Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 382(2271): 20230073, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38522463

RESUMEN

The era following the separation of CMB photons from matter, until the emergence of the first stars and galaxies, is known as the Cosmic Dark Ages. Studying the electromagnetic radiation emitted by neutral hydrogen having the 21 cm rest wavelength is the only way to explore this significant phase in the Universe's history, offering opportunities to investigate essential questions about dark matter physics, the standard cosmological model and inflation. Due to cosmological redshift, this signal is now only observable at frequencies inaccessible from the Earth's surface due to ionospheric absorption and reflection. With the Lunar Crater Radio Telescope (LCRT), we aim to conduct unprecedented measurements of the sky-averaged redshifted signal spectrum in the 4.7-47 MHz band, by deploying a 350 m diameter parabolic reflector mesh inside a lunar crater on the far side of the Moon and suspending a receiver at its focus. This work discusses the feasibility of the LCRT science goals through the development of a science model, with emphasis on post-processing techniques to extract the Dark Ages signal from the galactic foreground dominating the expected raw data. This model can be used to vary critical instrument and mission parameters to understand their effect on the quality of the retrieved signal. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades (part 2)'.

2.
Philos Trans A Math Phys Eng Sci ; 382(2271): 20230094, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38522461

RESUMEN

At the Royal Society meeting in 2023, we have mainly presented our lunar orbit array concept called DSL, and also briefly introduced a concept of a lunar surface array, LARAF. As the DSL concept had been presented before, in this article, we introduce the LARAF. We propose to build an array in the far side of the Moon, with a master station which handles the data collection and processing, and 20 stations with maximum baseline of 10 km. Each station consists of 12 membrane antenna units, and the stations are connected to the master station by power line and optical fibre. The array will make interferometric observation in the 0.1-50 MHz band during the lunar night, powered by regenerated fuel cells. The whole array can be carried to the lunar surface with a heavy rocket mission, and deployed with a rover in eight months. Such an array would be an important step in the long-term development of lunar-based ultralong wavelength radio astronomy. It has a sufficiently high sensitivity to observe many radio sources in the sky, though still short of the dark age fluctuations. We discuss the possible options in the power supply, data communication, deployment etc. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades (part 2)'.

3.
Philos Trans A Math Phys Eng Sci ; 379(2188): 20190571, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33222638

RESUMEN

The initial conditions for the density perturbations in the early Universe, which dictate the large-scale structure and distribution of galaxies we see today, are set during inflation. Measurements of primordial non-Gaussianity are crucial for distinguishing between different inflationary models. Current measurements of the matter power spectrum from the cosmic microwave background only constrain this on scales up to k ∼ 0.1 Mpc-1. Reaching smaller angular scales (higher values of k) can provide new constraints on non-Gaussianity. A powerful way to do this is by measuring the HI matter power spectrum at [Formula: see text]. In this paper, we investigate what values of k can be reached for the Low-Frequency Array (LOFAR), which can achieve [Formula: see text]1″ resolution at approximately 50 MHz. Combining this with a technique to isolate the spectrally smooth foregrounds to a wedge in [Formula: see text]-k⊥ space, we demonstrate what values of k we can feasibly reach within observational constraints. We find that LOFAR is approximately five orders of magnitude away from the desired sensitivity, for 10 years of integration time. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades'.

4.
Philos Trans A Math Phys Eng Sci ; 379(2188): 20190566, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33222649

RESUMEN

Due to ionosphere absorption and the interference of natural and artificial radio emissions, astronomical observation from the ground becomes very difficult at the wavelengths of decametre or longer, which we shall refer to as the ultralong wavelengths. This unexplored part of the electromagnetic spectrum has the potential for great discoveries, notably in the study of cosmic dark ages and dawn, but also in heliophysics and space weather, planets and exoplanets, cosmic ray and neutrinos, pulsar and interstellar medium (ISM), extragalactic radio sources, and so on. The difficulty of the ionosphere can be overcome by space observation, and the Moon can shield the radio frequency interferences (RFIs) from the Earth. A lunar orbit array can be a practical first step to opening up the ultralong wave band. Compared with a lunar surface observatory on the far side, the lunar orbit array is simpler and more economical, as it does not need to make the risky and expensive landing, can be easily powered with solar energy, and the data can be transmitted back to the Earth when it is on the near-side part of the orbit. Here, I describe the discovering sky at the longest wavelength (DSL) project, which will consist of a mother satellite and 6-9 daughter satellites, flying on the same circular orbit around the Moon, and forming a linear interferometer array. The data are collected by the mother satellite which computes the interferometric cross-correlations (visibilities) and transmits the data back to the Earth. The whole array can be deployed on the lunar orbit with a single rocket launch. The project is under intensive study in China. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades'.

5.
Exp Astron (Dordr) ; 51(3): 1641-1676, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34511720

RESUMEN

The Dark Ages and Cosmic Dawn are largely unexplored windows on the infant Universe (z ~ 200-10). Observations of the redshifted 21-cm line of neutral hydrogen can provide valuable new insight into fundamental physics and astrophysics during these eras that no other probe can provide, and drives the design of many future ground-based instruments such as the Square Kilometre Array (SKA) and the Hydrogen Epoch of Reionization Array (HERA). We review progress in the field of high-redshift 21-cm Cosmology, in particular focussing on what questions can be addressed by probing the Dark Ages at z > 30. We conclude that only a space- or lunar-based radio telescope, shielded from the Earth's radio-frequency interference (RFI) signals and its ionosphere, enable the 21-cm signal from the Dark Ages to be detected. We suggest a generic mission design concept, CoDEX, that will enable this in the coming decades.

6.
Prog Brain Res ; 284: 87-93, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38609297

RESUMEN

Unlike previous chapters, this is not about the teachings of a specific individual. Rather, it traces the slow changes in milieu and practice in the centuries following the death of Galen. They were to be profound. The Roman Empire fell in the middle of the 5th century. The Christian religion became increasingly dominant in the west, not only in spiritual matters but also in every activity related to culture and learning. The Byzantine Empire became increasingly important in the east. Islam was founded and began to spread in competition with Christianity. Academic advances develop best in stable societies so that it is not surprising that this was not a period of new ideas. Galen had gained overwhelming authority. The most valuable work on surgery to be written during these times was Book VI of Paul of Ægina's encyclopedia.


Asunto(s)
Libros , Aprendizaje , Humanos , Europa (Continente)
7.
Mon Not R Astron Soc ; 479(1): 332-340, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30581238

RESUMEN

Metal-poor globular clusters (GCs) are both numerous and ancient, which indicates that they may be important contributors to ionizing radiation in the reionization era. Starting from the observed number density and stellar mass function of old GCs at z = 0, I compute the contribution of GCs to ultraviolet luminosity functions (UVLFs) in the high-redshift Universe (10 ≳ z ≳ 4). Even under absolutely minimal assumptions - no disruption of GCs and no reduction in GC stellar mass from early times to the present - GC star formation contributes non-negligibly to the UVLF at luminosities that are accessible to the Hubble Space Telescope (HST, M 1500 ≈ -17). If the stellar masses of GCs were significantly higher in the past, as is predicted by most models explaining GC chemical anomalies, then GCs dominate the UV emission from many galaxies in existing deep-field observations. On the other hand, it is difficult to reconcile observed UVLFs with models requiring stellar masses at birth that exceed present-day stellar masses by more than a factor of 5. The James Webb Space Telescope will be able to directly detect individual GCs at z ∼ 6 in essentially all bright galaxies, and many galaxies below the knee of the UVLF, for most of the scenarios considered here. The properties of a subset of high-redshift sources with -19 ≳ M 1500 ≲ -14 in HST lensing fields indicate that they may actually be GCs in formation.

8.
Mon Not R Astron Soc ; 472(3): 3120-3130, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30546160

RESUMEN

I present a simple phenomenological model for the observed linear scaling of the stellar mass in old globular clusters (GCs) with z = 0 halo mass in which the stellar mass in GCs scales linearly with progenitor halo mass at z = 6 above a minimum halo mass for GC formation. This model reproduces the observed M GCs-M halo relation at z = 0 and results in a prediction for the minimum halo mass at z = 6 required for hosting one GC: M min(z = 6) = 1.07 × 109 M⊙. Translated to z = 0, the mean threshold mass is M halo(z = 0) ≈ 2 × 1010 M⊙. I explore the observability of GCs in the reionization era and their contribution to cosmic reionization, both of which depend sensitively on the (unknown) ratio of GC birth mass to present-day stellar mass, ξ. Based on current detections of z ≳ 6 objects with M 1500<-17, values of ξ > 10 are strongly disfavoured; this, in turn, has potentially important implications for GC formation scenarios. Even for low values of ξ, some observed high-z galaxies may actually be GCs, complicating estimates of reionization-era galaxy ultraviolet luminosity functions and constraints on dark matter models. GCs are likely important reionization sources if 5 ≲ ξ ≲ 10. I also explore predictions for the fraction of accreted versus in situ GCs in the local Universe and for descendants of systems at the halo mass threshold of GC formation (dwarf galaxies). An appealing feature of the model presented here is the ability to make predictions for GC properties based solely on dark matter halo merger trees.

9.
Mon Not R Astron Soc ; 459(3): 3217-3233, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27279786

RESUMEN

We provide detailed comparison between the adaptive mesh refinement (AMR) code enzo-2.4 and the smoothed particle hydrodynamics (SPH)/N-body code gadget-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in gadget-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ∼ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, gadget-3 requires significantly larger computational resources than enzo-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda