Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 549
Filtrar
1.
Cell ; 176(4): 702-715.e14, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30661758

RESUMEN

Voltage-gated sodium (Nav) channels are targets of disease mutations, toxins, and therapeutic drugs. Despite recent advances, the structural basis of voltage sensing, electromechanical coupling, and toxin modulation remains ill-defined. Protoxin-II (ProTx2) from the Peruvian green velvet tarantula is an inhibitor cystine-knot peptide and selective antagonist of the human Nav1.7 channel. Here, we visualize ProTx2 in complex with voltage-sensor domain II (VSD2) from Nav1.7 using X-ray crystallography and cryoelectron microscopy. Membrane partitioning orients ProTx2 for unfettered access to VSD2, where ProTx2 interrogates distinct features of the Nav1.7 receptor site. ProTx2 positions two basic residues into the extracellular vestibule to antagonize S4 gating-charge movement through an electrostatic mechanism. ProTx2 has trapped activated and deactivated states of VSD2, revealing a remarkable ∼10 Å translation of the S4 helix, providing a structural framework for activation gating in voltage-gated ion channels. Finally, our results deliver key templates to design selective Nav channel antagonists.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/ultraestructura , Péptidos/metabolismo , Venenos de Araña/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células CHO , Cricetulus , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Células HEK293 , Humanos , Activación del Canal Iónico , Péptidos/toxicidad , Dominios Proteicos , Venenos de Araña/toxicidad , Arañas , Bloqueadores del Canal de Sodio Activado por Voltaje , Canales de Sodio Activados por Voltaje/metabolismo
2.
Mol Cell ; 83(18): 3347-3359.e9, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37647899

RESUMEN

The amino acid cysteine and its oxidized dimeric form cystine are commonly believed to be synonymous in metabolic functions. Cyst(e)ine depletion not only induces amino acid response but also triggers ferroptosis, a non-apoptotic cell death. Here, we report that unlike general amino acid starvation, cyst(e)ine deprivation triggers ATF4 induction at the transcriptional level. Unexpectedly, it is the shortage of lysosomal cystine, but not the cytosolic cysteine, that elicits the adaptative ATF4 response. The lysosome-nucleus signaling pathway involves the aryl hydrocarbon receptor (AhR) that senses lysosomal cystine via the kynurenine pathway. A blockade of lysosomal cystine efflux attenuates ATF4 induction and sensitizes ferroptosis. To potentiate ferroptosis in cancer, we develop a synthetic mRNA reagent, CysRx, that converts cytosolic cysteine to lysosomal cystine. CysRx maximizes cancer cell ferroptosis and effectively suppresses tumor growth in vivo. Thus, intracellular nutrient reprogramming has the potential to induce selective ferroptosis in cancer without systematic starvation.


Asunto(s)
Quistes , Ferroptosis , Humanos , Cisteína , Cistina , Ferroptosis/genética , Aminoácidos , Lisosomas
3.
Proc Natl Acad Sci U S A ; 120(1): e2218630120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574673

RESUMEN

A family of leucine-rich-repeat-containing G-protein-coupled receptors (LGRs) mediate diverse physiological responses when complexed with their cognate ligands. LGRs are present in all metazoan animals. In humans, the LGR ligands include glycoprotein hormones (GPHs) chorionic gonadotropin (hCG), luteinizing hormone, follicle-stimulating hormone (hFSH), and thyroid-stimulating hormone (hTSH). These hormones are αß heterodimers of cystine-knot protein chains. LGRs and their ligand chains have coevolved. Ancestral hormone homologs, present in both bilaterian animals and chordates, are identified as α2ß5. We have used single-wavelength anomalous diffraction and molecular replacement to determine structures of the α2ß5 hormone from Caenorhabditis elegans (Ceα2ß5). Ceα2ß5 is unglycosylated, as are many other α2ß5 hormones. Both Hsα2ß5, the human homolog of Ceα2ß5, and hTSH activate the same receptor (hTSHR). Despite having little sequence similarity to vertebrate GPHs, apart from the cysteine patterns from core disulfide bridges, Ceα2ß5 is generally similar in structure to these counterparts; however, its α2 and ß5 subunits are more symmetric as compared with α and ß of hCG and hFSH. This quasisymmetry suggests a hypothetical homodimeric antecedent of the α2ß5 and αß heterodimers. Known structures together with AlphaFold models from the sequences for other LGR ligands provide representatives for the molecular evolution of LGR ligands from early metazoans through the present-day GPHs. The experimental Ceα2ß5 structure validates its AlphaFold model, and thus also that for Hsα2ß5; and interfacial characteristics in a model for the Hsα2ß5:hTSHR complex are similar to those found in an experimental hTSH:hTSHR structure.


Asunto(s)
Caenorhabditis elegans , Glicoproteínas , Hormonas , Receptores Acoplados a Proteínas G , Animales , Secuencia de Aminoácidos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ligandos , Receptores Acoplados a Proteínas G/genética
4.
J Biol Chem ; 300(4): 107125, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432638

RESUMEN

Cyclotides are plant-derived peptides characterized by a head-to-tail cyclic backbone and a cystine knot motif comprised of three disulfide bonds. Formation of this motif via in vitro oxidative folding can be challenging and can result in misfolded isomers with nonnative disulfide connectivities. Here, we investigated the effect of ß-turn nucleation on cyclotide oxidative folding. Two types of ß-turn mimics were grafted into kalata B1, individually replacing each of the four ß-turns in the folded cyclotide. Insertion of d-Pro-Gly into loop 5 was beneficial to the folding of both cyclic kB1 and a linear form of the peptide. The linear grafted analog folded four-times faster in aqueous conditions than cyclic kB1 in optimized conditions. Additionally, the cyclic analogue folded without the need for redox agents by transitioning through a native-like intermediate that was on-pathway to product formation. Kalata B1 is from the Möbius subfamily of cyclotides. Grafting d-Pro-Gly into loop 5 of cyclotides from two other subfamilies also had a beneficial effect on folding. Our findings demonstrate the importance of a ß-turn nucleation site for cyclotide oxidative folding, which could be adopted as a chemical strategy to improve the in vitro folding of diverse cystine-rich peptides.


Asunto(s)
Ciclotidas , Oxidación-Reducción , Pliegue de Proteína , Ciclotidas/química , Proteínas de Plantas/química , Secuencia de Aminoácidos
5.
J Biol Chem ; 300(4): 107203, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508311

RESUMEN

We are entering an exciting time in structural biology where artificial intelligence can be used to predict protein structures with greater accuracy than ever before. Extending this level of accuracy to the predictions of disulfide-rich peptide structures is likely to be more challenging, at least in the short term, given the tight packing of cysteine residues and the numerous ways that the disulfide bonds can potentially be linked. It has been previously shown in many cases that several disulfide bond connectivities can be accommodated by a single set of NMR-derived structural data without significant violations. Disulfide-rich peptides are prevalent throughout nature, and arguably the most well-known are those present in venoms from organisms such as cone snails. Here, we have determined the first three-dimensional structure and disulfide connectivity of a U-superfamily cone snail venom peptide, TxVIIB. TxVIIB has a VI/VII cysteine framework that is generally associated with an inhibitor cystine knot (ICK) fold; however, AlphaFold predicted that the peptide adopts a mini-granulin fold with a granulin disulfide connectivity. Our experimental studies using NMR spectroscopy and orthogonal protection of cysteine residues indicate that TxVIIB indeed adopts a mini-granulin fold but with the ICK disulfide connectivity. Our findings provide structural insight into the underlying features that govern formation of the mini-granulin fold rather than the ICK fold and will provide fundamental information for prediction algorithms, as the subtle complexity of disulfide isomers may be not adequately addressed by the current prediction algorithms.


Asunto(s)
Conotoxinas , Animales , Secuencia de Aminoácidos , Conotoxinas/química , Caracol Conus , Cisteína/química , Disulfuros/química , Granulinas/química , Granulinas/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Pliegue de Proteína
6.
Trends Biochem Sci ; 45(4): 332-346, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32014389

RESUMEN

Miniproteins are a diverse group of protein scaffolds characterized by small (1-10 kDa) size, stability, and versatility in drug-like roles. Coming largely from native sources, they have been widely adopted into drug development pipelines. While their structures and capabilities are diverse, the approaches to their utilization share more similarities with each other than with more widely used modalities (e.g., antibodies or small molecules). In this review, we highlight recent advances in miniprotein-based approaches to otherwise poorly addressed clinical needs, including structure-based and functional characterization. We also summarize their unique screening strategies and pharmacology considerations. Through a greater understanding of the unique properties that make them attractive for drug design, miniproteins can be effectively utilized against targets that are intractable by other approaches.


Asunto(s)
Desarrollo de Medicamentos , Proteínas , Animales , Humanos , Proteínas/química , Proteínas/metabolismo
7.
J Biol Chem ; 299(7): 104901, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37302550

RESUMEN

Collagen superfamily of proteins is a major component of the extracellular matrix. Defects in collagens underlie the cause of nearly 40 human genetic diseases in millions of people worldwide. Pathogenesis typically involves genetic alterations of the triple helix, a hallmark structural feature that bestows exceptional mechanical resistance to tensile forces and a capacity to bind a plethora of macromolecules. Yet, there is a paramount knowledge gap in understanding the functionality of distinct sites along the triple helix. Here, we present a recombinant technique to produce triple helical fragments for functional studies. The experimental strategy utilizes the unique capacity of the NC2 heterotrimerization domain of collagen IX to drive three α-chain selection and registering the triple helix stagger. For proof of principle, we produced and characterized long triple helical fragments of collagen IV that were expressed in a mammalian system. The heterotrimeric fragments encompassed the CB3 trimeric peptide of collagen IV, which harbors the binding motifs for α1ß1 and α2ß1 integrins. Fragments were characterized and shown to have a stable triple helix, post-translational modifications, and high affinity and specific binding of integrins. The NC2 technique is a universal tool for the high-yield production of heterotrimeric fragments of collagens. Fragments are suitable for mapping functional sites, determining coding sequences of binding sites, elucidating pathogenicity and pathogenic mechanisms of genetic mutations, and production of fragments for protein replacement therapy.


Asunto(s)
Colágeno Tipo IV , Integrinas , Multimerización de Proteína , Animales , Humanos , Sitios de Unión , Colágeno Tipo IV/química , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Integrinas/química , Integrinas/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Mutación , Dominios Proteicos
8.
Apoptosis ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886311

RESUMEN

Disulfidptosis is a novel form of cell death that is distinguishable from established programmed cell death pathways such as apoptosis, pyroptosis, autophagy, ferroptosis, and oxeiptosis. This process is characterized by the rapid depletion of nicotinamide adenine dinucleotide phosphate (NADPH) in cells and high expression of solute carrier family 7 member 11 (SLC7A11) during glucose starvation, resulting in abnormal cystine accumulation, which subsequently induces andabnormal disulfide bond formation in actin cytoskeleton proteins, culminating in actin network collapse and disulfidptosis. This review aimed to summarize the underlying mechanisms, influencing factors, comparisons with traditional cell death pathways, associations with related diseases, application prospects, and future research directions related to disulfidptosis.

9.
J Cell Sci ; 135(15)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35775474

RESUMEN

Accelerated aerobic glycolysis is a distinctive metabolic property of cancer cells that confers dependency on glucose for survival. However, the therapeutic strategies targeting this vulnerability are still inefficient and have unacceptable side effects in clinical trials. Therefore, developing biomarkers to predict therapeutic efficacy would be essential to improve the selective targeting of cancer cells. Here, we found that cell lines that are sensitive to glucose deprivation have high expression of cystine/glutamate antiporter xCT (also known as SLC7A11). We found that cystine uptake and glutamate export through xCT contributed to rapid NADPH depletion under glucose deprivation. This collapse of the redox system oxidized and inactivated AMP-activated protein kinase (AMPK), a major regulator of metabolic adaptation, resulting in a metabolic catastrophe and cell death. Although this phenomenon was prevented by pharmacological or genetic inhibition of xCT, overexpression of xCT sensitized resistant cancer cells to glucose deprivation. Taken together, these findings suggest a novel crosstalk between AMPK and xCT that links metabolism and signal transduction, and reveal a metabolic vulnerability to glucose deprivation in cancer cells expressing high levels of xCT.


Asunto(s)
Cistina , Neoplasias , Proteínas Quinasas Activadas por AMP/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Línea Celular Tumoral , Cistina/metabolismo , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Neoplasias/genética , Oxidación-Reducción
10.
Biochem Biophys Res Commun ; 723: 150178, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38823363

RESUMEN

Cell models of mitochondrial complex Ⅰ (CⅠ) deficiency display significant elevations in reactive oxygen species (ROS) levels and an increase in cellular apoptosis. However, the underlying mechanisms governing anti-apoptotic processes in CⅠ-deficient cells remain elusive. Here, we introduced a mutation in NDUFS7, a crucial subunit of CI, in HEK293T cells and found that the absence of NDUFS7 resulted in reduced cell proliferation, elevated cell death, and increased susceptibility to oxidative stress. Mechanismly, we revealed that the upregulation of SLC7A11 played a crucial role in mitigating cell death resulting from NDUFS7 deficiency. Specifically, the increased expression of SLC7A11 enhanced cystine import, which subsequently reduced cell death by promoting the biosynthesis of reduced glutathione (GSH). Collectively, our findings suggest that SLC7A11-mediated cystine import, representing a novel pathway independent of NADPH production, plays a vital role in protection against NDUFS7 deficiency-induced cell death. This novel pathway provides potential insights into the understanding of pathogenic mechanisms and the therapeutic management of mitochondrial disorders associated with CⅠ deficiency.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Cistina , Complejo I de Transporte de Electrón , Humanos , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Apoptosis , Muerte Celular , Cistina/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/deficiencia , Glutatión/metabolismo , Células HEK293 , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
11.
J Neuroinflammation ; 21(1): 54, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383421

RESUMEN

Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the aggregation of α-Synuclein (αSYN) building up intraneuronal inclusions termed Lewy pathology. Mounting evidence suggests that neuron-released αSYN aggregates could be central to microglial activation, which in turn mounts and orchestrates neuroinflammatory processes potentially harmful to neurons. Therefore, understanding the mechanisms that drive microglial cell activation, polarization and function in PD might have important therapeutic implications. Here, using primary microglia, we investigated the inflammatory potential of pure αSYN fibrils derived from PD patients. We further explored and characterized microglial cell responses to a chronic-type inflammatory stimulation combining PD patient-derived αSYN fibrils (FPD), Tumor necrosis factor-α (TNFα) and prostaglandin E2 (PGE2) (TPFPD). We showed that FPD hold stronger inflammatory potency than pure αSYN fibrils generated de novo. When combined with TNFα and PGE2, FPD polarizes microglia toward a particular functional phenotype departing from FPD-treated cells and featuring lower inflammatory cytokine and higher glutamate release. Whereas metabolomic studies showed that TPFPD-exposed microglia were closely related to classically activated M1 proinflammatory cells, notably with similar tricarboxylic acid cycle disruption, transcriptomic analysis revealed that TPFPD-activated microglia assume a unique molecular signature highlighting upregulation of genes involved in glutathione and iron metabolisms. In particular, TPFPD-specific upregulation of Slc7a11 (which encodes the cystine-glutamate antiporter xCT) was consistent with the increased glutamate response and cytotoxic activity of these cells toward midbrain dopaminergic neurons in vitro. Together, these data further extend the structure-pathological relationship of αSYN fibrillar polymorphs to their innate immune properties and demonstrate that PD-derived αSYN fibrils, TNFα and PGE2 act in concert to drive microglial cell activation toward a specific and highly neurotoxic chronic-type inflammatory phenotype characterized by robust glutamate release and iron retention.


Asunto(s)
Síndromes de Neurotoxicidad , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Microglía/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Señales (Psicología) , Inflamación/metabolismo , Neuronas Dopaminérgicas/patología , Síndromes de Neurotoxicidad/metabolismo , Glutamatos/metabolismo , Hierro/metabolismo
12.
Mol Genet Metab ; 142(1): 108454, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38603816

RESUMEN

BACKGROUND: Cystine-depleting therapy in nephropathic cystinosis is currently monitored via the white blood cell cystine assay, although its application and usefulness are limited by practical and technical issues. Therefore, alternative biomarkers that are widely available, more economical and less technically demanding, while reliably reflecting long-term adherence to cysteamine treatment, are desirable. Recently, we proposed chitotriosidase enzyme activity as a potential novel biomarker for the therapeutic monitoring of cysteamine treatment in cystinosis. In this study, we aimed to validate our previous findings and to confirm the value of chitotriosidase in the management of cystinosis therapy. MATERIALS & METHODS: A retrospective study was conducted on 12 patients treated at the National Institutes of Health Clinical Center and followed up for at least 2 years. Plasma chitotriosidase enzyme activity was correlated with corresponding clinical and biochemical data. RESULTS: Plasma chitotriosidase enzyme activity significantly correlated with WBC cystine levels, cysteamine total daily dosage and a Composite compliance score. Moreover, plasma chitotriosidase was a significant independent predictor for WBC cystine levels, and cut-off values were established in both non-kidney transplanted and kidney transplanted cystinosis patients to distinguish patients with a good versus poor compliance with cysteamine treatment. Our observations are consistent with those of our previous study and validate our findings. CONCLUSIONS: Chitotriosidase enzyme activity is a valid potential alternative biomarker for monitoring cysteamine treatment in nephropathic cystinosis patients. SYNOPSIS: Chitotriosidase enzyme activity is a valid potential alternative biomarker for monitoring cysteamine treatment in nephropathic cystinosis patients.


Asunto(s)
Cisteamina , Cistina , Cistinosis , Hexosaminidasas , Humanos , Cisteamina/uso terapéutico , Masculino , Femenino , Cistinosis/tratamiento farmacológico , Cistinosis/sangre , Estudios Retrospectivos , Hexosaminidasas/sangre , Adolescente , Cistina/sangre , Niño , Adulto , Biomarcadores/sangre , Adulto Joven , Monitoreo de Drogas/métodos , Depletores de Cistina/uso terapéutico , Preescolar , Trasplante de Riñón
13.
Chem Senses ; 492024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38695158

RESUMEN

Gymnema sylvestre (GS) is a traditional medicinal plant known for its hypoglycemic and hypolipidemic effects. Gurmarin (hereafter Gur-1) is the only known active peptide in GS. Gur-1 has a suppressive sweet taste effect in rodents but no or only a very weak effect in humans. Here, 8 gurmarin-like peptides (Gur-2 to Gur-9) and their isoforms are reported in the GS transcriptome. The molecular mechanism of sweet taste suppression by Gur-1 is still largely unknown. Therefore, the complete architecture of human and mouse sweet taste receptors T1R2/T1R3 and their interaction with Gur-1 to Gur-9 were predicted by AlphaFold-Multimer (AF-M) and validated. Only Gur-1 and Gur-2 interact with the T1R2/T1R3 receptor. Indeed, Gur-1 and Gur-2 bind to the region of the cysteine-rich domain (CRD) and the transmembrane domain (TMD) of the mouse T1R2 subunit. In contrast, only Gur-2 binds to the TMD of the human T1R2 subunit. This result suggests that Gur-2 may have a suppressive sweet taste effect in humans. Furthermore, AF-M predicted that Gα-gustducin, a protein involved in sweet taste transduction, interacts with the intracellular domain of the T1R2 subunit. These results highlight an unexpected diversity of gurmarin-like peptides in GS and provide the complete predicted architecture of the human and mouse sweet taste receptor with the putative binding sites of Gur-1, Gur-2, and Gα-gustducin. In addition, gurmarin-like peptides may serve as promising drug scaffolds for the development of antidiabetic molecules.


Asunto(s)
Gymnema sylvestre , Receptores Acoplados a Proteínas G , Humanos , Gymnema sylvestre/metabolismo , Gymnema sylvestre/química , Animales , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Gusto/fisiología , Unión Proteica , Secuencia de Aminoácidos , Células HEK293
14.
Brain Behav Immun ; 118: 275-286, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447884

RESUMEN

xCT (Slc7a11), the specific subunit of the cystine/glutamate antiporter system xc-, is present in the brain and on immune cells, where it is known to modulate behavior and inflammatory responses. In a variety of cancers -including pancreatic ductal adenocarcinoma (PDAC)-, xCT is upregulated by tumor cells to support their growth and spread. Therefore, we studied the impact of xCT deletion in pancreatic tumor cells (Panc02) and/or the host (xCT-/- mice) on tumor burden, inflammation, cachexia and mood disturbances. Deletion of xCT in the tumor strongly reduced tumor growth. Targeting xCT in the host and not the tumor resulted only in a partial reduction of tumor burden, while it did attenuate tumor-related systemic inflammation and prevented an increase in immunosuppressive regulatory T cells. The latter effect could be replicated by specific xCT deletion in immune cells. xCT deletion in the host or the tumor differentially modulated neuroinflammation. When mice were grafted with xCT-deleted tumor cells, hypothalamic inflammation was reduced and, accordingly, food intake improved. Tumor bearing xCT-/- mice showed a trend of reduced hippocampal neuroinflammation with less anxiety- and depressive-like behavior. Taken together, targeting xCT may have beneficial effects on pancreatic cancer-related comorbidities, beyond reducing tumor burden. The search for novel and specific xCT inhibitors is warranted as they may represent a holistic therapy in pancreatic cancer.


Asunto(s)
Enfermedades Neuroinflamatorias , Neoplasias Pancreáticas , Ratones , Animales , Encéfalo , Inflamación , Hipocampo
15.
Pharmacol Res ; 200: 107075, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38228255

RESUMEN

Claudin-5 (CLDN5) is an essential component of tight junctions (TJs) and is critical for the integrity of the blood-brain barrier (BBB), ensuring homeostasis and protection from damage to the central nervous system (CNS). Currently, many researchers have summarized the role and mechanisms of CLDN5 in CNS diseases. However, it is noteworthy that CLDN5 also plays a significant role in tumor growth and metastasis. In addition, abnormal CLDN5 expression is involved in the development of respiratory diseases, intestinal diseases, cardiac diseases, and diabetic ocular complications. This paper aims to review the structure, expression, and regulation of CLDN5, focusing on its role in tumors, including its expression and regulation, effects on malignant phenotypes, and clinical significance. Furthermore, this paper will provide an overview of the role and mechanisms of CLDN5 in respiratory diseases, intestinal diseases, cardiac diseases, and diabetic ocular complications.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Diabetes Mellitus , Cardiopatías , Enfermedades Intestinales , Neoplasias , Humanos , Claudina-5/genética , Claudina-5/metabolismo , Neoplasias/genética
16.
J Pept Sci ; 30(2): e3542, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37697741

RESUMEN

Insulin replacement therapy is essential for the management of diabetes. However, despite the relative success of this therapeutic strategy, there is still a need to improve glycaemic control and the overall quality of life of patients. This need has driven research into orally available, glucose-responsive and rapid-acting insulins. A key consideration during analogue development is formulation stability, which can be improved via the replacement of insulin's A6-A11 disulfide bond with stable mimetics. Unfortunately, analogues such as these require extensive chemical synthesis to incorporate the nonnative cross-links, which is not a scalable synthetic approach. To address this issue, we demonstrate proof of principle for the semisynthesis of insulin analogues bearing nonnative A6-A11 cystine isosteres. The key feature of our synthetic strategy involves the use of several biosynthetically derived peptide precursors which can be produced at scale cost-effectively and a small, chemically synthesised A6-A11 macrocyclic lactam fragment. Although the assembled A6-A11 lactam insulin possesses poor biological activity in vitro, our synthetic strategy can be applied to other disulfide mimetics that have been shown to improve thermal stability without significantly affecting activity and structure. Moreover, we envisage that this new semisynthetic approach will underpin a new generation of hyperstable proteomimetics.


Asunto(s)
Insulina , Lactamas , Humanos , Insulina/química , Calidad de Vida , Cistina , Disulfuros/química
17.
Pediatr Nephrol ; 39(8): 2283-2292, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38127152

RESUMEN

Cystinosis is a rare autosomal recessive disease with an incidence 1 per 100,000-200,000 live births. It is caused by pathogenic variants of the cystinosin (CTNS) gene that lead to impaired cystine transport from lysosomes to cystosol, resulting in cystine accumulation in lysosomes and subsequent cellular dysfunction. The initial manifestation, cystine accumulation in proximal tubular cells (PTCs), causes renal Fanconi syndrome, which presents with proximal renal tubular acidosis and generalized dysfunction of the proximal tubule, including the presence of polyuria, glycosuria, phosphaturia, aminoaciduria, tubular proteinuria, growth retardation, and rickets. Eventually, glomerular involvement, glomerular proteinuria, focal segmental glomerulosclerosis (FSGS), and progression to kidney failure occur. Although the kidneys are the first organs affected, and play a key role in morbidity and mortality, extrarenal multiorgan involvement can occur in patients with cystinosis, which is seen not only in adults but in early ages in untreated patients, patients with insufficient treatment, and in those that don't comply with treatment. The treatment of cystinosis consists of supportive treatment for Fanconi syndrome, and specific lifelong cystine-depleting therapy using oral cysteamine. There is strong evidence that as early as possible, initiation and ongoing appropriate therapy with cysteamine are essential for delaying the progression to kidney failure, end-organ damage, and extrarenal involvement. The present review aimed to evaluate the extra renal complications of cystinosis.


Asunto(s)
Cistinosis , Síndrome de Fanconi , Humanos , Cistinosis/complicaciones , Cistinosis/genética , Síndrome de Fanconi/etiología , Síndrome de Fanconi/complicaciones , Cisteamina/uso terapéutico , Depletores de Cistina/uso terapéutico , Sistemas de Transporte de Aminoácidos Neutros/genética
18.
Pediatr Nephrol ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393360

RESUMEN

Gastrointestinal (GI) sequelae, such as vomiting, hyperacidity, dysphagia, dysmotility, and diarrhea, are nearly universal among patients with nephropathic cystinosis. These complications result from disease processes (e.g., kidney disease, cystine crystal accumulation in the GI tract) and side effects of treatments (e.g., cysteamine, immunosuppressive therapy). GI involvement can negatively impact patient well-being and jeopardize disease outcomes by compromising drug absorption and patient adherence to the strict treatment regimen required to manage cystinosis. Given improved life expectancy due to advances in kidney transplantation and the transformative impact of cystine-depleting therapy, nephrologists are increasingly focused on addressing extra-renal complications and quality of life in patients with cystinosis. However, there is a lack of clinical data and guidance to inform GI-related monitoring, interventions, and referrals by nephrologists. Various publications have examined the prevalence and pathophysiology of selected GI complications in cystinosis, but none have summarized the full picture or provided guidance based on the literature and expert experience. We aim to comprehensively review GI sequelae associated with cystinosis and its treatments and to discuss approaches for monitoring and managing these complications, including the involvement of gastroenterology and other disciplines.

19.
Support Care Cancer ; 32(6): 400, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829486

RESUMEN

PURPOSE: Although several potential radioprotectants have been explored, radiation esophagitis is still difficult to control. Further development of supportive therapies is required. Our purpose was to investigate the efficacy and safety of cystine and theanine for esophagitis in non-small cell lung cancer (NSCLC) patients undergoing chemoradiotherapy (CRT). METHODS: This study is a prospective observational study. The participants were recruited from unresectable locally advanced NSCLC who had scheduled to receive weekly paclitaxel or nab-paclitaxel/carboplatin plus radiation therapy (60 Gy in 30 fractions) for 6 weeks. They took an oral amino acid supplement containing 700 mg cystine and 280 mg theanine once daily regardless of CRT timing from the start of CRT until completion. The primary endpoint was the incidence of any grade esophagitis. The secondary endpoints were quality of life (QoL) and adverse events (AEs). RESULTS: A total of 26 patients were evaluated. All participants completed 60 Gy of RT in 30 fractions. The overall incidence of esophagitis was 73%; however, no ≥ grade 3 was reported. There were no AEs likely to be related to cystine and theanine. The mean EuroQoL 5-Dimension 5-Level health index score before and after chemoradiotherapy was 0.952 ± 0.0591 and 0.952 ± 0.0515 (P = 0.89), and the mean Visual Analogue Scale scores before and after treatment were 67.9 ± 15.4 and 79.4 ± 13.2 (P = 0.0047), respectively. CONCLUSION: Our study showed no severe esophagitis, any AEs, nor QoL decrease in NSCLC patients receiving CRT. Cystine and theanine are potentially effective to reduce severe CRT-induced esophagitis. TRIAL REGISTRATION: UMIN000052622, 26 October 2023, retrospectively registered.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Quimioradioterapia , Cistina , Esofagitis , Glutamatos , Neoplasias Pulmonares , Calidad de Vida , Humanos , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Estudios Prospectivos , Masculino , Femenino , Esofagitis/etiología , Quimioradioterapia/efectos adversos , Quimioradioterapia/métodos , Persona de Mediana Edad , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/terapia , Anciano , Cistina/administración & dosificación , Cistina/análogos & derivados , Glutamatos/administración & dosificación , Glutamatos/efectos adversos , Glutamatos/uso terapéutico
20.
Artículo en Inglés | MEDLINE | ID: mdl-38936835

RESUMEN

Depleting glutathione by xCT inhibition induces iron-dependent ferroptotic cell death, which is suppressed by lipophilic antioxidants. We screened food extracts with xCTKO-MEFs, identifying garlic extracts as particularly potent in inhibiting ferroptosis among the food extracts examined in this study. xCTKO-MEFs can serve as a convenient tool for identifying find food extracts that are effective in inhibiting ferroptosis.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda