Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Cell ; 186(15): 3291-3306.e21, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37413987

RESUMEN

The number of sequenced viral genomes has surged recently, presenting an opportunity to understand viral diversity and uncover unknown regulatory mechanisms. Here, we conducted a screening of 30,367 viral segments from 143 species representing 96 genera and 37 families. Using a library of viral segments in 3' UTR, we identified hundreds of elements impacting RNA abundance, translation, and nucleocytoplasmic distribution. To illustrate the power of this approach, we investigated K5, an element conserved in kobuviruses, and found its potent ability to enhance mRNA stability and translation in various contexts, including adeno-associated viral vectors and synthetic mRNAs. Moreover, we identified a previously uncharacterized protein, ZCCHC2, as a critical host factor for K5. ZCCHC2 recruits the terminal nucleotidyl transferase TENT4 to elongate poly(A) tails with mixed sequences, delaying deadenylation. This study provides a unique resource for virus and RNA research and highlights the potential of the virosphere for biological discoveries.


Asunto(s)
ARN , Secuencias Reguladoras de Ácidos Nucleicos , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencia de Bases , Proteínas/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Estabilidad del ARN , ARN Viral/genética , ARN Viral/metabolismo
2.
Mol Cell ; 82(8): 1467-1476, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35452615

RESUMEN

Messenger RNA (mRNA) translation by the ribosome represents the final step of a complicated molecular dance from DNA to protein. Although classically considered a decipherer that translates a 64-word genetic code into a proteome of astonishing complexity, the ribosome can also shape the transcriptome by controlling mRNA stability. Recent work has discovered that the ribosome is an arbiter of the general mRNA degradation pathway, wherein the ribosome transit rate serves as a major determinant of transcript half-lives. Specifically, members of the degradation complex sense ribosome translocation rates as a function of ribosome elongation rates. Central to this notion is the concept of codon optimality: although all codons impact translation rates, some are deciphered quickly, whereas others cause ribosome hesitation as a consequence of relative cognate tRNA concentration. These transient pauses induce a unique ribosome conformational state that is probed by the deadenylase complex, thereby inducing an orchestrated set of events that enhance both poly(A) shortening and cap removal. Together, these data imply that the coding region of an mRNA not only encodes for protein content but also impacts protein levels through determining the transcript's fate.


Asunto(s)
Biosíntesis de Proteínas , Estabilidad del ARN , Codón/genética , Codón/metabolismo , Proteínas/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
3.
Mol Cell ; 82(23): 4564-4581.e11, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356584

RESUMEN

How fragile X syndrome protein (FMRP) binds mRNAs and regulates mRNA metabolism remains unclear. Our previous work using human neuronal cells focused on mRNAs targeted for nonsense-mediated mRNA decay (NMD), which we showed are generally bound by FMRP and destabilized upon FMRP loss. Here, we identify >400 high-confidence FMRP-bound mRNAs, only ∼35% of which are NMD targets. Integrative transcriptomics together with SILAC-LC-MS/MS reveal that FMRP loss generally results in mRNA destabilization and more protein produced per FMRP target. We use our established RIP-seq technology to show that FMRP footprints are independent of protein-coding potential, target GC-rich and structured sequences, and are densest in 5' UTRs. Regardless of where within an mRNA FMRP binds, we find that FMRP protects mRNAs from deadenylation and directly binds the cytoplasmic poly(A)-binding protein. Our results reveal how FMRP sequesters polyadenylated mRNAs into stabilized and translationally repressed complexes, whose regulation is critical for neurogenesis and synaptic plasticity.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Humanos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Síndrome del Cromosoma X Frágil/genética
4.
EMBO J ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39322754

RESUMEN

RNA stability, important for eukaryotic gene expression, is thought to depend on deadenylation rates, with shortened poly(A) tails triggering decapping and 5' to 3' degradation. In contrast to this view, recent large-scale studies indicate that the most unstable mRNAs have, on average, long poly(A) tails. To clarify the role of deadenylation in mRNA decay, we first modeled mRNA poly(A) tail kinetics and mRNA stability in yeast. Independent of deadenylation rates, differences in mRNA decapping rates alone were sufficient to explain current large-scale results. To test the hypothesis that deadenylation and decapping are uncoupled, we used rapid depletion of decapping and deadenylation enzymes and measured changes in mRNA levels, poly(A) length and stability, both transcriptome-wide and with individual reporters. These experiments revealed that perturbations in poly(A) tail length did not correlate with variations in mRNA stability. Thus, while deadenylation may be critical for specific regulatory mechanisms, our results suggest that for most yeast mRNAs, it is not critical for mRNA decapping and degradation.

5.
EMBO J ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394354

RESUMEN

Complete cytoplasmic polyadenosine tail (polyA-tail) deadenylation is thought to be essential for initiating mRNA decapping and subsequent degradation. To investigate this prevalent model, we conducted direct RNA sequencing of S. cerevisiae mRNAs derived from chase experiments under steady-state and stress condition. Subsequently, we developed a numerical model based on a modified gamma distribution function, which estimated the transcriptomic deadenylation rate at 10 A/min. A simplified independent method, based on the delineation of quantile polyA-tail values, showed a correlation between the decay and deadenylation rates of individual mRNAs, which appeared consistent within functional transcript groups and associated with codon optimality. Notably, these rates varied during the stress response. Detailed analysis of ribosomal protein-coding mRNAs (RPG mRNAs), constituting 40% of the transcriptome, singled out this transcript group. While deadenylation and decay of RPG mRNAs accelerated under heat stress, their degradation could proceed even when deadenylation was blocked, depending entirely on ongoing nuclear export. Our findings support the general primary function of deadenylation in dictating the onset of decapping, while also demonstrating complex relations between these processes.

6.
Mol Cell ; 77(4): 775-785.e8, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31902668

RESUMEN

MicroRNAs (miRNAs) specify the recruitment of deadenylases to mRNA targets. Despite this recruitment, we find that miRNAs have almost no effect on steady-state poly(A)-tail lengths of their targets in mouse fibroblasts, which motivates the acquisition of pre-steady-state measurements of the effects of miRNAs on tail lengths, mRNA levels, and translational efficiencies. Effects on translational efficiency are minimal compared to effects on mRNA levels, even for newly transcribed target mRNAs. Effects on target mRNA levels accumulate as the mRNA population approaches steady state, whereas effects on tail lengths peak for recently transcribed target mRNAs and then subside. Computational modeling of this phenomenon reveals that miRNAs cause not only accelerated deadenylation of their targets but also accelerated decay of short-tailed target molecules. This unanticipated effect of miRNAs largely prevents short-tailed target mRNAs from accumulating despite accelerated target deadenylation. The net result is a nearly imperceptible change to the steady-state tail-length distribution of targeted mRNAs.


Asunto(s)
MicroARNs/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Células 3T3 , Animales , Ratones , Biosíntesis de Proteínas , ARN Mensajero/química
7.
Mol Cell ; 77(4): 786-799.e10, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31902669

RESUMEN

For all but a few mRNAs, the dynamics of metabolism are unknown. Here, we developed an experimental and analytical framework for examining these dynamics for mRNAs from thousands of genes. mRNAs of mouse fibroblasts exit the nucleus with diverse intragenic and intergenic poly(A)-tail lengths. Once in the cytoplasm, they have a broad (1000-fold) range of deadenylation rate constants, which correspond to cytoplasmic lifetimes. Indeed, with few exceptions, degradation appears to occur primarily through deadenylation-linked mechanisms, with little contribution from either endonucleolytic cleavage or deadenylation-independent decapping. Most mRNA molecules degrade only after their tail lengths fall below 25 nt. Decay rate constants of short-tailed mRNAs vary broadly (1000-fold) and are larger for short-tailed mRNAs that have previously undergone more rapid deadenylation. This coupling helps clear rapidly deadenylated mRNAs, enabling the large range in deadenylation rate constants to impart a similarly large range in stabilities.


Asunto(s)
Citoplasma/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Células 3T3 , Animales , Citoplasma/genética , Ratones , Isoformas de ARN/metabolismo , ARN Mensajero/química
8.
Genes Dev ; 34(11-12): 847-860, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32354837

RESUMEN

Human 4E-T is an eIF4E-binding protein (4E-BP) present in processing (P)-bodies that represses translation and regulates decay of mRNAs destabilized by AU-rich elements and microRNAs (miRNAs). However, the underlying regulatory mechanisms are still unclear. Here, we show that upon mRNA binding 4E-T represses translation and promotes deadenylation via the recruitment of the CCR4-NOT deadenylase complex. The interaction with CCR4-NOT is mediated by previously uncharacterized sites in the middle region of 4E-T. Importantly, mRNA decapping and decay are inhibited by 4E-T and the deadenylated target is stored in a repressed form. Inhibition of mRNA decapping requires the interaction of 4E-T with the cap-binding proteins eIF4E/4EHP. We further show that regulation of decapping by 4E-T participates in mRNA repression by the miRNA effector protein TNRC6B and that 4E-T overexpression interferes with tristetraprolin (TTP)- and NOT1-mediated mRNA decay. Thus, we postulate that 4E-T modulates 5'-to-3' decay by swapping the fate of a deadenylated mRNA from complete degradation to storage. Our results provide insight into the mechanism of mRNA storage that controls localized translation and mRNA stability in P-bodies.


Asunto(s)
Silenciador del Gen/fisiología , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN Mensajero/metabolismo , Regulación de la Expresión Génica/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Unión Proteica/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo
9.
Genes Dev ; 34(13-14): 989-1001, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32499401

RESUMEN

Polymerases and exonucleases act on 3' ends of nascent RNAs to promote their maturation or degradation but how the balance between these activities is controlled to dictate the fates of cellular RNAs remains poorly understood. Here, we identify a central role for the human DEDD deadenylase TOE1 in distinguishing the fates of small nuclear (sn)RNAs of the spliceosome from unstable genome-encoded snRNA variants. We found that TOE1 promotes maturation of all regular RNA polymerase II transcribed snRNAs of the major and minor spliceosomes by removing posttranscriptional oligo(A) tails, trimming 3' ends, and preventing nuclear exosome targeting. In contrast, TOE1 promotes little to no maturation of tested U1 variant snRNAs, which are instead targeted by the nuclear exosome. These observations suggest that TOE1 is positioned at the center of a 3' end quality control pathway that selectively promotes maturation and stability of regular snRNAs while leaving snRNA variants unprocessed and exposed to degradation in what could be a widespread mechanism of RNA quality control given the large number of noncoding RNAs processed by DEDD deadenylases.


Asunto(s)
Proteínas Nucleares/metabolismo , Procesamiento de Término de ARN 3'/genética , Estabilidad del ARN/genética , ARN Nuclear Pequeño/genética , Línea Celular , Núcleo Celular/metabolismo , Eliminación de Gen , Células HeLa , Humanos , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fosfoproteínas/metabolismo , ARN Nuclear Pequeño/biosíntesis
10.
EMBO J ; 42(3): e111364, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36477743

RESUMEN

Early embryonic development depends on proper utilization and clearance of maternal transcriptomes. How these processes are spatiotemporally regulated remains unclear. Here we show that nuclear RNA-binding protein Rbm14 and maternal mRNAs co-phase separate into cytoplasmic condensates to facilitate vertebrate blastula-to-gastrula development. In zebrafish, Rbm14 condensates were highly abundant in blastomeres and markedly reduced after prominent activation of zygotic transcription. They concentrated at spindle poles by associating with centrosomal γ-tubulin puncta and displayed mainly asymmetric divisions with a global symmetry across embryonic midline in 8- and 16-cell embryos. Their formation was dose-dependently stimulated by m6 A, but repressed by m5 C modification of the maternal mRNA. Furthermore, deadenylase Parn co-phase separated with these condensates, and this was required for deadenylation of the mRNAs in early blastomeres. Depletion of Rbm14 impaired embryonic cell differentiations and full activations of the zygotic genome in both zebrafish and mouse and resulted in developmental arrest at the blastula stage. Our results suggest that cytoplasmic Rbm14 condensate formation regulates early embryogenesis by facilitating deadenylation, protection, and mitotic allocation of m6 A-modified maternal mRNAs, and by releasing the poly(A)-less transcripts upon regulated disassembly to allow their re-polyadenylation and translation or clearance.


Asunto(s)
ARN Mensajero Almacenado , Pez Cebra , Animales , Femenino , Ratones , Embarazo , Blastocisto/metabolismo , Blástula/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero Almacenado/genética , ARN Mensajero Almacenado/metabolismo
11.
Genes Dev ; 33(3-4): 236-252, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30692204

RESUMEN

The multisubunit CCR4-NOT mRNA deadenylase complex plays important roles in the posttranscriptional regulation of gene expression. The NOT4 E3 ubiquitin ligase is a stable component of the CCR4-NOT complex in yeast but does not copurify with the human or Drosophila melanogaster complex. Here we show that the C-terminal regions of human and D. melanogaster NOT4 contain a conserved sequence motif that directly binds the CAF40 subunit of the CCR4-NOT complex (CAF40-binding motif [CBM]). In addition, nonconserved sequences flanking the CBM also contact other subunits of the complex. Crystal structures of the CBM-CAF40 complex reveal a mutually exclusive binding surface for NOT4 and Roquin or Bag of marbles mRNA regulatory proteins. Furthermore, CAF40 depletion or structure-guided mutagenesis to disrupt the NOT4-CAF40 interaction impairs the ability of NOT4 to elicit decay of tethered reporter mRNAs in cells. Together with additional sequence analyses, our results reveal the molecular basis for the association of metazoan NOT4 with the CCR4-NOT complex and show that it deviates substantially from yeast. They mark the NOT4 ubiquitin ligase as an ancient but nonconstitutive cofactor of the CCR4-NOT deadenylase with potential recruitment and/or effector functions.


Asunto(s)
Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas/fisiología , Receptores CCR4/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Animales , Línea Celular , Secuencia Conservada , Cristalización , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Estructura Cuaternaria de Proteína , Estabilidad del ARN/genética , Receptores CCR4/química , Factores de Transcripción/genética
12.
Development ; 150(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37767629

RESUMEN

Control of mRNA poly(A) tails is essential for regulation of mRNA metabolism, specifically translation efficiency and mRNA stability. Gene expression in maturing oocytes relies largely on post-transcriptional regulation, as genes are transcriptionally silent during oocyte maturation. The CCR4-NOT complex is a major mammalian deadenylase, which regulates poly(A) tails of maternal mRNAs; however, the function of the CCR4-NOT complex in translational regulation has not been well understood. Here, we show that this complex suppresses translational activity of maternal mRNAs during oocyte maturation. Oocytes lacking all CCR4-NOT deadenylase activity owing to genetic deletion of its catalytic subunits, Cnot7 and Cnot8, showed a large-scale gene expression change caused by increased translational activity during oocyte maturation. Developmental arrest during meiosis I in these oocytes resulted in sterility of oocyte-specific Cnot7 and Cnot8 knockout female mice. We further showed that recruitment of CCR4-NOT to maternal mRNAs is mediated by the 3'UTR element CPE, which suppresses translational activation of maternal mRNAs. We propose that suppression of untimely translational activation of maternal mRNAs via deadenylation by CCR4-NOT is essential for proper oocyte maturation.


Asunto(s)
Oocitos , ARN Mensajero Almacenado , Animales , Ratones , Femenino , ARN Mensajero Almacenado/metabolismo , Oocitos/metabolismo , Oogénesis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Meiosis , Ratones Noqueados , Mamíferos/genética , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Proteínas Represoras/metabolismo
13.
Mol Cell ; 71(6): 1040-1050.e8, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30146314

RESUMEN

In mammals, gene silencing by the RNA-induced silencing complex (RISC) is a well-understood cytoplasmic posttranscriptional gene regulatory mechanism. Here, we show that embryonic stem cells (ESCs) contain high levels of nuclear AGO proteins and that in ESCs nuclear AGO protein activity allows for the onset of differentiation. In the nucleus, AGO proteins interact with core RISC components, including the TNRC6 proteins and the CCR4-NOT deadenylase complex. In contrast to cytoplasmic miRNA-mediated gene silencing that mainly operates on cis-acting elements in mRNA 3' untranslated (UTR) sequences, in the nucleus AGO binding in the coding sequence and potentially introns also contributed to post-transcriptional gene silencing. Thus, nuclear localization of AGO proteins in specific cell types leads to a previously unappreciated expansion of the miRNA-regulated transcriptome.


Asunto(s)
Proteínas Argonautas/fisiología , Silenciador del Gen/fisiología , MicroARNs/fisiología , Animales , Proteínas Argonautas/genética , Diferenciación Celular/genética , Línea Celular , Núcleo Celular , Citoplasma , Células Madre Embrionarias/metabolismo , Humanos , Mamíferos , Ratones , MicroARNs/genética , Interferencia de ARN , Estabilidad del ARN , ARN Mensajero , ARN Interferente Pequeño , Proteínas de Unión al ARN , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Factores de Transcripción
14.
Mol Cell ; 70(6): 1089-1100.e8, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29932902

RESUMEN

Translation and decay of eukaryotic mRNAs is controlled by shortening of the poly(A) tail and release of the poly(A)-binding protein Pab1/PABP. The Ccr4-Not complex contains two exonucleases-Ccr4 and Caf1/Pop2-that mediate mRNA deadenylation. Here, using a fully reconstituted biochemical system with proteins from the fission yeast Schizosaccharomyces pombe, we show that Pab1 interacts with Ccr4-Not, stimulates deadenylation, and differentiates the roles of the nuclease enzymes. Surprisingly, Pab1 release relies on Ccr4 activity. In agreement with this, in vivo experiments in budding yeast show that Ccr4 is a general deadenylase that acts on all mRNAs. In contrast, Caf1 only trims poly(A) not bound by Pab1. As a consequence, Caf1 is a specialized deadenylase required for the selective deadenylation of transcripts with lower rates of translation elongation and reduced Pab1 occupancy. These findings reveal a coupling between the rates of translation and deadenylation that is dependent on Pab1 and Ccr4-Not.


Asunto(s)
Exorribonucleasas/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Citoplasma/metabolismo , Endonucleasas/metabolismo , Exorribonucleasas/genética , Poli A/metabolismo , Poliadenilación , Estabilidad del ARN , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Ribonucleasas/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
15.
Mol Cell ; 72(1): 10-17, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30290147

RESUMEN

Transcript buffering involves reciprocal adjustments between overall rates in mRNA synthesis and degradation to maintain similar cellular concentrations of mRNAs. This phenomenon was first discovered in yeast and encompasses coordination between the nuclear and cytoplasmic compartments. Transcript buffering was revealed by novel methods for pulse labeling of RNA to determine in vivo synthesis and degradation rates. In this Perspective, we discuss the current knowledge of transcript buffering. Emphasis is placed on the future challenges to determine the nature and directionality of the buffering signals, the generality of transcript buffering beyond yeast, and the molecular mechanisms responsible for this balancing.


Asunto(s)
Estabilidad del ARN/genética , ARN Mensajero/biosíntesis , Transcripción Genética , Núcleo Celular/genética , Citoplasma/genética , Caperuzas de ARN/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética
16.
Mol Cell ; 70(6): 1081-1088.e5, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29932901

RESUMEN

Multiple deadenylases are known in vertebrates, the PAN2-PAN3 (PAN2/3) and CCR4-NOT (CNOT) complexes, and PARN, yet their differential functions remain ambiguous. Moreover, the role of poly(A) binding protein (PABP) is obscure, limiting our understanding of the deadenylation mechanism. Here, we show that CNOT serves as a predominant nonspecific deadenylase for cytoplasmic poly(A)+ RNAs, and PABP promotes deadenylation while preventing premature uridylation and decay. PAN2/3 selectively trims long tails (>∼150 nt) with minimal effect on transcriptome, whereas PARN does not affect mRNA deadenylation. CAF1 and CCR4, catalytic subunits of CNOT, display distinct activities: CAF1 trims naked poly(A) segments and is blocked by PABPC, whereas CCR4 is activated by PABPC to shorten PABPC-protected sequences. Concerted actions of CAF1 and CCR4 delineate the ∼27 nt periodic PABPC footprints along shortening tail. Our study unveils distinct functions of deadenylases and PABPC, re-drawing the view on mRNA deadenylation and regulation.


Asunto(s)
Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Receptores CCR4/metabolismo , Factores de Transcripción/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular/metabolismo , Citoplasma/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Células HEK293 , Células HeLa , Humanos , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Poli A/metabolismo , Proteínas de Unión a Poli(A)/genética , Poliadenilación , ARN Mensajero/genética , Receptores CCR4/genética , Factores de Transcripción/genética , Transcriptoma
17.
Development ; 149(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35588208

RESUMEN

As one of the post-transcriptional regulatory mechanisms, uncoupling of transcription and translation plays an essential role in development and adulthood physiology. However, it remains elusive how thousands of mRNAs get translationally silenced while stability is maintained for hours or even days before translation. In addition to oocytes and neurons, developing spermatids display significant uncoupling of transcription and translation for delayed translation. Therefore, spermiogenesis represents an excellent in vivo model for investigating the mechanism underlying uncoupled transcription and translation. Through full-length poly(A) deep sequencing, we discovered dynamic changes in poly(A) length through deadenylation and re-polyadenylation. Deadenylation appeared to be mediated by microRNAs (miRNAs), and transcripts with shorter poly(A) tails tend to be sequestered into ribonucleoprotein (RNP) granules for translational repression and stabilization. In contrast, re-polyadenylation might allow for translocation of the translationally repressed transcripts from RNP granules to polysomes. Overall, our data suggest that miRNA-dependent poly(A) length control represents a previously unreported mechanism underlying uncoupled translation and transcription in haploid male mouse germ cells.


Asunto(s)
MicroARNs , Poli A , Animales , Haploidia , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Poli A/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Espermátides/metabolismo
18.
EMBO Rep ; 24(12): e56327, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37846490

RESUMEN

Unlike most RNA and DNA viruses that broadly stimulate mRNA decay and interfere with host gene expression, human cytomegalovirus (HCMV) extensively remodels the host translatome without producing an mRNA decay enzyme. By performing a targeted loss-of-function screen in primary human fibroblasts, we here identify the host CCR4-NOT deadenylase complex members CNOT1 and CNOT3 as unexpected pro-viral host factors that selectively regulate HCMV reproduction. We find that the scaffold subunit CNOT1 is specifically required for late viral gene expression and genome-wide host responses in CCR4-NOT-disrupted cells. By profiling poly(A)-tail lengths of individual HCMV and host mRNAs using nanopore direct RNA sequencing, we reveal poly(A)-tails of viral messages to be markedly longer than those of cellular mRNAs and significantly less sensitive to CCR4-NOT disruption. Our data establish that mRNA deadenylation by host CCR4-NOT is critical for productive HCMV replication and define a new mechanism whereby herpesvirus infection subverts cellular mRNA metabolism to remodel the gene expression landscape of the infected cell. Moreover, we expose an unanticipated host factor with potential to become a therapeutic anti-HCMV target.


Asunto(s)
Infecciones por Herpesviridae , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores CCR4/genética , Receptores CCR4/metabolismo
19.
New Phytol ; 241(4): 1636-1645, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38009859

RESUMEN

Transposable elements (TEs) are mobile genetic elements that can impair the host genome stability and integrity. It has been well documented that activated transposons in plants are suppressed by small interfering (si) RNAs. However, transposon repression by the cytoplasmic RNA surveillance system is unknown. Here, we show that mRNA deadenylation is critical for controlling transposons in Arabidopsis. Trimming of poly(A) tail is a rate-limiting step that precedes the RNA decay and is primarily mediated by the CARBON CATABOLITE REPRESSION 4 (CCR4)-NEGATIVE ON TATA-LESS (NOT) complex. We found that the loss of CCR4a leads to strong derepression and mobilization of TEs in Arabidopsis. Intriguingly, CCR4a regulates a largely distinct set of TEs from those controlled by RNA-dependent RNA Polymerase 6 (RDR6), a key enzyme that produces cytoplasmic siRNAs. This indicates that the cytoplasmic RNA quality control mechanism targets the TEs that are poorly recognized by the previously well-characterized RDR6-mediated pathway, and thereby augments the host genome stability. Our study suggests a hitherto unknown mechanism for transposon repression mediated by RNA deadenylation and unveils a complex nature of the host's strategy to maintain the genome integrity.


Asunto(s)
Arabidopsis , Represión Catabólica , Arabidopsis/genética , Arabidopsis/metabolismo , ARN Interferente Pequeño/metabolismo , Elementos Transponibles de ADN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Inestabilidad Genómica , Estabilidad del ARN/genética
20.
RNA Biol ; 21(1): 14-23, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39392174

RESUMEN

The estrogen signalling pathway is highly dynamic and primarily mediated by estrogen receptors (ERs) that transcriptionally regulate the expression of target genes. While transcriptional functions of ERs have been widely studied, their roles in RNA biology have not been extensively explored. Here, we reveal a novel biological role of ER alpha (ERα) in mRNA 3' end processing in breast cancer cells, providing an alternative mechanism in regulating gene expression at the post-transcriptional level. We show that ERα activates poly(A) specific ribonuclease (PARN) deadenylase using in vitro assays, and that this activation is further increased by tumour suppressor p53, a factor involved in mRNA processing. Consistent with this, we confirm ERα-mediated activation of nuclear deadenylation by PARN in samples from MCF7 and T47D breast cancer cells that vary in expression of ERα and p53. We further show that ERα can form complex(es) with PARN and p53. Lastly, we identify and validate expression of common mRNA targets of ERα and PARN known to be involved in cell invasion, metastasis and angiogenesis, supporting the functional overlap of these factors in regulating gene expression in a transactivation-independent manner. Together, these results show a new regulatory mechanism by which ERα regulates mRNA processing and gene expression post-transcriptionally, highlighting its contribution to unique transcriptomic profiles and breast cancer progression.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Exorribonucleasas , Regulación Neoplásica de la Expresión Génica , ARN Mensajero , Proteína p53 Supresora de Tumor , Humanos , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Línea Celular Tumoral , Células MCF-7 , Núcleo Celular/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda