Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(18): e2316408121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657047

RESUMEN

Intrinsically disordered proteins (IDPs) that lie close to the empirical boundary separating IDPs and folded proteins in Uversky's charge-hydropathy plot may behave as "marginal IDPs" and sensitively switch conformation upon changes in environment (temperature, crowding, and charge screening), sequence, or both. In our search for such a marginal IDP, we selected Huntingtin-interacting protein K (HYPK) near that boundary as a candidate; PKIα, also near that boundary, has lower secondary structure propensity; and Crk1, just across the boundary on the folded side, has higher secondary structure propensity. We used a qualitative Förster resonance energy transfer-based assay together with circular dichroism to simultaneously probe global and local conformation. HYPK shows several unique features indicating marginality: a cooperative transition in end-to-end distance with temperature, like Crk1 and folded proteins, but unlike PKIα; enhanced secondary structure upon crowding, in contrast to Crk1 and PKIα; and a cross-over from salt-induced expansion to compaction at high temperature, likely due to a structure-to-disorder transition not seen in Crk1 and PKIα. We then tested HYPK's sensitivity to charge patterning by designing charge-flipped variants including two specific sequences with identical amino acid composition that markedly differ in their predicted size and response to salt. The experimentally observed trends, also including mutants of PKIα, verify the predictions from sequence charge decoration metrics. Marginal proteins like HYPK show features of both folded and disordered proteins that make them sensitive to physicochemical perturbations and structural control by charge patterning.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Pliegue de Proteína , Dicroismo Circular , Estructura Secundaria de Proteína , Humanos , Transferencia Resonante de Energía de Fluorescencia , Temperatura , Conformación Proteica
2.
Small ; : e2405540, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39205545

RESUMEN

The establishment of reticular chemistry has significantly facilitated the development of porous materials, especially for metal-organic frameworks (MOFs). On the other hand, as an alternative approach, in situ "one-pot" strategy has been explored as a promising approach to constructing MOFs, in which the synthesis of organic linkers and the sequential construction of MOFs are integrated into one solvothermal condition. This strategy can efficiently avoid the limitations faced in the traditional construction method, such as time-consuming organic synthesis and multiple separation and purification. Herein, inspired by the reaction of aldehydes and o-phenylenediamine and deep structural analysis of UiO-68, a series of tetra-, hexa-, and octa-topic carboxylic acids are synthesized using 2',3'-diamino-[1,1':4',1'"-terphenyl]-4,4'"-dicarboxylic acid and di-, tri-, and tetra-topic aldehydes as precursor. Then nine multicarboxylate-based zirconium MOFs (Zr-MOFs) are successfully constructed via the combination of reticular chemistry and in situ "one-pot" strategy. The resultant Zr-MOFs can be regarded as the partial face decoration of UiO-68. More importantly, the emission properties of resultant Zr-MOFs can be well controlled using aldehydes with tunable electronic structures. This work provides a new path to rational design and construction of porous materials with specific structures guided by reticular chemistry and conducted using in situ "one-pot" strategy.

3.
Chemistry ; 30(4): e202303169, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37965803

RESUMEN

In general, a large donor-acceptor dihedral angle is required to guarantee sufficient frontier molecular orbitals separation for thermally activated delayed fluorescence (TADF) emitters, which is intrinsically unfavorable for the radiative transition. We present a molecular design method favoring both reverse intersystem crossing (RISC) and radiative transitions even at a moderate D-A angle. A blue TADF emitter TrzBuCz-CN was designed with triazine/tert-butylcarbazole as donor/acceptor and cyano (CN) incorporated on the phenylene bridge. In comparison with the methyl decoration in similar way (TrzBuCz-Me), CN decoration reduced the D-A dihedral angle from 70° to 60°, which is intrinsically not favorable for sufficient FMO separation, but unexpectedly reduced the singlet and triplet energy gap (ΔEST ) and thus facilitated TADF feature by pulling down the lowest singlet state energy. While the reduced distorsion instead improved the HOMO-LUMO overlap and boosted the fluorescence quantum yield from 41 % to 94 %. The blue organic light-emitting diode of TrzBuCz-CN exhibited an external quantum efficiency of 13.7 % with emission peak at 466 nm, greatly superior to 6.0 % of TrzBuCz-Me. The result provides a feasible design strategy to facilitate both RISC and radiation processes by CN decoration of the linking bridge of TADF emitters.

4.
Chemphyschem ; 25(5): e202300553, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227379

RESUMEN

A simple, green, and relatively fast procedure was used to prepare palladium decorated graphene-based materials. A parent graphene-like material with a high specific surface area of up to 384 m2 /g and a total pore volume of 0.42 cm3 /g was prepared via a fast, solvent-free ball milling of graphite powder only. Post-synthetic modification of this graphene-like material was performed via a simplified method using palladium chloride and a small amount of a non-harsh reducing agent - formic acid. Palladium decoration (2.1 wt%) allowed obtaining a few times higher hydrogen adsorption (0.42 wt% at 30 °C and 40 bar) compared to that on bare graphene-based materials. Palladium-decorated graphene materials are promising for hydrogen storage and their usage in this application represents an alternative for conventional fossil fuels. The proposed synthesis and post-modification strategies are in line with green synthesis strategies.

5.
Mol Pharm ; 21(6): 2781-2794, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38676649

RESUMEN

The nanocrystal (NC) technology has become one of the most commonly used strategies for the formulation of poorly soluble actives. Given their large specific surface, NCs are mainly used to enhance the oral absorption of poorly soluble actives. Differently from conventional nanoparticles, which require the use of carrier materials and have limited drug loadings, NCs' drug loading approaches 100% since they are formed of the pure drug and surrounded by a thin layer of a stabilizer. In this work, we report the covalent decoration of curcumin NCs with folic acid (FA) using EDC/NHS chemistry and explore the novel systems as highly loaded "Trojan horses" to target cancer cells. The decorated NCs demonstrated a remarkable improvement in curcumin uptake, exhibiting enhanced growth inhibition in cancer cells (HeLa and MCF7) while sparing healthy cells (J774A.1). Cellular uptake studies revealed significantly heightened entry of FA-decorated NCs into cancer cells compared to unmodified NCs while also showing reduced uptake by macrophages, indicating a potential for prolonged circulation in vivo. These findings underline the potential of NC highly loaded nanovectors for drug delivery and, in particular, for cancer therapies, effectively targeting folate receptor-overexpressing cells while evading interception by macrophages, thus preserving their viability and offering a promising avenue for precise and effective treatments.


Asunto(s)
Curcumina , Ácido Fólico , Nanopartículas , Ácido Fólico/química , Humanos , Nanopartículas/química , Curcumina/farmacología , Curcumina/química , Curcumina/farmacocinética , Curcumina/administración & dosificación , Animales , Células MCF-7 , Células HeLa , Sistemas de Liberación de Medicamentos/métodos , Ratones , Portadores de Fármacos/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral
6.
Environ Res ; 252(Pt 4): 119081, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38714221

RESUMEN

The development of polymeric-composites Agx%DP25-PET (x = 0,1,2,3) may significantly boost the potential application of Agx%DP25 (x = 0,1,2,3) photocatalytic powders. Producing large-scale nano-composites with hybrid-surfaces, that are also flexible materials and easy to employ in a variety of environments. A set of photocatalytic nan-composites embedded with the polymeric binder poly (acrylonitrile-co-butadiene)-dicarboxy terminated (C7H9N) were performed and evaluated for wastewater treatment applications. The results reveal that the flexible polymeric composites (Agx%DP25-PET, x = 0,1,2,3) have photocatalytic activity in aqua media to degrade methylene blue (MB) under visible-light. The addition of C7H9N to immobilize photocatalytic powders on the PET surface reduces photo-generated electron-hole recombination. The materials were characterized by HR-TEM, SEM/EDX, XRD, FT-IR, UV-Vis DRS and PL. The Agx%DP25-PET (x = 0,1,2,3) photocatalytic reactions exhibited productive discoloration/degradation rates, in both aerobic (AE) and anaerobic (AN) environments. The superior photodegradation of Ag2%DP25-PET was attributed to a combination of two effects: LSPR (localized surface plasmon resonance) and Ag-TiO2/environment affinities. The findings of molecular dynamics (MD) simulation and Fukui Function (FF) based on density functional theory (DFT) provide significant insight into the photocatalytic requirements for MB discoloration/degradation. The experimental/theoretical analysis aimed to offer an in-depth understanding of medium/surface interactions on decorated TiO2 materials, as well as how these interactions affect overall degradation behavior.


Asunto(s)
Azul de Metileno , Nanocompuestos , Plata , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Azul de Metileno/química , Contaminantes Químicos del Agua/química , Plata/química , Nanocompuestos/química , Catálisis , Luz , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos
7.
Angew Chem Int Ed Engl ; 63(36): e202408391, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39031836

RESUMEN

The electronic structure of active metal centers plays an indispensable role in regulating catalytic reactivity in heterogeneous catalysis, developing other metals as promoters to decorate electronic state is a common strategy, while non-metal component of carbon as electronic additives to regulate d-band center has rarely been studied in thermal-catalysis field. Herein, we report electron-deficient tetrahedral Co(II) (Td-cobalt(II)) centers through carbon-layer modulation for propane dehydrogenation (PDH). It is indicated that bifunctional sites of both Td-cobalt(II) and metallic-cobalt are designed, and the in situ generated carbon through the disproportionation of CO on metallic-cobalt can cover the inactive metallic-cobalt and tailor d-band of active Td-cobalt(II) simultaneously. More importantly, the pre-deposited carbon-layer is proposed to decrease electron density of Td-cobalt(II) and make d-band center closer to Fermi level, consequently promotes C-H activation in PDH reaction. This study provides new perspective for the utilization of inactive carbon as electronic promoters and unlocks new opportunity to fabricate efficient PDH and other heterogeneous catalysts.

8.
Angew Chem Int Ed Engl ; 63(16): e202315343, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38425130

RESUMEN

Direct methane conversion (DMC) to oxygenates at low temperature is of great value but remains challenging due to the high energy barrier for C-H bond activation. Here, we report that in situ decoration of Pd1-ZSM-5 single atom catalyst (SAC) by CO molecules significantly promoted the DMC reaction, giving the highest turnover frequency of 207 h-1 ever reported at room temperature and ~100 % oxygenates selectivity with H2O2 as oxidant. Combined characterizations and DFT calculations illustrate that the C-atom of CO prefers to coordinate with Pd1, which donates electrons to the Pd1-O active center (L-Pd1-O, L=CO) generated by H2O2 oxidation. The correspondingly improved electron density over Pd-O pair renders a favorable heterolytic dissociation of C-H bond with low energy barrier of 0.48 eV. Applying CO decoration strategy to M1-ZSM-5 (M=Pd, Rh, Ru, Fe) enables improvement of oxygenates productivity by 3.2-11.3 times, highlighting the generalizability of this method in tuning metal-oxo electronic structure of SACs for efficient DMC process.

9.
Ann Bot ; 132(5): 1033-1050, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-37850481

RESUMEN

Anthocyanin composition is responsible for the red colour of grape berries and wines, and contributes to their organoleptic quality. However, anthocyanin biosynthesis is under genetic, developmental and environmental regulation, making its targeted fine-tuning challenging. We constructed a mechanistic model to simulate the dynamics of anthocyanin composition throughout grape ripening in Vitis vinifera, employing a consensus anthocyanin biosynthesis pathway. The model was calibrated and validated using six datasets from eight cultivars and 37 growth conditions. Tuning the transformation and degradation parameters allowed us to accurately simulate the accumulation process of each individual anthocyanin under different environmental conditions. The model parameters were robust across environments for each genotype. The coefficients of determination (R2) for the simulated versus observed values for the six datasets ranged from 0.92 to 0.99, while the relative root mean square errors (RRMSEs) were between 16.8 and 42.1 %. The leave-one-out cross-validation for three datasets showed R2 values of 0.99, 0.96 and 0.91, and RRMSE values of 28.8, 32.9 and 26.4 %, respectively, suggesting a high prediction quality of the model. Model analysis showed that the anthocyanin profiles of diverse genotypes are relatively stable in response to parameter perturbations. Virtual experiments further suggested that targeted anthocyanin profiles may be reached by manipulating a minimum of three parameters, in a genotype-dependent manner. This model presents a promising methodology for characterizing the temporal progression of anthocyanin composition, while also offering a logical foundation for bioengineering endeavours focused on precisely adjusting the anthocyanin composition of grapes.


Asunto(s)
Vitis , Vino , Vitis/genética , Antocianinas/análisis , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Vino/análisis
10.
Nanotechnology ; 34(20)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36787630

RESUMEN

Herein, we report a Pt-decorated Ti3C2Tx/TiO2gas sensor for the enhanced NH3sensing response at room temperature. Firstly, the TiO2nanosheets (NSs) arein situgrown onto the two-dimensional (2D) Ti3C2Txby hydrothermal treatment. Similar to Ti3C2Txsensor, the Ti3C2Tx/TiO2sensor has a positive resistance variation upon exposure to NH3, but with slight enhancement in response. However, after the loading of Pt nanoparticles (NPs), the Pt-Ti3C2Tx/TiO2sensor shows a negative response with significantly improved NH3sensing performance. The shift in response direction indicates that the dominant sensing mechanism has changed under the sensitization effect of Pt NPs. At room temperature, the response of Pt-Ti3C2Tx/TiO2gas sensor to 100 ppm NH3is about 45.5%, which is 13.8- and 10.8- times higher than those of Ti3C2Txand Ti3C2Tx/TiO2gas sensors, respectively. The experimental detection limit of the Pt-Ti3C2Tx/TiO2gas sensor to detect NH3is 10 ppm, and the corresponding response is 10.0%. In addition, the Pt-Ti3C2Tx/TiO2gas sensor shows the fast response/recovery speed (23/34 s to 100 ppm NH3), high selectivity and good stability. Considering both the response value and the response direction, the corresponding gas-sensing mechanism is also deeply discussed. This work is expected to shed a new light on the development of noble metals decorated MXene-metal oxide gas sensors.

11.
Nanotechnology ; 34(29)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37129108

RESUMEN

Recent progress in thein situsynthesise of various nanomaterials has gained tremendous interest and wide applications in various fields. For the first time to the best of our knowledge, this work reports a methodology of ultra-fastin situsynthesis of cobalt-cobalt oxide-reduced graphene oxide (Co-Co3O4-rGO (CC-rGO)) composite by laser ablation. The photothermal reduction technique was leveraged to develop the CC-rGO. For this, a low-cost 450 nm blue diode laser was irradiated onto a grade 1 filter paper in the presence of cobalt ions readily patterns the carbon matrix of paper to the composite material. Moreover, the variation of cobalt concentrations from 0.1-0.5 M led to structural and morphological changes. Standard techniques were adopted for thorough characterizations of developed sensor material for conductivity analysis, specific surface area, crystal-structural information, surface morphology, and chemical composition. The observed results were highly promoting towards the electrochemical sensing applications. Further, the developed sensor was found to be highly selective toward detecting a vital bio analyte alkaline phosphatase (ALP). The sensors performance was highly significant in the linear range of 10-800 mU l-1with a detection limit of 10.13 mU l-1. The sensors applicability was further validated in actual human serum samples via a recovery-based approach. In the future, the developedin situmaterial methodology can begin a rapid composite material synthesis at a larger scale.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanocompuestos , Humanos , Fosfatasa Alcalina , Grafito/química , Cobalto/química , Nanocompuestos/química , Colorantes , Técnicas Biosensibles/métodos , Rayos Láser , Técnicas Electroquímicas/métodos
12.
Anal Bioanal Chem ; 415(24): 5859-5874, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37433955

RESUMEN

Recently, proteins separation has drawn great interest for the full investigation of a proteome because the proteins separation is the precondition when conducting clinical research or proteomics research. Metal organic frameworks (MOFs) are fabricated via covalent connection between organic ligands and metal ions/clusters units. MOFs have attracted much attention due to the ultra-high specific surface area, tunable structure, more metal site or unsaturated site, and chemical stability. Over the past decade, different functionalization types of MOFs have been reported in combination with amino acids, nucleic acids, proteins, polymers, and nanoparticles for various applications. In this review, the synthesis and functionalization of MOFs have been thoroughly discussed, and we introduced the existing problems and development trends in these fields. Furthermore, MOFs as advanced adsorbents for selective separation of proteins/peptides are summarized. Additionally, we present a comprehensive prospects and challenges in the preparation of robust functional MOFs-based adsorbents and make a final outlook on their future development prospects in selective separation of proteins/peptides.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Péptidos , Polímeros , Aminoácidos , Proteoma , Metales
13.
Environ Res ; 220: 115171, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36621548

RESUMEN

Modifying wide band gap ZnO nanoparticles surface by combine narrow bandgap semiconductors is a novel route to promote the ZnO to diverse applications. Herein, different metal sulfides (CdS, Ag2S and Bi2S3) were decorated on ZnO surface using facile a chemical route for photocatalytic application. Crystal structure, surface morphology and optical changes for the surface modified ZnO were studied by using various characterization techniques. The XRD spectra exhibited mixed phase of decorated metal sulfide nanoparticles along with strong pattens of hexagonal structure ZnO. The SEM images were confirmed that tiny CdS, Ag2S and Bi2S3 sulfide nanoparticles are well decorated on ZnO hexagonal rods surface. Band gap of the ZnO was tuned into visible region by modifying the surface by the sulfide nanoparticles. Textile industry-based crystal violet (CV) dye was used as a model pollutant to evaluate the photocatalytic activity of sulfides decorated well-crystalline ZnO photocatalysts under natural sunlight. Among the three catalysts, the Ag2S decorated ZnO achieved greatest photodegradation efficiency of 94.1% for degradation of the CV dye with rate constant value of 0.050. The highest catalytic activity may be related to Ag2S acting a significant part in reducing bandgap and boosting hole, superoxide radical, and hydroxyl radical formation, which inhibits recombination, hence enhancing the photocatalyst's efficacy, activity, and also stability.


Asunto(s)
Nanopartículas del Metal , Óxido de Zinc , Óxido de Zinc/química , Fotólisis , Luz Solar , Sulfuros
14.
Mikrochim Acta ; 190(3): 96, 2023 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-36807541

RESUMEN

The accurate and rapid detection for the nucleoside reverse transcriptase inhibitor lamivudine (LAM, 3TC) in cellular systems is always a challenge in the clinic application. Here, a sensitive Cu and Ni nano cluster sensor for LAM is generated under hydrothermal conditions.The Cu and Ni atoms are highly dispersed and aggregated in the nanosized opening pore windows of the synthesized LTA zeolite, through the diatomic synergistic contribution of Cu and Ni and the enrichment of zeolitic channel pores. Using differential pulse voltammetry (DPV), the detection limit (LOD) of LAM at the potential (- 0.15 V) can reach 0.001 pM and the linear range is 0.002 pM-0.002 µM. Since the nano cluster is separated and restricted by the nanosized windows of the zeolite framework, the sensor provides high stability, good recovery (92.5-109%) and RSD (0.8-3.2%) in the analysis of tap water, RPMI 1640 medium, and rabbit serum. The Cu/Ni/LTA zeolite-modified glassy carbon electrode (Cu/Ni/LTA/GCE) exhibits excellent catalytic performance for LAM with high selectivity over potentially interfering agents. A sensitive Cu and Ni nano cluster sensor for LAM is generated in the hydrothermal condition that the Cu and Ni atoms are highly dispersed and aggregated in the nanosized opening pore windows of the as-synthesized LTA zeolite. Through the diatomic synergistic contribution of Cu and Ni and the enrichment of zeolitic channel pores, the observed limit of detection (LOD) can reach 0.001 pM under differential pulse voltammetry (DPV) method with a wide linear relationship to 0.002 µM.


Asunto(s)
Antivirales , Zeolitas , Conejos , Animales , Lamivudine , Técnicas Electroquímicas/métodos , Carbono
15.
Nano Lett ; 22(19): 7902-7909, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36162122

RESUMEN

Strongly interacting electrons in hexagonal and kagome lattices exhibit rich phase diagrams of exotic quantum states, including superconductivity and correlated topological orders. However, material realizations of these electronic states have been scarce in nature or by design. Here, we theoretically propose an approach to realize artificial lattices by metal adsorption on a 2D Mott insulator 1T-TaS2. Alkali, alkaline-earth, and group 13 metal atoms are deposited in (√3 × âˆš3)R30° and 2 × 2 TaS2 superstructures of honeycomb- and kagome-lattice symmetries exhibiting Dirac and kagome bands, respectively. The strong electron correlation of 1T-TaS2 drives the honeycomb and kagome systems into correlated topological phases described by Kane-Mele-Hubbard and kagome-Hubbard models. We further show that the 2/3 or 3/4 band filling of Mott Dirac and flat bands can be achieved with a proper concentration of Mg adsorbates. Our proposal may be readily implemented in experiments, offering an attractive condensed-matter platform to exploit the interplay of correlated topological order and superconductivity.

16.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36768466

RESUMEN

Metal-organic frameworks (MOFs) are crystalline materials that are formed by self-assembling organic linkers and metal ions with large specific areas and pore volumes. Their chemical tunability, structural diversity, and tailor-ability make them adaptive to decorate many substrate materials, such as biomass-derived carbon materials, and competitive in many environmental biosystems, such as biofuel cells, bioelectrocatalysts, microbial metal reduction, and fermentation systems. In this review, we surmised the recent progress of MOFs and MOF-derived materials and their applications in environmental biosystems. The behavior of MOFs and MOF-derived materials in different environmental biosystems and their influences on performance are described. The inherent mechanisms will guide the rational design of MOF-related materials and lead to a better understanding of their interaction with biocomponents.


Asunto(s)
Estructuras Metalorgánicas , Biomasa , Carbono , Fermentación , Ambiente
17.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674958

RESUMEN

Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) perform diverse functions in cellular organization, transport and signaling. Unlike the well-defined structures of the classical natively folded proteins, IDPs and IDRs dynamically span large conformational and structural ensembles. This dynamic disorder impedes the study of the relationship between the amino acid sequences of the IDPs and their spatial structures and dynamics, with different experimental techniques often offering seemingly contradictory results. Although experimental and theoretical evidence indicates that some IDP properties can be understood based on their average biophysical properties and amino acid composition, other aspects of IDP function are dictated by the specifics of the amino acid sequence. We investigate the effects of several key variables on the dimensions and the dynamics of IDPs using coarse-grained polymer models. We focus on the sequence "patchiness" informed by the sequence and biophysical properties of different classes of IDPs-and in particular FG nucleoporins of the nuclear pore complex (NPC). We show that the sequence composition and patterning are well reflected in the global conformational variables such as the radius of gyration and hydrodynamic radius, while the end-to-end distance and dynamics are highly sequence-specific. We find that in good solvent conditions highly heterogeneous sequences of IDPs can be well mapped onto averaged minimal polymer models for the purpose of prediction of the IDPs dimensions and dynamic relaxation times. The coarse-grained simulations are in a good agreement with the results of atomistic MD. We discuss the implications of these results for the interpretation of the recent experimental measurements, and for the further applications of mesoscopic models of FG nucleoporins and IDPs more broadly.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Hidrodinámica , Proteínas de Complejo Poro Nuclear , Conformación Proteica , Polímeros
18.
Molecules ; 28(18)2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37764327

RESUMEN

A facile mechanochemical method was used for the synthesis of ordered mesoporous carbons (OMCs) with well-dispersed metal nanoparticles. The one-pot ball milling of tannins with a metal salt in the presence of a block copolymer followed by thermal treatment led to Ni- or Pt-embedded OMCs with high specific surface areas (up to 600 m2·g-1) and large pore volumes (up to ~0.5 cm3·g-1). The as-prepared OMC-based samples exhibited hexagonally ordered cylindrical mesopores with narrow pore size distributions (average pore size ~7 nm), which implies sufficient long-range copolymer-assisted self-assembly of the tannin-derived polymer upon milling even in the presence of a metal salt. The homogenous decoration of carbons with small-sized metal (Ni or Pt) particles was essential to provide H2 storage capacities up to 0.33 wt.% at 25 °C and under 100 bar. The presented synthesis strategy seems to have great potential in the practical uses of functionalized polymers and carbons for applications in adsorption and catalysis.

19.
Artículo en Zh | MEDLINE | ID: mdl-37524684

RESUMEN

In this paper, 177 cases of artificial stone-related silicosis in interior decoration workers from Israel, Spain, USA, Italy and Australia were analyzed. Interior decoration workers were from small businesses (or workshops), engaged in kitchen and/or bathroom artificial stone countertops cutting, grinding, polishing and other reprocessing. In the working environment, the content of crystalline silica in artificial stone was more than 70%, and the concentration of silica dust exceeded the relevant standards. Most workplaces used dry cutting without ventilation and dust removal and other dust-proof measures, and most workers did not wear qualified respiratory protective equipment. Taking comprehensive measures such as wet operation, ventilation and dust removal, and individual protection can effectively prevent the occurrence of artificial stone-related silicosis.

20.
Small ; 18(16): e2200415, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35257494

RESUMEN

The surface Fermi level pinning effect promotes the formation of metal-independent Ohmic contacts for the high-speed GaSb nanowires (NWs) electronic devices, however, it limits next-generation optoelectronic devices. In this work, lead-free all-inorganic perovskites with broad bandgaps and low work functions are adopted to decorate the surfaces of GaSb NWs, demonstrating the success in the construction of Schottky-contacts by surface engineering. Benefiting from the expected Schottky barrier, the dark current is reduced to 2 pA, the Ilight /Idark ratio is improved to 103 and the response time is reduced by more than 15 times. Furthermore, a Schottky-contacted parallel array GaSb NWs photodetector is also fabricated by the contact printing technology, showing a higher photocurrent and a low dark current of 15 pA, along with the good infrared photodetection ability for a concealed target. All results guide the construction of Schottky-contacts by surface decorations for next-generation high-performance III-V NWs optoelectronics devices.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda