Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Cell ; 178(2): 473-490.e26, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31230715

RESUMEN

We introduce APEX-seq, a method for RNA sequencing based on direct proximity labeling of RNA using the peroxidase enzyme APEX2. APEX-seq in nine distinct subcellular locales produced a nanometer-resolution spatial map of the human transcriptome as a resource, revealing extensive patterns of localization for diverse RNA classes and transcript isoforms. We uncover a radial organization of the nuclear transcriptome, which is gated at the inner surface of the nuclear pore for cytoplasmic export of processed transcripts. We identify two distinct pathways of messenger RNA localization to mitochondria, each associated with specific sets of transcripts for building complementary macromolecular machines within the organelle. APEX-seq should be widely applicable to many systems, enabling comprehensive investigations of the spatial transcriptome.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Endonucleasas/metabolismo , Enzimas Multifuncionales/metabolismo , ARN/metabolismo , Análisis de Secuencia de ARN/métodos , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Microscopía Fluorescente , Mitocondrias/genética , ARN/química , ARN Mensajero/química , ARN Mensajero/metabolismo , Transcriptoma
2.
Genes Dev ; 33(13-14): 871-885, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31171704

RESUMEN

Aberrant translation initiation at non-AUG start codons is associated with multiple cancers and neurodegenerative diseases. Nevertheless, how non-AUG translation may be regulated differently from canonical translation is poorly understood. Here, we used start codon-specific reporters and ribosome profiling to characterize how translation from non-AUG start codons responds to protein synthesis inhibitors in human cells. These analyses surprisingly revealed that translation of multiple non-AUG-encoded reporters and the endogenous GUG-encoded DAP5 (eIF4G2/p97) mRNA is resistant to cycloheximide (CHX), a translation inhibitor that severely slows but does not completely abrogate elongation. Our data suggest that slowly elongating ribosomes can lead to queuing/stacking of scanning preinitiation complexes (PICs), preferentially enhancing recognition of weak non-AUG start codons. Consistent with this model, limiting PIC formation or scanning sensitizes non-AUG translation to CHX. We further found that non-AUG translation is resistant to other inhibitors that target ribosomes within the coding sequence but not those targeting newly initiated ribosomes. Together, these data indicate that ribosome queuing enables mRNAs with poor initiation context-namely, those with non-AUG start codons-to be resistant to pharmacological translation inhibitors at concentrations that robustly inhibit global translation.


Asunto(s)
Codón Iniciador/genética , Resistencia a Múltiples Medicamentos/genética , Ribosomas/genética , Elongación de la Transcripción Genética/efectos de los fármacos , Cicloheximida/farmacología , Factor 4G Eucariótico de Iniciación/genética , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros/genética , Células HEK293 , Células HeLa , Humanos , Inhibidores de la Síntesis de la Proteína/farmacología
3.
Am J Hum Genet ; 110(11): 1903-1918, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37816352

RESUMEN

Despite whole-genome sequencing (WGS), many cases of single-gene disorders remain unsolved, impeding diagnosis and preventative care for people whose disease-causing variants escape detection. Since early WGS data analytic steps prioritize protein-coding sequences, to simultaneously prioritize variants in non-coding regions rich in transcribed and critical regulatory sequences, we developed GROFFFY, an analytic tool that integrates coordinates for regions with experimental evidence of functionality. Applied to WGS data from solved and unsolved hereditary hemorrhagic telangiectasia (HHT) recruits to the 100,000 Genomes Project, GROFFFY-based filtration reduced the mean number of variants/DNA from 4,867,167 to 21,486, without deleting disease-causal variants. In three unsolved cases (two related), GROFFFY identified ultra-rare deletions within the 3' untranslated region (UTR) of the tumor suppressor SMAD4, where germline loss-of-function alleles cause combined HHT and colonic polyposis (MIM: 175050). Sited >5.4 kb distal to coding DNA, the deletions did not modify or generate microRNA binding sites, but instead disrupted the sequence context of the final cleavage and polyadenylation site necessary for protein production: By iFoldRNA, an AAUAAA-adjacent 16-nucleotide deletion brought the cleavage site into inaccessible neighboring secondary structures, while a 4-nucleotide deletion unfolded the downstream RNA polymerase II roadblock. SMAD4 RNA expression differed to control-derived RNA from resting and cycloheximide-stressed peripheral blood mononuclear cells. Patterns predicted the mutational site for an unrelated HHT/polyposis-affected individual, where a complex insertion was subsequently identified. In conclusion, we describe a functional rare variant type that impacts regulatory systems based on RNA polyadenylation. Extension of coding sequence-focused gene panels is required to capture these variants.


Asunto(s)
Proteína Smad4 , Telangiectasia Hemorrágica Hereditaria , Humanos , Secuencia de Bases , ADN , Leucocitos Mononucleares/patología , Nucleótidos , Poliadenilación/genética , ARN , Proteína Smad4/genética , Telangiectasia Hemorrágica Hereditaria/genética , Secuenciación Completa del Genoma
4.
Antimicrob Agents Chemother ; 68(5): e0169023, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38501806

RESUMEN

Malaria tropica, caused by the parasite Plasmodium falciparum (P. falciparum), remains one of the greatest public health burdens for humankind. Due to its pivotal role in parasite survival, the energy metabolism of P. falciparum is an interesting target for drug design. To this end, analysis of the central metabolite adenosine triphosphate (ATP) is of great interest. So far, only cell-disruptive or intensiometric ATP assays have been available in this system, with various drawbacks for mechanistic interpretation and partly inconsistent results. To address this, we have established fluorescent probes, based on Förster resonance energy transfer (FRET) and known as ATeam, for use in blood-stage parasites. ATeams are capable of measuring MgATP2- levels in a ratiometric manner, thereby facilitating in cellulo measurements of ATP dynamics in real-time using fluorescence microscopy and plate reader detection and overcoming many of the obstacles of established ATP analysis methods. Additionally, we established a superfolder variant of the ratiometric pH sensor pHluorin (sfpHluorin) in P. falciparum to monitor pH homeostasis and control for pH fluctuations, which may affect ATeam measurements. We characterized recombinant ATeam and sfpHluorin protein in vitro and stably integrated the sensors into the genome of the P. falciparum NF54attB cell line. Using these new tools, we found distinct sensor response patterns caused by several different drug classes. Arylamino alcohols increased and redox cyclers decreased ATP; doxycycline caused first-cycle cytosol alkalization; and 4-aminoquinolines caused aberrant proteolysis. Our results open up a completely new perspective on drugs' mode of action, with possible implications for target identification and drug development.


Asunto(s)
Adenosina Trifosfato , Antimaláricos , Transferencia Resonante de Energía de Fluorescencia , Plasmodium falciparum , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Plasmodium falciparum/genética , Adenosina Trifosfato/metabolismo , Antimaláricos/farmacología , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Humanos , Quinina/farmacología , Doxiciclina/farmacología , Artemisininas/farmacología , Cloroquina/farmacología , Concentración de Iones de Hidrógeno
5.
Cytokine ; 180: 156655, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824862

RESUMEN

The ocular cytokine network plays pivotal roles in terms of the initiation and progression of retinal degeneration. Several types of immunocompetent cells such as microglia participate in inflammation, and a temporal transition in the molecular events of inflammation has been hypothesized. We previously found that the Csf2 gene was induced in the early phase of retinal degeneration. CSF2 participates in the transcriptional activation of several cytokines expressed by microglia; however, whether CSF2 is essential in this context is not known. In this work, we approach this question by using anti-CSF2 neutralizing bntibody and the protein synthesis inhibitor cycloheximide (CHX). We first revealed that CSF2 positively regulated the cytokine induction cascade using a CSF2-neutralizing antibody (anti-CSF2) to treat the microglial cell line that were activated by lipopolysaccharide (LPS). LPS or Lipid A stimulation in the presence of the protein synthesis inhibitor cycloheximide (CHX) led to cytokine superinduction, but suppression of the expression of a few cytokines was also noted in MG5 cells. To examine transitions of the molecular events within LPS-activated microglia, we next performed proteome analysis of MG5 cells stimulated with LPS for 0, 4, and 9 h. The Database for Annotation, Visualization, and Integrated Discovery analysis of differentially expressed proteins showed that various mRNA-modifying molecules were induced after LPS stimulation, in addition to molecules involved in inflammation. However, the numbers of common proteins founded in the comparison between the induced proteins of 4 and 9 h were only one-third and one-half of induced proteins at 4 and 9 h, respectively, suggesting dynamic transition of the induced proteins. LPS-induced mRNA-modifying proteins were almost completely suppressed by CHX, as expected, suggesting that transient induction of transcription-editing proteins plays an important role in terms of the phenotype of inflammation that develops in microglia after LPS stimulation.


Asunto(s)
Citocinas , Lipopolisacáridos , Microglía , Proteoma , Microglía/metabolismo , Microglía/efectos de los fármacos , Lipopolisacáridos/farmacología , Animales , Proteoma/metabolismo , Línea Celular , Citocinas/metabolismo , Cicloheximida/farmacología , Ratones , Transcripción Genética/efectos de los fármacos , Inflamación/metabolismo
6.
Pharmacol Res ; 207: 107327, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079577

RESUMEN

Evidence shows that tropomodulin 1 (TMOD1) is a powerful diagnostic marker in the progression of several cancer types. However, the regulatory mechanism of TMOD1 in tumor progression is still unclear. Here, we showed that TMOD1 was highly expressed in acute myeloid leukemia (AML) specimens, and TMOD1-silencing inhibited cell proliferation by inducing autophagy in AML THP-1 and MOLM-13 cells. Mechanistically, the C-terminal region of TMOD1 directly bound to KPNA2, and TMOD1-overexpression promoted KPNA2 ubiquitylation and reduced KPNA2 levels. In contrast, TMOD1-silencing increased KPNA2 levels and facilitated the nuclear transfer of KPNA2, then subsequently induced autophagy and inhibited cell proliferation by increasing the nucleocytoplasmic transport of p53 and AMPK activation. KPNA2/p53 inhibitors attenuated autophagy induced by silencing TMOD1 in AML cells. Silencing TMOD1 also inhibited tumor growth by elevating KPNA2-mediated autophagy in nude mice bearing MOLM-13 xenografts. Collectively, our data demonstrated that TMOD1 could be a novel therapeutic target for AML treatment.


Asunto(s)
Autofagia , Proliferación Celular , Leucemia Mieloide Aguda , Ratones Desnudos , Tropomodulina , alfa Carioferinas , Humanos , Animales , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Tropomodulina/genética , Tropomodulina/metabolismo , Línea Celular Tumoral , Ratones , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Ratones Endogámicos BALB C , Masculino , Silenciador del Gen , Femenino , Células THP-1
7.
J Integr Neurosci ; 23(1): 17, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38287862

RESUMEN

BACKGROUND: Cycloheximide (CXM), an antifungal antibiotic, causes impaired memory consolidation as a side effect partially by disturbing the activities of the central catecholaminergic and cholinergic system. Some reports indicated that puerarin prevented memory impairment in various models in rodents. However, the protective effects of puerarin on the side effects of cycloheximide for memory consolidation impairment have not yet been investigated. METHODS: The protective effects of puerarin on CXM-induced memory-consolidation impairment, and memory impairment produced by central administration of AF64A neurotoxin, were investigated using a passive avoidance task in rats. A combination of transmitter receptor agonists and antagonists was used to explore the effects of puerarin on nervous system function. The activity of antioxidant defense systems and neurotransmitter systems in the prefrontal cortex and hippocampus were assayed. RESULTS: Systemic (25 and 50 mg/kg, i.p.) or central (5 and 10 µg/brain, i.c.v.) administration of puerarin attenuated CXM-induced memory-consolidation impairment produced by 1.5 mg/kg CXM (s.c.) in rats. The improvements produced by 50 mg/kg puerarin were blocked by cholinergic antagonists, a 5-HT2 receptor agonist, and an adrenergic receptor antagonist. Puerarin (only at 50 mg/kg, i.p.) reversed the CXM-induced alterations of the levels of norepinephrine in the prefrontal cortex and the levels of monoamines in the hippocampus. Puerarin also increased antioxidant-defense-system activities in the prefrontal cortex and hippocampus, which had been decreased by CXM. CONCLUSIONS: We suggested that the attenuating effects of puerarin on CXM-induced memory-consolidation impairment may be due to decrease oxidative damage and the normalition of the neurotransmitter function in the prefrontal cortex and hippocampus.


Asunto(s)
Isoflavonas , Consolidación de la Memoria , Ratas , Animales , Cicloheximida/efectos adversos , Antioxidantes , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Estrés Oxidativo , Neurotransmisores/efectos adversos
8.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928250

RESUMEN

Posttraumatic stress disorder (PTSD) is a debilitating psychosomatic condition characterized by impairment of brain fear circuits and persistence of exceptionally strong associative memories resistant to extinction. In this study, we investigated the neural and behavioral consequences of inhibiting protein synthesis, a process known to suppress the formation of conventional aversive memories, in an established PTSD animal model based on contextual fear conditioning in mice. Control animals were subjected to the conventional fear conditioning task. Utilizing c-Fos neural activity mapping, we found that the retrieval of PTSD and normal aversive memories produced activation of an overlapping set of brain structures. However, several specific areas, such as the infralimbic cortex and the paraventricular thalamic nucleus, showed an increase in the PTSD group compared to the normal aversive memory group. Administration of protein synthesis inhibitor before PTSD induction disrupted the formation of traumatic memories, resulting in behavior that matched the behavior of mice with usual aversive memory. Concomitant with this behavioral shift was a normalization of brain c-Fos activation pattern matching the one observed in usual fear memory. Our findings demonstrate that inhibiting protein synthesis during traumatic experiences significantly impairs the development of PTSD in a mouse model. These data provide insights into the neural underpinnings of protein synthesis-dependent traumatic memory formation and open prospects for the development of new therapeutic strategies for PTSD prevention.


Asunto(s)
Miedo , Memoria , Proteínas Proto-Oncogénicas c-fos , Trastornos por Estrés Postraumático , Animales , Masculino , Ratones , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Biosíntesis de Proteínas , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Trastornos por Estrés Postraumático/metabolismo
9.
Plant Cell Physiol ; 64(10): 1204-1219, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37674261

RESUMEN

Stilbenes accumulate in Scots pine heartwood where they have important roles in protecting wood from decaying fungi. They are also part of active defense responses, and their production is induced by different (a)biotic stressors. The specific transcriptional regulators as well as the enzyme responsible for activating the stilbene precursor cinnamate in the pathway are still unknown. UV-C radiation was the first discovered artificial stress activator of the pathway. Here, we describe a large-scale transcriptomic analysis of pine needles in response to UV-C and treatment with translational inhibitors, both activating the transcription of stilbene pathway genes. We used the data to identify putative candidates for the missing CoA ligase and for pathway regulators. We further showed that the pathway is transcriptionally activated by phosphatase inhibitor, ethylene and jasmonate treatments, as in grapevine, and that the stilbene synthase promoter retains its inducibility in some of the tested conditions in Arabidopsis, a species that normally does not synthesize stilbenes. Shared features between gymnosperm and angiosperm regulation and partially retained inducibility in Arabidopsis suggest that pathway regulation occurs not only via ancient stress-response pathway(s) but also via species-specific regulators. Understanding which genes control the biosynthesis of stilbenes in Scots pine aids breeding of more resistant trees.


Asunto(s)
Arabidopsis , Estilbenos , Estilbenos/metabolismo , Transcriptoma , Arabidopsis/genética , Perfilación de la Expresión Génica , Árboles/genética
10.
Mol Pharm ; 20(4): 2276-2287, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36946991

RESUMEN

To deal with the broad spectrum of coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that threaten human health, it is essential to not only drugs develop that target viral proteins but also consider drugs that target host proteins/cellular processes to protect them from being hijacked for viral infection and replication. To this end, it has been reported that autophagy is deeply involved in coronavirus infection. In this study, we used airway organoids to screen a chemical library of autophagic modulators to identify compounds that could potentially be used to fight against infections by a broad range of coronaviruses. Among the 80 autophagy-related compounds tested, cycloheximide and thapsigargin reduced SARS-CoV-2 infection efficiency in a dose-dependent manner. Cycloheximide treatment reduced the infection efficiency of not only six SARS-CoV-2 variants but also human coronavirus (HCoV)-229E and HCoV-OC43. Cycloheximide treatment also reversed viral infection-induced innate immune responses. However, even low-dose (1 µM) cycloheximide treatment altered the expression profile of ribosomal RNAs; thus, side effects such as inhibition of protein synthesis in host cells must be considered. These results suggest that cycloheximide has broad-spectrum anti-coronavirus activity in vitro and warrants further investigation.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Humanos , SARS-CoV-2 , Cicloheximida/farmacología , Autofagia
11.
Pharmacol Res ; 197: 106955, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820855

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal malignancies lacking effective therapies. KRAS mutations that occur in over 90% of PDAC are major oncogenic drivers of PDAC. The MAPK signaling pathway plays a central role in KRAS-driven oncogenic signaling. However, pharmacological inhibitors of the MAPK pathway are poorly responded in KRAS-mutant PDAC, raising a compelling need to understand the mechanism behind and to seek new therapeutic solutions. Herein, we perform a screen utilizing a library composed of 800 naturally-derived bioactive compounds to identify natural products that are able to sensitize KRAS-mutant PDAC cells to the MAPK inhibition. We discover that tetrandrine, a natural bisbenzylisoquinoline alkaloid, shows a synergistic effect with MAPK inhibitors in PDAC cells and xenograft models. Mechanistically, pharmacological inhibition of the MAPK pathway exhibits a double-edged impact on the TRAIL-death receptor axis, transcriptionally upregulating TRAIL yet downregulating its agonistic receptors DR4 and DR5, which may explain the limited therapeutic outcomes of MAPK inhibitors in KRAS-mutant PDAC. Of great interest, tetrandrine stabilizes DR4/DR5 protein via impairing ubiquitination-mediated protein degradation, thereby allowing a synergy with MAPK inhibition in inducing apoptosis in KRAS-mutant PDAC. Our findings identify a new combinatorial approach for treating KRAS-mutant PDAC and highlight the role of TRAIL-DR4/DR5 axis in dictating the therapeutic outcome in KRAS-mutant PDAC.


Asunto(s)
Bencilisoquinolinas , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores de Muerte Celular , Neoplasias Pancreáticas
12.
Pharmacol Res ; 189: 106692, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773708

RESUMEN

Ubiquitin proteasome activity is suppressed in enzalutamide resistant prostate cancer cells, and the heat shock protein 70/STIP1 homology and U-box-containing protein 1 (HSP70/STUB1) machinery are involved in androgen receptor (AR) and AR variant protein stabilization. Targeting HSP70 could be a viable strategy to overcome resistance to androgen receptor signaling inhibitor (ARSI) in advanced prostate cancer. Here, we showed that a novel HSP70 allosteric inhibitor, JG98, significantly suppressed drug-resistant C4-2B MDVR and CWR22Rv1 cell growth, and enhanced enzalutamide treatment. JG98 also suppressed cell growth in conditional reprogramed cell cultures (CRCs) and organoids derived from advanced prostate cancer patient samples. Mechanistically, JG98 degraded AR/AR-V7 expression in resistant cells and promoted STUB1 nuclear translocation to bind AR-V7. Knockdown of the E3 ligase STUB1 significantly diminished the anticancer effects and partially restored AR-V7 inhibitory effects of JG98. JG231, a more potent analog developed from JG98, effectively suppressed the growth of the drug-resistant prostate cancer cells, CRCs, and organoids. Notably, the combination of JG231 and enzalutamide synergistically inhibited AR/AR-V7 expression and suppressed CWR22Rv1 xenograft tumor growth. Inhibition of HSP70 using novel small-molecule inhibitors coordinates with STUB1 to regulate AR/AR-V7 protein stabilization and ARSI resistance.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/metabolismo , Antagonistas de Andrógenos , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Línea Celular Tumoral , Nitrilos/farmacología , Antagonistas de Receptores Androgénicos , Andrógenos/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/farmacología , Resistencia a Antineoplásicos , Ubiquitina-Proteína Ligasas
13.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37108141

RESUMEN

The Saccharomyces cerevisiae Agp2 is a plasma membrane protein initially reported to be an uptake transporter for L-carnitine. Agp2 was later rediscovered, together with three additional proteins, Sky1, Ptk2, and Brp1, to be involved in the uptake of the polyamine analogue bleomycin-A5, an anticancer drug. Mutants lacking either Agp2, Sky1, Ptk2, or Brp1 are extremely resistant to polyamines and bleomycin-A5, suggesting that these four proteins act in the same transport pathway. We previously demonstrated that pretreating cells with the protein synthesis inhibitor cycloheximide (CHX) blocked the uptake of fluorescently labelled bleomycin (F-BLM), raising the possibility that CHX could either compete for F-BLM uptake or alter the transport function of Agp2. Herein, we showed that the agp2Δ mutant displayed striking resistance to CHX as compared to the parent, suggesting that Agp2 is required to mediate the physiological effect of CHX. We examined the fate of Agp2 as a GFP tag protein in response to CHX and observed that the drug triggered the disappearance of Agp2 in a concentration- and time-dependent manner. Immunoprecipitation analysis revealed that Agp2-GFP exists in higher molecular weight forms that were ubiquitinylated, which rapidly disappeared within 10 min of treatment with CHX. CHX did not trigger any significant loss of Agp2-GFP in the absence of the Brp1 protein; however, the role of Brp1 in this process remains elusive. We propose that Agp2 is degraded upon sensing CHX to downregulate further uptake of the drug and discuss the potential function of Brp1 in the degradation process.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Cicloheximida/farmacología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Bleomicina/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo
14.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958778

RESUMEN

Oocyte activation via dual inhibition of protein synthesis and phosphorylation has improved in vitro embryo production in different mammalian species. In this study, we evaluated the effects of the combination of cycloheximide (CHX), dimethyl amino purine (DMAP), and anisomycin (ANY) on the activation of bovine oocytes, particularly on dynamics of MPF and MAPKs, embryonic developmental potential, and quality. The results showed that the cleavage and blastocyst rates, as well as levels of CCNB1, CDK1, p-CDK1Thr161, and p-CDK1Thr14-Tyr15, were similar among groups; ANY and ANY + CHX reduced the expression of ERK1/2 compared to DMAP-combinations (p < 0.05), whereas ANY + DMAP, CHX + DMAP, and ANY + CHX + DMAP reduced p-ERK1/2 compared to ANY and ANY + CHX treatments (p < 0.05). The quality of blastocysts in terms of cell counts, their allocation, and the numbers of TUNEL-positive cells did not differ among groups. However, transcript levels of POU5F1 were higher in embryos derived from ANY + CHX + DMAP treatment compared to other groups, while expression levels of CDX2 did not show differences. In addition, the BCL2A1/BAX ratio of the ANY + CHX + DMAP treatment was significantly low compared to the ANY treatment (p < 0.05) and did not differ significantly from the other treatments. In conclusion, oocyte activation by dual inhibition of protein synthesis and phosphorylation induces MPF inactivation without degradation of CCNB1, while MAPK inactivation occurs differentially between these inhibitors. Thus, although the combined use of these inhibitors does not affect early developmental competence in vitro, it positively impacts the expression of transcripts associated with embryonic quality.


Asunto(s)
Factor Promotor de Maduración , Partenogénesis , Bovinos , Animales , Proteínas Quinasas Activadas por Mitógenos , Adenina/farmacología , Oocitos , Cicloheximida/farmacología , Blastocisto , Anisomicina/farmacología , Mamíferos
15.
Biochem Biophys Res Commun ; 590: 27-33, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-34968781

RESUMEN

Breast cancer susceptibility gene 2 (BRCA2) mediates genome maintenance during the S phase of the cell cycle, with important roles in replication stress, centrosome replication, and cytokinesis. In this study, we showed that a small heat shock protein, HSP27, interacted with and participated in the degradation of BRCA2 in estrogen-treated MCF-7 cells. BRCA2 degradation reportedly requires ubiquitination of the C-terminal region; thus, fragments of amino acid (aa) residues 2241-2940 were produced and assayed for their degradation following cycloheximide (CHX) treatment. The results showed that aa 2491-2580 affected the degradation of BRCA2, especially lysine (Lys) 2497. Furthermore, the K2497 A/R mutation increased ATP production and the proliferation of DLD-1 (BRCA2 knockout) cells compared to the cells expressing wild-type BRCA2-FLAG. Notably, a single residue, Lys2497, affected BRCA2 degradation, and K2497R is reportedly a missense mutation in hereditary breast cancer.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Proteína BRCA2/genética , Mutación Missense/genética , Proteolisis , Secuencia de Aminoácidos , Proteína BRCA2/química , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Células HEK293 , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Lisina/genética , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Ubiquitina/metabolismo , Ubiquitinación
16.
Curr Genet ; 68(3-4): 505-514, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35314878

RESUMEN

Resistance to the antibiotic Cycloheximide has been reported for a number of fungal taxa. In particular, some yeasts are known to be highly resistant to this antibiotic. Early research showed that this resulted from a transition mutation in one of the 60S ribosomal protein genes. In addition to the yeasts, most genera and species in the Ophiostomatales are highly resistant to this antibiotic, which is widely used to selectively isolate these fungi. Whole-genome sequences are now available for numerous members of the Ophiostomatales providing an opportunity to determine whether the mechanism of resistance in these fungi is the same as that reported for yeast genera such as Kluyveromyces. We examined all the available genomes for the Ophiostomatales and discovered that a transition mutation in the gene coding for ribosomal protein eL42, which results in the substitution of the amino acid Proline to Glutamine, likely confers resistance to this antibiotic. This change across all genera in the Ophiostomatales suggests that the mutation arose early in the evolution of these fungi.


Asunto(s)
Ophiostomatales , Antibacterianos , Cicloheximida/farmacología , Ophiostomatales/genética , Proteínas Ribosómicas , Levaduras
17.
Pharmacol Res ; 182: 106285, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35662627

RESUMEN

Vinigrol is a natural diterpenoid with unprecedented chemical structure, driving great efforts into its total synthesis in the past decades. Despite anti-hypertension and anti-clot ever reported, comprehensive investigations on bioactions and molecular mechanisms of Vinigrol are entirely missing. Here we firstly carried out a complete functional prediction of Vinigrol using a transcriptome-based strategy coupled with multiple bioinformatic analyses and identified "anti-cancer" as the most prominent biofunction ahead of anti-hypertension and anti-depression/psychosis. Broad cytotoxicity was subsequently confirmed on multiple cancer types. Further mechanistic investigation on several breast cancer cells revealed that its anti-cancer effect was mainly through activating PERK/eIF2α arm of unfolded protein response (UPR) and subsequent non-apoptotic cell death independent of caspase activities. The other two branches of UPR, IRE1α and ATF6, were functionally irrelevant to Vinigrol-induced cell death. Using CRISPR/Cas9-based gene activation, repression, and knockout systems, we identified the essential contribution of ATF4 and DDIT3, not ATF6, to the death process. This study unraveled a broad anti-cancer function of Vinigrol and its underlying targets and regulatory mechanisms. It paved the way for further inspection on the structure-efficacy relationship of the whole compound family, making them a novel cluster of PERK-specific stress activators for experimental and clinical uses.


Asunto(s)
Factor de Transcripción Activador 4 , Neoplasias de la Mama , Diterpenos , Factor de Transcripción CHOP , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Diterpenos/farmacología , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Femenino , Humanos , Proteínas Serina-Treonina Quinasas , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Respuesta de Proteína Desplegada , eIF-2 Quinasa/metabolismo
18.
Acta Biochim Biophys Sin (Shanghai) ; 54(12): 1832-1840, 2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36789685

RESUMEN

Aberrant deposition of collagen is associated with cancer development and tissue fibrosis. Proline hydroxylation, catalyzed by collagen prolyl 4-hydroxylases (C-P4Hs), is necessary for collagen maturation and secretion. Here, we try to evaluate the mechanism of the regulation of CHX on collagen maturation. Using pepsin digestion, liquid chromatograph mass spectrometry and gene knockout, we find that treatment of mouse embryonic fibroblasts with cycloheximide (CHX) increases type I collagen proline hydroxylation partially via P4HA1 and mainly via P4HA2. Western blot analysis results show that CHX treatment reduces type I collagen but does not obviously impact the level of P4HA1/2 protein in the endoplasmic reticulum, which enhances the molar ratio of P4HA1/2 to type I collagen, and coimmunoprecipitation results confirm that more P4HA1/2 can bind to each type I collagen. Since C-P4Hs possess the capability to hydroxylate proline independent of ascorbate for a few cycles, this enhanced binding between P4HA1/2 and type I collagen can partially explain how CHX stimulates type I collagen maturation.


Asunto(s)
Colágeno Tipo I , Prolil Hidroxilasas , Animales , Ratones , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Prolil Hidroxilasas/genética , Cicloheximida/farmacología , Fibroblastos/metabolismo , Colágeno/genética , Colágeno/metabolismo , Procolágeno-Prolina Dioxigenasa/genética , Prolina
19.
BMC Biol ; 19(1): 17, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33499865

RESUMEN

BACKGROUND: Long-term memory formation is generally assumed to involve the permanent storage of recently acquired memories, making them relatively insensitive to disruption, a process referred to as memory consolidation. However, when retrieved under specific circumstances, consolidated fear memories are thought to return to a labile state, thereby opening a window for modification (e.g., attenuation) of the memory. Several interventions during a critical time frame after this destabilization seem to be able to alter the retrieved memory, for example by pharmacologically interfering with the restabilization process, either by direct protein synthesis inhibition or indirectly, using drugs that can be safely administered in patients (e.g., propranolol). Here, we find that, contrary to expectations, systemic pharmacological manipulations in auditory fear-conditioned rats do not lead to drug-induced post-retrieval amnesia. RESULTS: In a series of well-powered auditory fear conditioning experiments (four with propranolol, 10 mg/kg, two with rapamycin, 20-40 mg/kg, one with anisomycin, 150 mg/kg and cycloheximide, 1.5 mg/kg), we found no evidence for reduced cued fear memory expression during a drug-free test in adult male Sprague-Dawley rats that had previously received a systemic drug injection upon retrieval of the tone fear memory. All experiments used standard fear conditioning and reactivation procedures with freezing as the behavioral read-out (conceptual or exact replications of published reports) and common pharmacological agents. Additional tests confirmed that the applied drug doses and administration routes were effective in inducing their conventional effects on expression of fear (propranolol, acutely), body weight (rapamycin, anisomycin, cycloheximide), and consolidation of extinction memories (cycloheximide). CONCLUSIONS: In contrast with previously published studies, we did not find evidence for drug-induced post-retrieval amnesia, underlining that this effect, as well as its clinical applicability, may be considerably more constrained and less readily reproduced than what the current literature would suggest.


Asunto(s)
Amnesia/inducido químicamente , Percepción Auditiva , Miedo/psicología , Memoria/efectos de los fármacos , Animales , Masculino , Ratas , Ratas Sprague-Dawley
20.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35162975

RESUMEN

Basic helix-loop-helix (bHLH) transcription factors are evolutionarily conserved and structurally similar proteins important in development. The temporospatial expression of atonal bHLH transcription factor 7 (ATOH7) directs the differentiation of retinal ganglion cells and mutations in the human gene lead to vitreoretinal and/or optic nerve abnormalities. Characterization of pathogenic ATOH7 mutations is needed to understand the functions of the conserved bHLH motif. The published ATOH7 in-frame deletion p.(Arg41_Arg48del) removes eight highly conserved amino acids in the basic domain. We functionally characterized the mutant protein by expressing V5-tagged ATOH7 constructs in human embryonic kidney 293T (HEK293T) cells for subsequent protein analyses, including Western blot, cycloheximide chase assays, Förster resonance energy transfer fluorescence lifetime imaging, enzyme-linked immunosorbent assays and dual-luciferase assays. Our results indicate that the in-frame deletion in the basic domain causes mislocalization of the protein, which can be rescued by a putative dimerization partner transcription factor 3 isoform E47 (E47), suggesting synergistic nuclear import. Furthermore, we observed (i) increased proteasomal degradation of the mutant protein, (ii) reduced protein heterodimerization, (iii) decreased DNA-binding and transcriptional activation of a reporter gene, as well as (iv) inhibited E47 activity. Altogether our observations suggest that the DNA-binding basic domain of ATOH7 has additional roles in regulating the nuclear import, dimerization, and protein stability.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas del Tejido Nervioso , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , ADN , Células HEK293 , Humanos , Proteínas Mutantes , Proteínas del Tejido Nervioso/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda