Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Exp Dermatol ; 33(1): e14972, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37975594

RESUMEN

An excessive proliferation of skin fibroblasts usually results in different skin fibrotic diseases. Hydrogen sulphide (H2 S) is regarded as an important endogenous gasotransmitter with various functions. The study aimed to investigate the roles and mechanisms of H2 S on primary mice skin fibroblasts proliferation. Cell proliferation and collagen synthesis were assessed with the expression of α-smooth muscle actin (α-SMA), proliferating cell nuclear antigen (PCNA), Collagen I and Collagen III. The degree of oxidative stress was evaluated by dihydroethidium (DHE) and MitoSOX staining. Mitochondrial membrane potential (ΔΨm) was detected by JC-1 staining. Necroptosis was evaluated with TDT-mediated dUTP nick end labelling (TUNEL) and expression of receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL). The present study found that α-SMA, PCNA, Collagen I and Collagen III expression were increased, oxidative stress was promoted, ΔΨm was impaired and positive rate of TUNEL staining, RIPK1 and RIPK3 expression as well as MLKL phosphorylation were all enhanced in skin fibroblasts from cystathionine γ-lyase (CSE) knockout (KO) mice or transforming growth factor-ß1 (TGF-ß1, 10 ng/mL)-stimulated mice skin fibroblasts, which was restored by exogenous sodium hydrosulphide (NaHS, 50 µmol/L). In conclusion, endogenous H2 S production impairment in CSE-deficient mice accelerated skin fibroblasts proliferation via promoted necroptosis, which was attenuated by exogenous H2 S. Exogenous H2 S supplement alleviated proliferation of skin fibroblasts with TGF-ß1 stimulation via necroptosis inhibition. This study provides evidence for H2 S as a candidate agent to prevent and treat skin fibrotic diseases.


Asunto(s)
Sulfuro de Hidrógeno , Sulfuros , Ratones , Animales , Sulfuro de Hidrógeno/farmacología , Antígeno Nuclear de Célula en Proliferación , Necroptosis , Fibrosis , Colágeno , Fibroblastos , Proliferación Celular , Factor de Crecimiento Transformador beta
2.
Mol Biol Rep ; 51(1): 558, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643323

RESUMEN

BACKGROUND: Our previous research shows that Curcumin (CUR) attenuates myocardial ischemia-reperfusion injury (MIRI) by reducing intracellular total RNA m6A levels. However, the mechanism remains unknown. METHODS: For ischemia-reperfusion (IR), H9c2 cells were cultured for 6 h in serum-free low-glycemic (1 g/L) medium and a gas environment without oxygen, and then cultured for 6 h in high-glycemic (4.5 g/L) medium supplemented with 10% FBS and a 21% oxygen environment. The effects of different concentrations of CUR (5, 10, and 20 µM) treatments on signaling molecules in conventionally cultured and IR-treated H9c2 cells were examined. RESULTS: CUR treatment significantly up-regulated the H2S levels, and the mRNA and protein expression of cystathionine γ-lyase (CSE), and down-regulated the mRNAs and proteins levels of thiosulfate sulfurtransferase (TST) and ethylmalonic encephalopathy 1 (ETHE1) in H9c2 cells conventionally cultured and subjected to IR. Exogenous H2S supply (NaHS and GYY4137) significantly reduced intracellular total RNA m6A levels, and the expression of RNA m6A "writers" METTL3 and METTL14, and increased the expression of RNA m6A "eraser" FTO in H9c2 cells conventionally cultured and subjected to IR. CSE knockdown counteracted the inhibitory effect of CUR treatment on ROS production, promotion on cell viability, and inhibition on apoptosis of H9c2 cells subjected to IR. CONCLUSION: CUR attenuates MIRI by regulating the expression of H2S level-regulating enzymes and increasing the endogenous H2S levels. Increased H2S levels could regulate the m6A-related proteins expression and intracellular total RNA m6A levels.


Asunto(s)
Curcumina , Sulfuro de Hidrógeno , Daño por Reperfusión Miocárdica , Humanos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Curcumina/farmacología , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , ARN , Oxígeno/metabolismo , Metiltransferasas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato
3.
Int J Med Sci ; 21(5): 965-977, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38616996

RESUMEN

Cardiac hypertrophy is the most prevalent compensatory heart disease that ultimately leads to spontaneous heart failure. Mounting evidence suggests that microRNAs (miRs) and endogenous hydrogen sulfide (H2S) play a crucial role in the regulation of cardiac hypertrophy. In this study, we aimed to investigate whether inhibition of miR-27a could protect against cardiac hypertrophy by modulating H2S signaling. We established a model of cardiac hypertrophy by obtaining hypertrophic tissue from mice subjected to transverse aortic constriction (TAC) and from cells treated with angiotensin-II. Molecular alterations in the myocardium were quantified using quantitative real time PCR (qRT-PCR), Western blotting, and ELISA. Morphological changes were characterized by hematoxylin and eosin (HE) staining and Masson's trichrome staining. Functional myocardial changes were assessed using echocardiography. Our results demonstrated that miR-27a levels were elevated, while H2S levels were reduced in TAC mice and myocardial hypertrophy. Further luciferase and target scan assays confirmed that cystathionine-γ-lyase (CSE) was a direct target of miR-27a and was negatively regulated by it. Notably, enhancement of H2S expression in the heart was observed in mice injected with recombinant adeno-associated virus vector 9 (rAAV9)-anti-miR-27a and in cells transfected with a miR-27a inhibitor during cardiac hypertrophy. However, this effect was abolished by co-transfection with CSE siRNA and the miR-27a inhibitor. Conversely, injecting rAAV9-miR-27a yielded opposite results. Interestingly, our findings demonstrated that glucagon-like peptide-1 (GLP-1) agonists could mitigate myocardial damage by down-regulating miR-27a and up-regulating CSE. In summary, our study suggests that inhibition of miR-27a holds therapeutic promise for the treatment of cardiac hypertrophy by increasing H2S levels. Furthermore, our findings unveil a novel mechanism of GLP-1 agonists involving the miR-27a/H2S pathway in the management of cardiac hypertrophy.


Asunto(s)
Estenosis de la Válvula Aórtica , Insuficiencia Cardíaca , MicroARNs , Animales , Ratones , Cardiomegalia/genética , Péptido 1 Similar al Glucagón , MicroARNs/genética , Cistationina gamma-Liasa
4.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928283

RESUMEN

Epidemiological data suggest that moderate hyperoxemia may be associated with an improved outcome after traumatic brain injury. In a prospective, randomized investigation of long-term, resuscitated acute subdural hematoma plus hemorrhagic shock (ASDH + HS) in 14 adult, human-sized pigs, targeted hyperoxemia (200 < PaO2 < 250 mmHg vs. normoxemia 80 < PaO2 < 120 mmHg) coincided with improved neurological function. Since brain perfusion, oxygenation and metabolism did not differ, this post hoc study analyzed the available material for the effects of targeted hyperoxemia on cerebral tissue markers of oxidative/nitrosative stress (nitrotyrosine expression), blood-brain barrier integrity (extravascular albumin accumulation) and fluid homeostasis (oxytocin, its receptor and the H2S-producing enzymes cystathionine-ß-synthase and cystathionine-γ-lyase). After 2 h of ASDH + HS (0.1 mL/kgBW autologous blood injected into the subdural space and passive removal of 30% of the blood volume), animals were resuscitated for up to 53 h by re-transfusion of shed blood, noradrenaline infusion to maintain cerebral perfusion pressure at baseline levels and hyper-/normoxemia during the first 24 h. Immediate postmortem, bi-hemispheric (i.e., blood-injected and contra-lateral) prefrontal cortex specimens from the base of the sulci underwent immunohistochemistry (% positive tissue staining) analysis of oxidative/nitrosative stress, blood-brain barrier integrity and fluid homeostasis. None of these tissue markers explained any differences in hyperoxemia-related neurological function. Likewise, hyperoxemia exerted no deleterious effects.


Asunto(s)
Encéfalo , Hematoma Subdural Agudo , Choque Hemorrágico , Animales , Porcinos , Hematoma Subdural Agudo/metabolismo , Hematoma Subdural Agudo/etiología , Hematoma Subdural Agudo/patología , Choque Hemorrágico/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Barrera Hematoencefálica/metabolismo , Inmunohistoquímica , Estrés Oxidativo , Resucitación/métodos , Modelos Animales de Enfermedad , Oxígeno/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
5.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38279305

RESUMEN

Vitamin D is known to have a positive effect on bone health. Despite the greater frequency of vitamin D deficiency in African Americans (AA), they have a higher bone mineral density (BMD) compared to whites, demonstrating a disconnect between BMD and vitamin D levels in AA. Another intriguing relationship seen in AA is the triglyceride (TG) paradox, an unusual phenomenon in which a normal TG status is observed even when patients house conditions known to be characterized by high TG levels, such as Type II diabetes. To the best of our knowledge, no study has examined whether these two paradoxical relationships exist simultaneously in AA subjects with Type II diabetes. In this study, we compared levels of blood markers, including HbA1c, TG, and vitamin D, measured as serum 25-hydroxyvitamin D [25(OH)VD] µM/mL, [25(OH)VD]/TG, calcium, and BMD in AA (n = 56) and white (n = 26) subjects with Type II diabetes to see whether these relationships exist concurrently. We found that AA subjects had significantly lower TG and [25(OH)VD] levels and a significantly higher BMD status compared to white subjects, even when the ages, BMI, duration of diabetes, HbA1c, and calcium levels were similar between the two groups. This demonstrates that these two paradoxical relationships exist simultaneously in Type II diabetic AA subjects. In addition to these findings, we discuss the current hypotheses in the literature that attempt to explain why these two intriguing relationships exist. This review also discusses four novel hypotheses, such as altered circulating levels and the potential role of estrogen and hydrogen sulfide on BMD and HMG-CoA reductase as a possible contributor to the TG paradox in AA subjects. This manuscript demonstrates that there are still many unanswered questions regarding these two paradoxical relationships and further research is needed to determine why they exist and how they can be implemented to improve healthcare.


Asunto(s)
Diabetes Mellitus Tipo 2 , Deficiencia de Vitamina D , Humanos , Densidad Ósea , Estudios Transversales , Calcio , Negro o Afroamericano , Hemoglobina Glucada , Vitamina D , Vitaminas , Hormona Paratiroidea
6.
Biogerontology ; 24(2): 275-292, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36662374

RESUMEN

Hydrogen sulfide (H2S) is one of the most important gasotransmitters that affect lifespan and provide resistance to adverse environmental conditions. Here we investigated geroprotective effects of the individual and simultaneous overexpression of genes encoding key enzymes of H2S biosynthesis - cystathionine-ß-synthase (CBS) and cystathionine-γ-lyase (CSE) on D. melanogaster model. Simultaneous overexpression of CBS and CSE resulted in additive (in males) and synergistic (in females) beneficial effects on median lifespan. Individual overexpression of CBS was associated with increased thermotolerance and decreased transcription level of genes encoding stress-responsive transcription factors HIF1 and Hsf, while individual overexpression of CSE was associated with increased resistance to paraquat. Simultaneous overexpression of both genes increased resistance to hyperthermia in old females or paraquat in old males. The obtained results suggest sex-specific epistatic interaction of CBS and CSE overexpression effects on longevity and stress resistance.


Asunto(s)
Cistationina betasintasa , Sulfuro de Hidrógeno , Masculino , Animales , Femenino , Cistationina betasintasa/genética , Drosophila melanogaster , Cistationina , Paraquat
7.
Vet Res ; 54(1): 71, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644526

RESUMEN

Macrophages play a pivotal role in the inflammatory response to the zoonotic pathogen E. coli, responsible for causing enteric infections. While considerable research has been conducted to comprehend the pathogenesis of this disease, scant attention devoted to host-derived H2S. Herein, we reported that E. coli infection enhanced the expression of CSE in macrophages, accompanied by a significantly increased inflammatory response. This process may be mediated by the involvement of excessive autophagy. Inhibition of AMPK or autophagy with pharmacological inhibitors could alleviate the inflammation. Additionally, cell model showed that the mRNA expression of classic inflammatory factors (Il-1ß, Il-6), macrophage polarization markers (iNOS, Arg1) and ROS production was significantly down-regulated after employing CSE specific inhibitor PAG. And PAG is capable of inhibiting excessive autophagy through the LKB1-AMPK-ULK1 axis. Interestingly, exogenous H2S could suppress inflammation response. Our study emphasizes the importance of CSE in regulating the macrophage-mediated response to E. coli. Increased CSE in macrophages leads to excessive inflammation, which should be considered a new target for drug development to treat intestinal infection.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Animales , Proteínas Quinasas Activadas por AMP , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/veterinaria , Transducción de Señal , Inflamación/veterinaria
8.
Int J Mol Sci ; 24(12)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37373128

RESUMEN

Cystathionine γ-lyase (CSE) is an enzyme responsible for the biosynthesis of cysteine from cystathionine in the final step of the transsulfuration pathway. It also has ß-lyase activity toward cystine, generating cysteine persulfide (Cys-SSH). The chemical reactivity of Cys-SSH is thought to be involved in the catalytic activity of particular proteins via protein polysulfidation, the formation of -S-(S)n-H on their reactive cysteine residues. The Cys136/171 residues of CSE have been proposed to be redox-sensitive residues. Herein, we investigated whether CSE polysulfidation occurs at Cys136/171 during cystine metabolism. Transfection of wild-type CSE into COS-7 cells resulted in increased intracellular Cys-SSH production, which was significantly increased when Cys136Val or Cys136/171Val CSE mutants were transfected, instead of the wild-type enzyme. A biotin-polyethylene glycol-conjugated maleimide capture assay revealed that CSE polysulfidation occurs at Cys136 during cystine metabolism. In vitro incubation of CSE with CSE-enzymatically synthesized Cys-SSH resulted in the inhibition of Cys-SSH production. In contrast, the mutant CSEs (Cys136Val and Cys136/171Val) proved resistant to inhibition. The Cys-SSH-producing CSE activity of Cys136/171Val CSE was higher than that of the wild-type enzyme. Meanwhile, the cysteine-producing CSE activity of this mutant was equivalent to that of the wild-type enzyme. It is assumed that Cys-SSH-producing CSE activity could be auto-inactivated via the polysulfidation of the enzyme during cystine metabolism. Thus, the polysulfidation of CSE at the Cys136 residue may be an integral feature of cystine metabolism, which functions to down-regulate Cys-SSH synthesis by the enzyme.


Asunto(s)
Cistationina gamma-Liasa , Sulfuro de Hidrógeno , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Cistina/metabolismo , Cisteína/metabolismo , Proteínas/metabolismo , Oxidación-Reducción , Sulfuro de Hidrógeno/metabolismo
9.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003521

RESUMEN

Over the past decades, the problem of bacterial resistance to most antibiotics has become a serious threat to patients' survival. Nevertheless, antibiotics of a novel class have not been approved since the 1980s. The development of antibiotic potentiators is an appealing alternative to the challenging process of searching for new antimicrobials. Production of H2S-one of the leading defense mechanisms crucial for bacterial survival-can be influenced by the inhibition of relevant enzymes: bacterial cystathionine γ-lyase (bCSE), bacterial cystathionine ß-synthase (bCBS), or 3-mercaptopyruvate sulfurtransferase (MST). The first one makes the main contribution to H2S generation. Herein, we present data on the synthesis, in silico analyses, and enzymatic and microbiological assays of novel bCSE inhibitors. Combined molecular docking and molecular dynamics analyses revealed a novel binding mode of these ligands to bCSE. Lead compound 2a manifested strong potentiating activity when applied in combination with some commonly used antibiotics against multidrug-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. The compound was found to have favorable in vitro absorption, distribution, metabolism, excretion, and toxicity parameters. The high effectiveness and safety of compound 2a makes it a promising candidate for enhancing the activity of antibiotics against high-priority pathogens.


Asunto(s)
Sulfuro de Hidrógeno , Staphylococcus aureus Resistente a Meticilina , Humanos , Antibacterianos/farmacología , Sulfuro de Hidrógeno/metabolismo , Cistationina gamma-Liasa/metabolismo , Staphylococcus aureus Resistente a Meticilina/metabolismo , Pirroles/farmacología , Simulación del Acoplamiento Molecular , Bacterias/metabolismo , Indoles/farmacología , Cistationina betasintasa/metabolismo
10.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36768979

RESUMEN

Hydrogen sulfide (H2S) has been shown to act as both anti-inflammatory and pro-inflammatory mediators. Application of H2S donors generally protects against inflammation; however, experimental results using mice lacking endogenous H2S-producing enzymes, such as cystathionine γ-lyase (CTH) and mercaptopyruvate sulfurtransferase (MPST), are often contradictory. We herein examined two types of model hapten-induced inflammation models, colitis (an inflammatory bowel disease model of mucosal immunity) and contact dermatitis (a type IV allergic model of systemic immunity), in CTH-deficient (Cth-/-) and MPST-deficient (Mpst-/-) mice. Both mice exhibited no significant alteration from wild-type mice in trinitrobenzene sulfonic acid (Th1-type hapten)-induced colitis (a Crohn's disease model) and oxazolone (Th1/Th2 mix-type; Th2 dominant)-induced colitis (an ulcerative colitis model). However, Cth-/- (not Mpst-/-) mice displayed more exacerbated phenotypes in trinitrochlorobenzene (TNCB; Th1-type)-induced contact dermatitis, but not oxazolone, at the delayed phase (24 h post-administration) of inflammation. CTH mRNA expression was upregulated in the TNCB-treated ears of both wild-type and Mpst-/- mice. Although mRNA expression of pro-inflammatory cytokines (IL-1ß and IL-6) was upregulated in both early (2 h) and delayed phases of TNCB-triggered dermatitis in all genotypes, that of Th2 (IL-4) and Treg cytokines (IL-10) was upregulated only in Cth-/- mice, when that of Th1 cytokines (IFNγ and IL-2) was upregulated in wild-type and Mpst-/- mice at the delayed phase. These results suggest that (upregulated) CTH or H2S produced by it helps maintain Th1/Th2 balance to protect against contact dermatitis.


Asunto(s)
Colitis , Dermatitis por Contacto , Sulfuro de Hidrógeno , Ratones , Animales , Cistationina gamma-Liasa/metabolismo , Sulfurtransferasas/genética , Sulfuro de Hidrógeno/metabolismo , Colitis/inducido químicamente , Inflamación , Citocinas , Dermatitis por Contacto/etiología , Haptenos , ARN Mensajero , Cistationina betasintasa/metabolismo
11.
Zhonghua Gan Zang Bing Za Zhi ; 31(11): 1169-1175, 2023 Nov 20.
Artículo en Zh | MEDLINE | ID: mdl-38238950

RESUMEN

Objective: To study the relationship between cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CTH) genes-related signaling pathways in liver cancer cells. Methods: We conducted a correlation analysis between the clinical features of CBS and CTH gene expression by mining the GEO (Gene Expression Omnibus) and TCGA (The Cancer Genome Atlas) databases of liver cancer. Additionally, liver cancer cell lines were verified by immunoblotting. Results: CBS and CTH expressions were significantly lower in tumors than in non-tumors (P < 0.05). COX regression result showed that CBS was an independent risk factor for the poor prognosis of liver cancer cells (HR=0.65, P = 0.02). A univariate logistic regression analysis was performed on the different tumor stages focusing on the CBS gene, which showed that TNM stage II verses I (P = 0.01, OR=0.50), stage III verses I (P = 0.03, OR=0.56), T stage T2 verses T1 (P < 0.01, OR=0.43), and T3 stage verses T1 (P = 0.02, OR=0.54) were significantly lower in liver cancer. TNM stage III verses I (P = 0.01, OR=0.50), Edmondson stage II verses I (P = 0.03, OR=0.48), stage III verses stage I (P < 0.01, OR=0.30), stage IV verses I (P = 0.03, OR=0.22), and T stage T3 verses T1(P = 0.03, OR=0.22) of the CTH gene expressions were significantly lower in liver cancer. GSEA enrichment analysis result revealed that the signaling pathway most correlated with the expression of CTH and CBS genes in liver cancer cells was cytochrome P450 (CYP450) (FDR Q < 0.01, FWER P < 0.01). Western blot results showed that the expression of the CTH downstream protein CSE was reduced in HCC cell lines such as HLE and Hep3B cells compared with the human immortalized liver cell line HL-7702. Conclusion: CBS and CTH gene expressions are lower in tumor tissue than in normal tissue groups. The CBS gene is an independent risk factor for poor prognosis in stem cell carcinoma. The cytochrome P450 is the signaling pathway most closely related to the CBS and CTH genes.


Asunto(s)
Carcinoma Hepatocelular , Sulfuro de Hidrógeno , Neoplasias Hepáticas , Humanos , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Pronóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Sistema Enzimático del Citocromo P-450/genética , Expresión Génica , Sulfuro de Hidrógeno/metabolismo
12.
Biochem Biophys Res Commun ; 615: 109-115, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35609415

RESUMEN

Endoplasmic reticulum stress (ER stress) plays a crucial role in the process of Alzheimer's disease (AD). Activating transcription factor 6 (ATF6) is a crucial sensor of ER stress. In AD patients, the homeostasis of the endogenous signal H2S produced by cystathionine γ-lyase (CTH) is in disbalance. However, the role of ATF6 and CTH in AD is rarely reported. Herein, we found that ATF6 and CTH were reduced in AD patients and APP/PS1 mice by immunohistochemistry and western blots. In LN229 and U87 MG cells, knockdown of ATF6 attenuated CTH expression, whereas overexpression of ATF6 resulted in upregulation of CTH. Brain-specific ATF6 knockout mice expressed significantly down-regulated CTH in the hippocampus and cortex compared to wild-type mice. Mechanistically, ATF6 and CTH increased H2S generation and autophagy-related proteins. Further we observed that CTH promoted the sulfhydration of αSNAP. This is probably to be the specific mechanism by which AFT6 promotes autophagy. Through in vivo studies, we found that αSNAP sulfhydration expression was significantly lower in ATF6 knockout mice than in wild-type mice. Decreased ATF6 impaired spatial memory retention, while addition of CTH rescued memory loss. Together, we demonstrate that ATF6 positively regulates the expression of CTH, which is closely related to the rescue of AD. Targeting the ATF6/CTH signal pathway may provide a new strategy for the treatment of AD.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Enfermedad de Alzheimer , Factor de Transcripción Activador 6/genética , Enfermedad de Alzheimer/genética , Animales , Autofagia , Cistationina , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Humanos , Ratones , Ratones Noqueados
13.
Biosci Biotechnol Biochem ; 86(11): 1536-1542, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36085174

RESUMEN

Various d-amino acids play important physiological roles in mammals, but the pathways of their production remain unknown except for d-serine, which is generated by serine racemase. Previously, we found that Escherichia coli cystathionine ß-lyase possesses amino acid racemase activity in addition to ß-lyase activity. In the present work, we evaluated the enzymatic activities of human cystathionine γ-lyase, which shares a relatively high amino acid sequence identity with cystathionine ß-lyase. The enzyme did not show racemase activity toward various amino acids including alanine and lyase and dehydratase activities were highest toward l-cystathionine and l-homoserine, respectively. The enzyme also showed weak activity toward l-cysteine and l-serine but no activity toward d-amino acids. Intriguingly, the pH and temperature profiles of lyase activity were distinct from those of dehydratase activity. Catalytic efficiency was higher for lyase activity than for dehydratase activity.


Asunto(s)
Isomerasas de Aminoácido , Liasas , Humanos , Animales , Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/metabolismo , Aminoácidos , Cistationina , Cisteína , Homoserina , Liasas/metabolismo , Escherichia coli/metabolismo , Serina , Racemasas y Epimerasas , Alanina , Hidroliasas , Mamíferos/metabolismo
14.
Oral Dis ; 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36097830

RESUMEN

OBJECTIVES: Cystathionine-γ-lyase (CTH) has been proved to involve in inflammation and bone remolding, implying its potential role in the progression of periodontitis. This study was aimed to investigate the function of CTH and its relation to the macrophage polarization in periodontitis. MATERIALS AND METHODS: Bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Cth knockout (Cth-/- ) mice were stimulated with lipopolysaccharide (LPS) in vitro and pro-inflammatory cytokines were analyzed by qRT-PCR. Ligature-induced periodontitis was established on WT and Cth-/- mice. Histological analysis, tartrate-resistant acid phosphatase staining, immunostaining, and Western blot were performed to analyze the periodontium destruction and M1 macrophage polarization. RESULTS: Cth expression in BMDMs was upregulated upon increasing LPS stimulation. Deletion of Cth suppressed BMDMs inflammatory response with decreased Il1b, Il6, and Tnf mRNA. Cth-/- mice with periodontitis showed attenuated bone loss and impaired osteoclast differentiation compared with WT. Moreover, Cth knockout hindered M1 macrophage polarization, reduced the expression of IL-1ß, IL-6, and TNF-α in periodontally diseased tissue. CONCLUSION: This study demonstrated that CTH played an important role in regulating the inflammatory responses and periodontitis tissue destruction. Importantly, Cth knockout suppressed M1 macrophages polarization in periodontitis.

15.
Metab Brain Dis ; 37(6): 1863-1874, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35759072

RESUMEN

Hydrogen sulfide (H2S) is a gasotransmitter endogenously synthesized by cystathionine-γ-lyase (CSE), cystathionine-ß-synthase (CBS), and 3-mercaptopiruvate sulfurtransferase (3-MST) enzymes. H2S exogenous administration prevents the development of hemodynamic impairments after traumatic brain injury (TBI). Since the hypothalamus and the brainstem highly regulate the cardiovascular system, this study aimed to evaluate the effect of NaHS subchronic treatment on the changes of H2S-sythesizing enzymes in those brain areas after TBI and in physiological conditions. For that purpose, animals were submitted to a lateral fluid percussion injury, and the changes in CBS, CSE, and 3-MST protein expression were measured by western blot at days 1, 2, 3, 7, and 28 in the vehicle group, and 7 and 28 days after NaHS treatment. After severe TBI induction, we found a decrease in CBS and CSE protein expression in the hypothalamus and brainstem; meanwhile, 3-MST protein expression diminished only in the hypothalamus compared to the Sham group. Remarkably, i.p. daily injections of NaHS, an H2S donor, (3.1 mg/kg) during seven days: (1) restored CBS and CSE but no 3-MST protein expression in the hypothalamus at day 28 post-TBI; (2) reestablished only CSE in brainstem 7 and 28 days after TBI; and (3) did not modify H2S-sythesizing enzymes protein expression in uninjured animals. Mainly, our results show that the NaHS effect on CBS and CSE protein expression is observed in a time- and tissue-dependent manner with no effect on 3-MST expression, which may suggest a potential role of H2S synthesis in hypothalamus and brainstem impairments observed after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Sulfuro de Hidrógeno , Animales , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Tronco Encefálico , Cistationina , Cistationina betasintasa/metabolismo , Sulfuro de Hidrógeno/farmacología , Hipotálamo/metabolismo
16.
Int J Mol Sci ; 23(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35682634

RESUMEN

Sarcopenia is a gradual and generalized skeletal muscle (SKM) syndrome, characterized by the impairment of muscle components and functionality. Hydrogen sulfide (H2S), endogenously formed within the body from the activity of cystathionine-γ-lyase (CSE), cystathionine- ß-synthase (CBS), and mercaptopyruvate sulfurtransferase, is involved in SKM function. Here, in an in vitro model of sarcopenia based on damage induced by dexamethasone (DEX, 1 µM, 48 h treatment) in C2C12-derived myotubes, we investigated the protective potential of exogenous and endogenous sources of H2S, i.e., glucoraphanin (30 µM), L-cysteine (150 µM), and 3-mercaptopyruvate (150 µM). DEX impaired the H2S signalling in terms of a reduction in CBS and CSE expression and H2S biosynthesis. Glucoraphanin and 3-mercaptopyruvate but not L-cysteine prevented the apoptotic process induced by DEX. In parallel, the H2S-releasing molecules reduced the oxidative unbalance evoked by DEX, reducing catalase activity, O2- levels, and protein carbonylation. Glucoraphanin, 3-mercaptopyruvate, and L-cysteine avoided the changes in myotubes morphology and morphometrics after DEX treatment. In conclusion, in an in vitro model of sarcopenia, an impairment in CBS/CSE/H2S signalling occurs, whereas glucoraphanin, a natural H2S-releasing molecule, appears more effective for preventing the SKM damage. Therefore, glucoraphanin supplementation could be an innovative therapeutic approach in the management of sarcopenia.


Asunto(s)
Sulfuro de Hidrógeno , Sarcopenia , Cistationina , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Cisteína/metabolismo , Glucosinolatos , Humanos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Oximas , Sarcopenia/tratamiento farmacológico , Sulfóxidos , Sulfurtransferasas/metabolismo
17.
Pharm Biol ; 60(1): 1169-1176, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35701112

RESUMEN

CONTEXT: S-Propargyl-cysteine (SPRC), an endogenous H2S modulator, exerts anti-inflammatory effects on cardiovascular and neurodegenerative disease, but it remains unknown whether SPRC can prevent autoimmune hepatitis. OBJECTIVE: To evaluate the preventive effect of SPRC on concanavalin A (Con A)-induced liver injury and uncover the underlying mechanisms. MATERIALS AND METHODS: Mice were randomly divided into five groups: control, Con A, SPRC (5 and 10 mg/kg injected intravenously once a day for 7 days), and propargylglycine (PAG; 50 mg/kg injected intraperitoneally 0.5 h before SPRC for 7 days). All mice except the controls were intravenously injected with Con A (20 mg/kg) on day 7. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were evaluated using kits. Inflammatory cytokines (TNF-α and IFN-γ) in the blood and in the liver were detected by ELISA Kit and real-time PCR, respectively. The expression of mitogen-activated protein kinase (MAPK) pathway proteins (p-JNK and p-Akt) and apoptosis proteins (Bax and Bcl-2) was detected using western blotting. RESULTS: SPRC reduced the levels of AST (p < 0.05) and ALT (p < 0.01) and decreased the release of the inflammatory cytokines. Mechanistically, SPRC increased H2S level (p < 0.05) and promoted cystathionine γ-lyase (CSE) expression (p < 0.05). SPRC inhibited the MAPK pathway activation and the apoptosis pathway. All the effects of SPRC were blocked by the CSE inhibitor PAG. CONCLUSIONS: SPRC prevents Con A-induced liver injury in mice by promoting CSE expression and producing endogenous H2S. The mechanisms include reducing the release of inflammatory cytokines, attenuating MAPK pathway activation, and alleviating apoptosis.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Sulfuro de Hidrógeno , Enfermedades Neurodegenerativas , Animales , Concanavalina A/toxicidad , Cisteína/farmacología , Citocinas , Sulfuro de Hidrógeno/metabolismo , Ratones
18.
Angew Chem Int Ed Engl ; 61(4): e202111759, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34791772

RESUMEN

Accurate detection of hepatic hydrogen sulfide (H2 S) to monitor H2 S-related enzymes' activity is critical for acute hepatitis diagnosis, but remains a challenge due to the dynamic and transient nature of H2 S. Here, we report a H2 S-activatable near-infrared afterglow/MRI bimodal probe F1-GdNP, which shows an "always-on" MRI signal and "off-on" afterglow signal toward H2 S. F1-GdNP shows fast response, high sensitivity and specificity toward H2 S, permitting afterglow imaging of H2 S and evaluation of cystathionine γ-lyase (CSE)'s activity in living mice. We further employ the high spatial-resolution MRI signal of F1-GdNP to track its delivery and accumulation in liver. Importantly, F1-GdNP offers a high signal-to-background ratio (SBR=86.2±12.0) to sensitively report on the increased hepatic H2 S level in the acute hepatitis mice via afterglow imaging, which correlated well with the upregulated CSE activity in the liver, showcasing the good potential of F1-GdNP for monitoring of acute hepatitis process in vivo.


Asunto(s)
Colorantes Fluorescentes/química , Gadolinio/química , Hepatitis/diagnóstico por imagen , Sulfuro de Hidrógeno/análisis , Imagen por Resonancia Magnética , Nanopartículas/química , Animales , Ratones , Imagen Óptica , Células RAW 264.7
19.
Am J Physiol Heart Circ Physiol ; 320(2): H511-H519, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33275519

RESUMEN

In sleep apnea, airway obstruction causes intermittent hypoxia (IH). In animal studies, IH-dependent hypertension is associated with loss of vasodilator hydrogen sulfide (H2S), and increased H2S activation of sympathetic nervous system (SNS) activity in the carotid body. We previously reported that inhibiting cystathionine γ-lyase (CSE) to prevent H2S synthesis augments vascular resistance in control rats. The goal of this study was to evaluate the contribution of IH-induced changes in CSE signaling to increased blood pressure and vascular resistance. We hypothesized that chronic IH exposure eliminates CSE regulation of blood pressure (BP) and vascular resistance. In rats instrumented with venous catheters, arterial telemeters, and flow probes on the main mesenteric artery, the CSE inhibitor dl-propargylglycine (PAG, 50 mg/kg/day i.v. for 5 days) increased BP in Sham rats but decreased BP in IH rats [in mmHg, Sham (n = 11): 114 ± 4 to 131 ± 6; IH (n = 8): 131 ± 8 to 115 ± 7 mmHg, P < 0.05]. PAG treatment increased mesenteric vascular resistance in Sham rats but decreased it in IH rats (day 5/day 1: Sham: 1.50 ± 0.07; IH: 0.85 ± 0.19, P < 0.05). Administration of the ganglionic blocker hexamethonium (to evaluate SNS activity) decreased mesenteric resistance in PAG-treated Sham rats more than in saline-treated Sham rats or PAG-treated IH rats. CSE immunoreactivity in IH carotid bodies compared with those from Sham rats. However, CSE staining in small mesenteric arteries was less in arteries from IH than in Sham rats but not different in larger arteries (inner diameter > 200 µm). These results suggest endogenous H2S regulates blood pressure and vascular resistance, but this control is lost after IH exposure with decreased CSE expression in resistance size arteries. IH exposure concurrently increases carotid body CSE expression and relative SNS control of blood pressure, suggesting both vascular and carotid body H2S generation contribute to blood pressure regulation.NEW & NOTEWORTHY These results suggest that CSE's protective role in the vasculature is impaired by simulated sleep apnea, which also upregulates CSE in the carotid body. Thus, this enzyme system can exert both pro- and antihypertensive effects and may contribute to elevated SNS outflow in sleep apnea.


Asunto(s)
Circulación Sanguínea , Presión Sanguínea , Gasotransmisores/metabolismo , Sulfuro de Hidrógeno/metabolismo , Síndromes de la Apnea del Sueño/metabolismo , Alquinos/farmacología , Animales , Antihipertensivos/farmacología , Cuerpo Carotídeo/efectos de los fármacos , Cuerpo Carotídeo/metabolismo , Cuerpo Carotídeo/fisiopatología , Cistationina gamma-Liasa/antagonistas & inhibidores , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Inhibidores Enzimáticos/farmacología , Gasotransmisores/sangre , Glicina/análogos & derivados , Glicina/farmacología , Hexametonio/farmacología , Sulfuro de Hidrógeno/sangre , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiopatología , Ratas , Ratas Sprague-Dawley , Síndromes de la Apnea del Sueño/fisiopatología , Resistencia Vascular
20.
Arch Biochem Biophys ; 697: 108713, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33271147

RESUMEN

Circadian clock genes are found in almost every cell that has a nucleus; they regulate the rhythmic nature of all processes that are cyclical. Among the genes controlled by the circadian clock, there are numerous factors that regulate key processes in the functioning of the cell. Disturbances in the functioning of the circadian clock are associated with numerous disorders. A recent study has shown the key role of H2S in regulating circadian rhythm. In this study, we investigated the in vitro effect of pharmacological inhibition of cystathionine-ß-synthase (CBS) and/or cystathionine-γ-lyase (CSE) on the circadian dynamics of Per2 expression in serum-shocked NIH-3T3 cells. Alternatively, Cbs and Cse were knocked down by transfection with siRNA. The 48-h treatment of serum-shocked NIH-3T3 cells with 1 mM dl-propargylglycine (PAG), a specific CSE inhibitor, significantly decreased the amplitude and baseline expression of Per2. During exposure to an effective CBS and CSE inhibitor (aminooxyacetic acid [AOAA]), the amplitude of oscillation and baseline expression of Per2 significantly increased. Incubation of NIH-3T3 cells with both inhibitors also significantly increased the amplitude and baseline expression of Per2 messenger RNA (mRNA). siCbs or siCse knockdowan significantly reduced the baseline and amplitude of oscillation of Per2. In conclusion, we showed that CBS/CSE/H2S pathway participates in the regulation of the circadian clock system. PAG and AOAA, change the general expression and dynamics of Per2 genes, but the increase of amplitude and overall Per2 mRNA level due to exposure to AOAA is probably caused by factors other than CBS and CSE activity.


Asunto(s)
Ritmo Circadiano/efectos de los fármacos , Cistationina betasintasa/antagonistas & inhibidores , Cistationina gamma-Liasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Proteínas Circadianas Period/metabolismo , Suero/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Cistationina betasintasa/deficiencia , Cistationina betasintasa/genética , Cistationina gamma-Liasa/deficiencia , Cistationina gamma-Liasa/genética , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Ratones , Células 3T3 NIH , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda