Catalítico , Sintasas Poliquetidas , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Modelos Moleculares , Policétidos/metabolismo , Policétidos/química , Conformación Proteica , Especificidad por Sustrato
4.
Cell ; 187(9): 2236-2249.e17, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38614100

RESUMEN

Unlike those of double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and ssRNA viruses, the mechanism of genome packaging of dsRNA viruses is poorly understood. Here, we combined the techniques of high-resolution cryoelectron microscopy (cryo-EM), cellular cryoelectron tomography (cryo-ET), and structure-guided mutagenesis to investigate genome packaging and capsid assembly of bluetongue virus (BTV), a member of the Reoviridae family of dsRNA viruses. A total of eleven assembly states of BTV capsid were captured, with resolutions up to 2.8 Å, with most visualized in the host cytoplasm. ATPase VP6 was found underneath the vertices of capsid shell protein VP3 as an RNA-harboring pentamer, facilitating RNA packaging. RNA packaging expands the VP3 shell, which then engages middle- and outer-layer proteins to generate infectious virions. These revealed "duality" characteristics of the BTV assembly mechanism reconcile previous contradictory co-assembly and core-filling models and provide insights into the mysterious RNA packaging and capsid assembly of Reoviridae members and beyond.


Asunto(s)
Virus de la Lengua Azul , Proteínas de la Cápside , Cápside , Microscopía por Crioelectrón , ARN Viral , Empaquetamiento del Genoma Viral , Virus de la Lengua Azul/genética , Virus de la Lengua Azul/fisiología , Virus de la Lengua Azul/metabolismo , Cápside/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/química , Animales , ARN Viral/metabolismo , ARN Viral/genética , Genoma Viral/genética , Ensamble de Virus , Tomografía con Microscopio Electrónico , Virión/metabolismo , Virión/genética , Virión/ultraestructura , Modelos Moleculares , Línea Celular , Cricetinae
5.
Cell ; 187(6): 1490-1507.e21, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38452761

RESUMEN

Cell cycle progression relies on coordinated changes in the composition and subcellular localization of the proteome. By applying two distinct convolutional neural networks on images of millions of live yeast cells, we resolved proteome-level dynamics in both concentration and localization during the cell cycle, with resolution of ∼20 subcellular localization classes. We show that a quarter of the proteome displays cell cycle periodicity, with proteins tending to be controlled either at the level of localization or concentration, but not both. Distinct levels of protein regulation are preferentially utilized for different aspects of the cell cycle, with changes in protein concentration being mostly involved in cell cycle control and changes in protein localization in the biophysical implementation of the cell cycle program. We present a resource for exploring global proteome dynamics during the cell cycle, which will aid in understanding a fundamental biological process at a systems level.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Células Eucariotas/metabolismo , Redes Neurales de la Computación , Proteoma/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Annu Rev Biochem ; 92: 385-410, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37127263

RESUMEN

Carbon fixation is the process by which CO2 is converted from a gas into biomass. The Calvin-Benson-Bassham cycle (CBB) is the dominant carbon-consuming pathway on Earth, driving >99.5% of the ∼120 billion tons of carbon that are converted to sugar by plants, algae, and cyanobacteria. The carboxylase enzyme in the CBB, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fixes one CO2 molecule per turn of the cycle into bioavailable sugars. Despite being critical to the assimilation of carbon, rubisco's kinetic rate is not very fast, limiting flux through the pathway. This bottleneck presents a paradox: Why has rubisco not evolved to be a better catalyst? Many hypothesize that the catalytic mechanism of rubisco is subject to one or more trade-offs and that rubisco variants have been optimized for their native physiological environment. Here, we review the evolution and biochemistry of rubisco through the lens of structure and mechanism in order to understand what trade-offs limit its improvement. We also review the many attempts to improve rubisco itself and thereby promote plant growth.


Asunto(s)
Dióxido de Carbono , Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo , Dióxido de Carbono/metabolismo , Fotosíntesis
7.
Cell ; 186(21): 4694-4709.e16, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37832525

RESUMEN

Cytoplasmic divisions are thought to rely on nuclear divisions and mitotic signals. We demonstrate in Drosophila embryos that cytoplasm can divide repeatedly without nuclei and mitotic CDK/cyclin complexes. Cdk1 normally slows an otherwise faster cytoplasmic division cycle, coupling it with nuclear divisions, and when uncoupled, cytoplasm starts dividing before mitosis. In developing embryos where CDK/cyclin activity can license mitotic microtubule (MT) organizers like the spindle, cytoplasmic divisions can occur without the centrosome, a principal organizer of interphase MTs. However, centrosomes become essential in the absence of CDK/cyclin activity, implying that the cytoplasm can employ either the centrosome-based interphase or CDK/cyclin-dependent mitotic MTs to facilitate its divisions. Finally, we present evidence that autonomous cytoplasmic divisions occur during unperturbed fly embryogenesis and that they may help extrude mitotically stalled nuclei during blastoderm formation. We postulate that cytoplasmic divisions occur in cycles governed by a yet-to-be-uncovered clock mechanism autonomous from CDK/cyclin complexes.


Asunto(s)
Citocinesis , Embrión no Mamífero , Animales , Núcleo Celular , Centrosoma , Ciclinas/metabolismo , Drosophila , Mitosis , Huso Acromático/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo
8.
Cell ; 186(3): 528-542.e14, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36681079

RESUMEN

Whole-genome duplication (WGD) is a frequent event in cancer evolution and an important driver of aneuploidy. The role of the p53 tumor suppressor in WGD has been enigmatic: p53 can block the proliferation of tetraploid cells, acting as a barrier to WGD, but can also promote mitotic bypass, a key step in WGD via endoreduplication. In wild-type (WT) p53 tumors, WGD is frequently associated with activation of the E2F pathway, especially amplification of CCNE1, encoding cyclin E1. Here, we show that elevated cyclin E1 expression causes replicative stress, which activates ATR- and Chk1-dependent G2 phase arrest. p53, via its downstream target p21, together with Wee1, then inhibits mitotic cyclin-dependent kinase activity sufficiently to activate APC/CCdh1 and promote mitotic bypass. Cyclin E expression suppresses p53-dependent senescence after mitotic bypass, allowing cells to complete endoreduplication. Our results indicate that p53 can contribute to cancer evolution through the promotion of WGD.


Asunto(s)
Ciclina E , Duplicación de Gen , Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Línea Celular Tumoral , Ciclina E/genética , Ciclina E/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Mitosis , Neoplasias/genética , Neoplasias/patología , Proteína p53 Supresora de Tumor/metabolismo
9.
Cell ; 186(25): 5656-5672.e21, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38029746

RESUMEN

Molecular signals interact in networks to mediate biological processes. To analyze these networks, it would be useful to image many signals at once, in the same living cell, using standard microscopes and genetically encoded fluorescent reporters. Here, we report temporally multiplexed imaging (TMI), which uses genetically encoded fluorescent proteins with different clocklike properties-such as reversibly photoswitchable fluorescent proteins with different switching kinetics-to represent different cellular signals. We linearly decompose a brief (few-second-long) trace of the fluorescence fluctuations, at each point in a cell, into a weighted sum of the traces exhibited by each fluorophore expressed in the cell. The weights then represent the signal amplitudes. We use TMI to analyze relationships between different kinase activities in individual cells, as well as between different cell-cycle signals, pointing toward broad utility throughout biology in the analysis of signal transduction cascades in living systems.


Asunto(s)
Proteínas , Transducción de Señal , Animales , Humanos , Ratones , Línea Celular , Colorantes Fluorescentes , Microscopía Fluorescente/métodos , Fosforilación , Supervivencia Celular
10.
Annu Rev Cell Dev Biol ; 40(1): 1-23, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38748857

RESUMEN

Since first identified as a separate domain of life in the 1970s, it has become clear that archaea differ profoundly from both eukaryotes and bacteria. In this review, we look across the archaeal domain and discuss the diverse mechanisms by which archaea control cell cycle progression, DNA replication, and cell division. While the molecular and cellular processes archaea use to govern these critical cell biological processes often differ markedly from those described in bacteria and eukaryotes, there are also striking similarities that highlight both unique and common principles of cell cycle control across the different domains of life. Since much of the eukaryotic cell cycle machinery has its origins in archaea, exploration of the mechanisms of archaeal cell division also promises to illuminate the evolution of the eukaryotic cell cycle.


Asunto(s)
Archaea , Ciclo Celular , Replicación del ADN , Archaea/metabolismo , Archaea/genética , Ciclo Celular/genética , División Celular , Proteínas Arqueales/metabolismo
11.
Annu Rev Biochem ; 91: 107-131, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35320688

RESUMEN

DNA replication in eukaryotic cells initiates from large numbers of sites called replication origins. Initiation of replication from these origins must be tightly controlled to ensure the entire genome is precisely duplicated in each cell cycle. This is accomplished through the regulation of the first two steps in replication: loading and activation of the replicative DNA helicase. Here we describe what is known about the mechanism and regulation of these two reactions from a genetic, biochemical, and structural perspective, focusing on recent progress using proteins from budding yeast.


Asunto(s)
Eucariontes , Células Eucariotas , Ciclo Celular/genética , Replicación del ADN , Eucariontes/genética , Células Eucariotas/metabolismo , Origen de Réplica
12.
Annu Rev Biochem ; 91: 381-401, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729072

RESUMEN

The persistence of the coronavirus disease 2019 (COVID-19) pandemic has resulted in increasingly disruptive impacts, and it has become the most devastating challenge to global health in a century. The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants challenges the currently available therapeutics for clinical application. Nonstructural proteins (also known as replicase proteins) with versatile biological functions play central roles in viral replication and transcription inside the host cells, and they are the most conserved target proteins among the SARS-CoV-2 variants. Specifically, they constitute the replication-transcription complexes (RTCs) dominating the synthesis of viral RNA. Knowledge of themolecular mechanisms of nonstructural proteins and their assembly into RTCs will benefit the development of antivirals targeting them against existing or potentially emerging variants. In this review, we summarize current knowledge of the structures and functions of coronavirus nonstructural proteins as well as the assembly and functions of RTCs in the life cycle of the virus.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , ARN Viral/genética , Replicación Viral
13.
Cell ; 185(4): 654-671.e22, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35065713

RESUMEN

Sex hormones exert a profound influence on gendered behaviors. How individual sex hormone-responsive neuronal populations regulate diverse sex-typical behaviors is unclear. We performed orthogonal, genetically targeted sequencing of four estrogen receptor 1-expressing (Esr1+) populations and identified 1,415 genes expressed differentially between sexes or estrous states. Unique subsets of these genes were distributed across all 137 transcriptomically defined Esr1+ cell types, including estrous stage-specific ones, that comprise the four populations. We used differentially expressed genes labeling single Esr1+ cell types as entry points to functionally characterize two such cell types, BNSTprTac1/Esr1 and VMHvlCckar/Esr1. We observed that these two cell types, but not the other Esr1+ cell types in these populations, are essential for sex recognition in males and mating in females, respectively. Furthermore, VMHvlCckar/Esr1 cell type projections are distinct from those of other VMHvlEsr1 cell types. Together, projection and functional specialization of dimorphic cell types enables sex hormone-responsive populations to regulate diverse social behaviors.


Asunto(s)
Ciclo Estral/genética , Regulación de la Expresión Génica , Caracteres Sexuales , Conducta Sexual Animal/fisiología , Agresión , Animales , Aromatasa/metabolismo , Trastorno Autístico/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neuronas/metabolismo , Conducta Social
14.
Cell ; 185(11): 1888-1904.e24, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35623329

RESUMEN

Cancer cells are featured with uncontrollable activation of cell cycle, and microRNA deficiency drives tumorigenesis. The RNA-dependent RNA polymerase (RDR) is essential for small-RNA-mediated immune response in plants but is absent in vertebrates. Here, we show that ectopic expression of plant RDR1 can generally inhibit cancer cell proliferation. In many human primary tumors, abnormal microRNA isoforms with 1-nt-shorter 3' ends are widely accumulated. RDR1 with nucleotidyltransferase activity can recognize and modify the problematic AGO2-free microRNA duplexes with mononucleotides to restore their 2 nt overhang structure, which eventually rescues AGO2-loading efficiency and elevates global miRNA expression to inhibit cancer cell-cycle specifically. The broad antitumor effects of RDR1, which can be delivered by an adeno-associated virus, are visualized in multiple xenograft tumor models in vivo. Altogether, we reveal the widespread accumulation of aberrant microRNA isoforms in tumors and develop a plant RDR1-mediated antitumor stratagem by editing and repairing defective microRNAs.


Asunto(s)
MicroARNs , Animales , Humanos , Inmunidad , MicroARNs/química , Proteínas de Plantas , Plantas/genética , ARN Polimerasa Dependiente del ARN
15.
Cell ; 184(5): 1245-1261.e21, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33636132

RESUMEN

How early events in effector T cell (TEFF) subsets tune memory T cell (TMEM) responses remains incompletely understood. Here, we systematically investigated metabolic factors in fate determination of TEFF and TMEM cells using in vivo pooled CRISPR screening, focusing on negative regulators of TMEM responses. We found that amino acid transporters Slc7a1 and Slc38a2 dampened the magnitude of TMEM differentiation, in part through modulating mTORC1 signaling. By integrating genetic and systems approaches, we identified cellular and metabolic heterogeneity among TEFF cells, with terminal effector differentiation associated with establishment of metabolic quiescence and exit from the cell cycle. Importantly, Pofut1 (protein-O-fucosyltransferase-1) linked GDP-fucose availability to downstream Notch-Rbpj signaling, and perturbation of this nutrient signaling axis blocked terminal effector differentiation but drove context-dependent TEFF proliferation and TMEM development. Our study establishes that nutrient uptake and signaling are key determinants of T cell fate and shape the quantity and quality of TMEM responses.


Asunto(s)
Aminoácidos/metabolismo , Linfocitos T CD8-positivos/citología , Memoria Inmunológica , Transducción de Señal , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , Sistemas CRISPR-Cas , Ciclo Celular , Diferenciación Celular , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Coriomeningitis Linfocítica/inmunología , Masculino , Ratones , Ratones Transgénicos , Células Precursoras de Linfocitos T/citología
16.
Annu Rev Cell Dev Biol ; 38: 25-48, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35395166

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) represents a large multisubunit E3-ubiquitin ligase complex that controls the unidirectional progression through the cell cycle by the ubiquitination of specific target proteins, marking them for proteasomal destruction. Although the APC/C's role is largely conserved among eukaryotes, its subunit composition and target spectrum appear to be species specific. In this review, we focus on the plant APC/C complex, whose activity correlates with different developmental processes, including polyploidization and gametogenesis. After an introduction into proteolytic control by ubiquitination, we discuss the composition of the plant APC/C and the essential nature of its core subunits for plant development. Subsequently, we describe the APC/C activator subunits and interactors, most being plant specific. Finally, we provide a comprehensive list of confirmed and suspected plant APC/C target proteins. Identification of growth-related targets might offer opportunities to increase crop yield and resilience of plants to climate change by manipulating APC/C activity.


Asunto(s)
Anafase , Plantas , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Plantas/genética , Plantas/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo
17.
Annu Rev Biochem ; 89: 21-43, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32569520

RESUMEN

My coworkers and I have used animal viruses and their interaction with host cells to investigate cellular processes difficult to study by other means. This approach has allowed us to branch out in many directions, including membrane protein characterization, endocytosis, secretion, protein folding, quality control, and glycobiology. At the same time, our aim has been to employ cell biological approaches to expand the fundamental understanding of animal viruses and their pathogenic lifestyles. We have studied mechanisms of host cell entry and the uncoating of incoming viruses as well as the synthesis, folding, maturation, and intracellular movement of viral proteins and molecular assemblies. I have had the privilege to work in institutions in four different countries. The early years in Finland (the University of Helsinki) were followed by 6 years in Germany (European Molecular Biology Laboratory), 16 years in the United States (Yale School of Medicine), and 16 years in Switzerland (ETH Zurich).


Asunto(s)
Calnexina/genética , Calreticulina/genética , Interacciones Huésped-Patógeno/genética , Virus de la Influenza A/genética , Picornaviridae/genética , Proteínas Virales/genética , Virología/historia , Animales , Calnexina/química , Calnexina/metabolismo , Calreticulina/química , Calreticulina/metabolismo , Línea Celular , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Endosomas/metabolismo , Endosomas/virología , Regulación de la Expresión Génica , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Virus de la Influenza A/metabolismo , Picornaviridae/metabolismo , Pliegue de Proteína , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/metabolismo , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Internalización del Virus
18.
Annu Rev Biochem ; 89: 103-133, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32176524

RESUMEN

Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Reparación del ADN por Unión de Extremidades , ADN/genética , Reparación del ADN por Recombinación , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , ADN/química , ADN/metabolismo , Roturas del ADN de Doble Cadena , Humanos , Modelos Moleculares , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
19.
Annu Rev Biochem ; 89: 605-636, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32569521

RESUMEN

ATP-binding cassette (ABC) transporters constitute one of the largest and most ancient protein superfamilies found in all living organisms. They function as molecular machines by coupling ATP binding, hydrolysis, and phosphate release to translocation of diverse substrates across membranes. The substrates range from vitamins, steroids, lipids, and ions to peptides, proteins, polysaccharides, and xenobiotics. ABC transporters undergo substantial conformational changes during substrate translocation. A comprehensive understanding of their inner workings thus requires linking these structural rearrangements to the different functional state transitions. Recent advances in single-particle cryogenic electron microscopy have not only delivered crucial information on the architecture of several medically relevant ABC transporters and their supramolecular assemblies, including the ATP-sensitive potassium channel and the peptide-loading complex, but also made it possible to explore the entire conformational space of these nanomachines under turnover conditions and thereby gain detailed mechanistic insights into their mode of action.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato/química , Bacterias/metabolismo , Membrana Celular/metabolismo , Resistencia a Múltiples Medicamentos/genética , Mitocondrias/metabolismo , Transportadoras de Casetes de Unión a ATP/clasificación , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Bacterias/efectos de los fármacos , Bacterias/genética , Sitios de Unión , Transporte Biológico , Fenómenos Biomecánicos , Membrana Celular/efectos de los fármacos , Humanos , Cinética , Mitocondrias/efectos de los fármacos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Especificidad por Sustrato , Xenobióticos/metabolismo , Xenobióticos/farmacología
20.
Cell ; 181(3): 702-715.e20, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32315619

RESUMEN

Protein phosphatase 2A (PP2A) enzymes can suppress tumors, but they are often inactivated in human cancers overexpressing inhibitory proteins. Here, we identify a class of small-molecule iHAPs (improved heterocyclic activators of PP2A) that kill leukemia cells by allosterically assembling a specific heterotrimeric PP2A holoenzyme consisting of PPP2R1A (scaffold), PPP2R5E (B56ε, regulatory), and PPP2CA (catalytic) subunits. One compound, iHAP1, activates this complex but does not inhibit dopamine receptor D2, a mediator of neurologic toxicity induced by perphenazine and related neuroleptics. The PP2A complex activated by iHAP1 dephosphorylates the MYBL2 transcription factor on Ser241, causing irreversible arrest of leukemia and other cancer cells in prometaphase. In contrast, SMAPs, a separate class of compounds, activate PP2A holoenzymes containing a different regulatory subunit, do not dephosphorylate MYBL2, and arrest tumor cells in G1 phase. Our findings demonstrate that small molecules can serve as allosteric switches to activate distinct PP2A complexes with unique substrates.


Asunto(s)
Proteína Fosfatasa 2/metabolismo , Apoptosis , Proteínas de Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Activadores de Enzimas/metabolismo , Fase G1 , Humanos , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/fisiología , Fenotiazinas/farmacología , Fosforilación , Proteína Fosfatasa 2/fisiología , Subunidades de Proteína/metabolismo , Transactivadores/efectos de los fármacos , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda