Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 974
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(32): e2307323120, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523554

RESUMEN

The complex and heterogeneous nature of the lignin macromolecule has presented a lasting barrier to its utilization. To achieve high lignin yield, the technical lignin extraction process usually severely modifies and condenses the native structure of lignin, which is a critical drawback for its utilization in conversion processes. In addition, there is no method capable of separating lignin from plant biomass with controlled structural properties. Here, we developed an N-heterocycle-based deep eutectic solvent formed between lactic acid and pyrazole (La-Py DES) with a binary hydrogen bonding functionality resulting in a high affinity toward lignin. Up to 93.7% of lignin was extracted from wheat straw biomass at varying conditions from 90 °C to 145 °C. Through careful selection of treatment conditions as well as lactic acid to pyrazole ratios, lignin with controlled levels of ether linkage content, hydroxyl group content, and average molecular weight can be generated. Under mild extraction conditions (90 °C to 120 °C), light-colored native-like lignin can be produced with up to 80% yield, whereas ether linkage-free lignin with low polydispersity can be obtained at 145 °C. Overall, this study offers a new strategy for native lignin extraction and generating lignin with controlled structural properties.

2.
Small ; 20(11): e2304828, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37939295

RESUMEN

Conductive elastomers are extensively used in electronics; however, they are prone to mechanical damage, have shortened service life, and cause environmental pollution and resource waste under the influence of external factors. Therefore, conductive elastomers with rapid self-healing properties are crucial for solving these problems. To that end, a conductive elastomer based on a polymerizable deep eutectic solvent as the matrix is developed in this study. The contents of certain small molecules and conductive particles are adjusted to yield a conductive elastomer with excellent comprehensive performance. The elastomer exhibited noteworthy fracture strength (15.7 MPa), ultrahigh fracture elongation (2400%), excellent light transmittance (95.6%), and remarkable self-healing characteristics, with complete electrical healing achieved within 0.6 s, ≈63% strain, and ≈64% stress recovered within 1 min, and healing efficiency close to 99% realized within 24 h. By leveraging these properties, the elastomer is used to construct a sensor that exhibited a gauge factor of ≈0.574 in the strain range 0-2400% and excellent stability. Moreover, the CCK-8 toxicity test and fluorescence staining experiment have demonstrated that conductive elastomers have excellent cell compatibility and also have excellent potential in the field of biomedicine. In particular, the sensor is effectively applied in human motion detection, health monitoring.

3.
Small ; 20(33): e2400151, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38558525

RESUMEN

Transparent paper manufactured from wood fibers is emerging as a promising, cost-effective, and carbon-neutral alternatives to plastics. However, fully exploring their mechanical properties is one of the most pressing challenges. In this work, a strong yet tough transparent paper with superior folding endurance is prepared by rationally altering the native fiber structure. Microwave-assisted choline chloride/lactic acid deep eutectic solvent (DES) pulping is first utilized to isolate wood fibers from spruce wood. During this process, the S1 layer within the fibers is partially disrupted, forming protruding microfibrils that play a crucial role in enhancing cellulose accessibility. Subsequently, carboxymethylation treatment is applied to yield uniformly swollen carboxymethylated wood fibers (CM fibers), which improves the interaction between CM fibers during papermaking. The as-prepared transparent paper not only shows a 90% light transmittance (550 nm) but also exhibits impressive mechanical properties, including a folding endurance of over 26 000, a tensile strength of 248.4 MPa, and a toughness of 15.6 MJ m-3. This work provides a promising route for manufacturing transparent paper with superior mechanical properties from wood fibers and can extend their use in areas normally dominated by high-performance nonrenewable plastics.

4.
Chemistry ; 30(37): e202400622, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38683743

RESUMEN

The capability of peptide and amino acid-based molecules to act as ionogelators and eutectogelators entrapping ionic liquids (ILs) and deep eutectic solvents (DESs) forming ionogels and eutectogels has gathered attention in recent decades. The self-assembly process, primarily driven by non-covalent interactions as hydrogen bonding, remains serendipitous in nature. This review provides a comprehensive and detailed report on self-assembly of unmodified and modified amino acids and peptides in the non-conventional solvents, ILs and DESs. Understanding these processes holds great promise for the development of innovative soft-materials, and to the progress of supramolecular systems in non-conventional solvent environments.


Asunto(s)
Aminoácidos , Geles , Enlace de Hidrógeno , Líquidos Iónicos , Péptidos , Solventes , Aminoácidos/química , Péptidos/química , Geles/química , Líquidos Iónicos/química , Solventes/química
5.
Chemistry ; : e202304364, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965045

RESUMEN

The application of biocatalysis has become essential in both academic and industrial domains for the asymmetric synthesis of chiral amines, and it serves as an alternative tool to transition-metal catalysis and complements traditional chemical methods. It relies on the swift expansion of available processes, primarily as a result of advanced tools for enzyme discovery, combined with high-throughput laboratory evolution techniques for optimizing biocatalysts. This concept paper explores the utilization of non-conventional media such as ether-type solvents, deep eutectic solvents, and micellar catalysis to enhance biocatalytic reactions for chiral amine synthesis. Each section focuses on the unique properties of these media, including their ability to stabilize enzymes, alter substrate solubility, and modulate enzyme selectivity. The paper aims to provide insights into how these innovative media can overcome traditional limitations, offering new avenues for sustainable and efficient chiral amine production through biocatalytic processes.

6.
Biomed Microdevices ; 26(1): 8, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38180587

RESUMEN

Cancer antigen 125 (CA125) is the most common biomarker used to diagnose and monitor ovarian cancer progression for the last four decades, and precise detection of its levels in blood serum is crucial. In this work, label-free impedimetric CA125 immunosensors were fabricated by using screen-printed carbon electrodes modified with poly toluidine blue (PTB) (in deep eutectic solvent)/gold nanoparticles (AuNP) for the sensitive, environmentally friendly, economical, and practical analysis of CA125. The materials of PTBDES and AuNP were characterized by Fourier Transform Infrared (FT-IR), Scanning Electron Microscope (FE-SEM), and X-ray Diffraction (XRD). The analysis of the CA125 was performed by electrochemical impedance spectroscopy and the developed immunosensor. The immunosensor's repeatability, reproducibility, reusability, selectivity, and storage stability were examined. The developed label-free immunosensor allowed the determination of CA125 in fast, good repeatability and a low limit of detection (1.20 pg mL-1) in the linear range of 5-100 pg mL-1. The stable surface of the fabricated immunosensor was successfully regenerated ten times. The application of immunosensors in commercial human blood serum was performed, and good recoveries were achieved. The disposable label-free impedimetric CA125 immunosensor developed for the rapid and practical detection of CA125 is a candidate for use in point-of-care tests in clinical applications of ovarian cancer.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Neoplasias Ováricas , Humanos , Femenino , Antígeno Ca-125 , Oro , Inmunoensayo , Reproducibilidad de los Resultados , Espectroscopía Infrarroja por Transformada de Fourier , Neoplasias Ováricas/diagnóstico
7.
Crit Rev Food Sci Nutr ; : 1-22, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38590257

RESUMEN

Polyphenols are important constituents of plant-based foods, exhibiting a range of beneficial effects. However, many phenolic compounds have low bioavailability because of their low water solubility, chemical instability, food matrix effects, and interactions with other nutrients. This article reviews various methods of improving the bioavailability of polyphenols in plant-based foods, including fermentation, natural deep eutectic solvents, encapsulation technologies, co-crystallization and amorphous solid dispersion systems, and exosome complexes. Several innovative technologies have recently been deployed to improve the bioavailability of phenolic compounds. These technologies may be utilized to increase the healthiness of plant-based foods. Further research is required to better understand the mechanisms of action of these novel approaches and their potential to be used in food production.

8.
Anal Bioanal Chem ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740590

RESUMEN

Acrylamide determination is important to state its quantity in baked food preventing any potential carcinogenic effects. Matrix solid-phase dispersion (MSPD) extraction is an extraction procedure based on a homogenization phase between a solid sample and a solid dispersing material to break sample increasing analyte extraction yield, often used for acrylamide determination. The addition of a green deep eutectic solvent (DES) during the MSPD homogenization phase improves the analyte extraction, giving the possibility to reduce the amount of organic solvent used. In this work, a miniaturized MSPD extraction assisted by a DES was developed to determine acrylamide in bread, using high-performance liquid chromatography coupled with mass spectrometry detection. The optimized procedure provides 1:1 (w/w) matrix-to-dispersing material ratio, 2 mL of methanol as extraction solvent, and 50 µL of choline chloride-glycerol DES added during the homogenization phase. Method validation ensured good results with minimum recoveries of 90%, high precision with a maximum intra-day error of 4%, and inter-day error of 6%. Limit of detection and limit of quantification resulted to be 16 µg/kg and 35 µg/kg, respectively. This miniaturized extraction procedure represents a good alternative to those reported in the literature, guaranteeing great performance and respecting green chemistry principles.

9.
Anal Bioanal Chem ; 416(4): 873-882, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38062196

RESUMEN

This study presents a novel approach for the quantification of silver ions in environmental water through the utilization of liquid-liquid microextraction, employing natural deep eutectic solvents in conjunction with inductively coupled plasma emission spectroscopy. The extracted solvent was characterized by Fourier transform infrared spectroscopy (FT-IR). The impact of various extractant types, extractant molar ratio, extractant volume, extraction time, and salt concentration on the efficacy of silver ion extraction was investigated. The findings indicate that the optimal extraction efficiency was attained by utilizing a 5-mL aqueous solution volume, containing 1000 µL thymol/lactic acid NADES 1:3, a salt concentration of 1 mg mL-1, a pH value of 4, and a vortex time of 4 min. Upon implementing the optimized experimental conditions, the recovery of target metal ions was from 96.9 to 101.0%. The relative standard deviations were observed to be within the range of 1.5 to 2.7%. The present study demonstrates the reproducibility, accuracy, and reliability of the method for detecting silver ions in environmental water, with linear range of 5~1000 ng mL-1 and limits of detection (LOD) and limits of quantification (LOQ) of 1.52 ng mL-1 and 5.02 ng mL-1, respectively.

10.
Anal Bioanal Chem ; 416(18): 4057-4070, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38842689

RESUMEN

A novel ferrofluid prepared from a hydrophobic deep eutectic solvent (DES) and Fe3O4@graphite composite materials was introduced as a green microextraction medium for the separation and enrichment of trace estrogens in real samples. It was found that the ferrofluid greatly improved the capacity and selectivity of target analytes, benefiting from the enrichment of both DES and Fe3O4@graphite composite materials. Using a combination of high-performance liquid chromatography-fluorescence detection (HPLC-FLD) and vortex-assisted liquid-liquid microextraction (VALLME), a new method was established for simultaneous rapid processing and accurate determination of three estrogens (estradiol [E2], estriol [E3], and ethinyl estradiol [EE2]) in environmental water and urine samples. Key parameters affecting the extraction efficiency were optimized using a single-factor approach and response surface methodology. Under optimal conditions, this method yielded a low limit of detection (1.01 ng L-1, 3.03 ng L-1, and 25.0 ng L-1 for EE2, E2, and E3, respectively), wide linear range (3-200,000 ng L-1), high enrichment factors (9.81-47.2), and satisfactory recovery (73.8-129.0%). Compared with traditional analytical techniques, this method avoids the use of volatile toxic organic extraction solvents and cumbersome phase separation operations.


Asunto(s)
Estrógenos , Interacciones Hidrofóbicas e Hidrofílicas , Límite de Detección , Microextracción en Fase Líquida , Contaminantes Químicos del Agua , Estrógenos/orina , Estrógenos/análisis , Contaminantes Químicos del Agua/orina , Contaminantes Químicos del Agua/análisis , Microextracción en Fase Líquida/métodos , Cromatografía Líquida de Alta Presión/métodos , Disolventes Eutécticos Profundos/química , Humanos
11.
Anal Bioanal Chem ; 416(15): 3533-3542, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38691170

RESUMEN

The utilization of supramolecular deep eutectic solvent eddy-assisted liquid-liquid microextraction utilizing 2-hydroxypropyl ß-cyclodextrin (SUPRADES) has been identified as a successful method for pre-enriching Cu, Zn, and Mn in vegetable oil samples. Determination of each element was conducted by inductively coupled plasma optical emission spectrometry (ICP-OES) after digestion of metal-enriched phases. Various parameters were examined, including the composition of SUPRADES species [2HP-ß-CD: DL-lactic acid], a cyclodextrin mass ratio of 20 wt%, a water bath temperature of 75 °C, an extractor volume of 800 µL, a dispersant volume of 50 µL, and an eddy current time of 5 min. Optimal conditions resulted in extraction rates of 99.6% for Cu, 105.2% for Zn, and 101.5% for Mn. The method exhibits a broad linear range spanning from 10 to 20,000 µg L-1, with determination coefficients exceeding 0.99 for all analytes. Enrichment coefficients of 24, 21, and 35 were observed. Limits of detection ranged from 0.89 to 1.30 µg L-1, while limits of quantification ranged from 3.23 to 4.29 µg L-1. The unique structural characteristics of the method enable the successful determination of trace elements in a variety of edible vegetable oils.


Asunto(s)
Aceites de Plantas , Solventes , Oligoelementos , Aceites de Plantas/química , Oligoelementos/análisis , Solventes/química , Microextracción en Fase Líquida/métodos , Límite de Detección , 2-Hidroxipropil-beta-Ciclodextrina/química , Contaminación de Alimentos/análisis , Metales/química , Metales/análisis
12.
Anal Bioanal Chem ; 416(5): 1117-1126, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38123751

RESUMEN

For the analysis of plant-based meat substitutes and the determination of Maillard reaction products such as acrylamide, 5-hydroxymethylfurfural and furaneol, a novel and effective procedure based on hydrophobic natural deep eutectic solvent and liquid chromatography coupled with tandem mass spectrometry was developed for the first time. The 49 compositions of the deep eutectic solvents were designed and screened to select the most suitable option. The terpenoids eugenol and thymol in a molar ratio of 2:1 were selected as precursors for solvent formation, allowing effective extraction of the target analytes. The developed procedure comprised two main steps: extraction - in which the analytes are isolated from the solid sample due to the salting-out effect and pre-concentrated in the deep eutectic solvent, and back-extraction - in which the analytes are re-extracted into the formic acid solution for subsequent mass spectrometric detection. As the density of the aqueous phases changed during the extraction and back-extraction steps, the phenomenon of inversion of the coalesced organic phase was observed, which simplified the withdrawing of the phases. The linear range was 1-50 ng/mL for acrylamide, 10-1000 ng/mL for 5-hydroxymethylfurfural and 200-1000 ng/mL for furaneol with coefficients of determination above 0.9952. The developed method was fully validated and found recoveries were in the range 83-120%, with CVs not exceeding 4.9%. The method was applied to real sample analysis of pea-based meat substitutes.


Asunto(s)
Disolventes Eutécticos Profundos , Furaldehído/análogos & derivados , Furanos , Microextracción en Fase Líquida , Solventes/química , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Liquida , Espectrometría de Masas en Tándem , Acrilamida , Sustitutos de la Carne , Microextracción en Fase Líquida/métodos , Límite de Detección
13.
Macromol Rapid Commun ; : e2400268, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739444

RESUMEN

Solvent-free photopolymerization of vinyl monomers to produce high modulus materials with applications in 3D printing and photoswitchable materials is demonstrated. Polymerizable eutectic (PE) mixtures are prepared by simply heating and stirring various molar ratios of N-isopropylacrylamide (NIPAM), acrylamide (AAm) and 2-hydroxyethyl methacrylate (HEMA). The structural and thermal properties of the resulting mixtures are evaluated by 1D and 2D NMR spectroscopy as well as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). UV photocuring kinetics of the PE mixtures is evaluated via in situ photo-DSC and photorheology measurements. The PE mixtures cure rapidly and display storage moduli that are orders of magnitude greater than equivalent copolymers cured in an aqueous medium. The versatility of these PE systems is demonstrated through the addition of a photoswitchable spiropyran acrylate monomer, as well as applying the PE formulation as a stereolithography (SLA)-based 3D printing resin. Due to the hydrogen-bonding network in PE systems, 3D printing of the eutectic resin is possible in the absence of crosslinkers. The addition of a RAFT agent to reduce average polymer chain length enables 3D printing of materials which retain their shape and can be dissolved on demand in appropriate solvents.

14.
Environ Res ; 248: 118261, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38272299

RESUMEN

Perfluoroalkyl substances (PFASs) are a class of emerging organic pollutants characterized by high toxicity, environmental persistence, and widespread detection in water sources. The removal of PFASs from water is a matter of global concern, given their detrimental impact on both the environment and public health. Many commonly used PFAS adsorbents demonstrate limited adsorption capacities and/or slow adsorption kinetics. Therefore, there is an urgent need for the development of efficient adsorbents. For the first time, this work systematically investigated the performance of a deep eutectic solvent (DES)-based amorphous metal-organic framework (MOF) for the adsorption of PFASs with different carbon-chain lengths under the state of the mixture in aquatic environments. The adsorption mechanism was probed by a suite of adsorption kinetics studies, adsorption isotherm profiling, spectral characterization, and ab initio molecular dynamics (AIMD) simulations, revealing that PFAS adsorption is driven by synergistic capturing effects including acid/base coordination, CF-π (carbon-fluorine-π), hydrogen bonding, and hydrophobic interactions. Furthermore, the adsorption processes of short-chain and long-chain targets were found to involve different rate-controlling steps and interaction sites. Hydrophobic interactions facilitated the swift arrival of long-chain PFASs at the coordinatively interacting sites between carboxyl termini and Lewis acid Zr unsaturated sites, thanks to their lower reaction barriers. On the other hand, the adsorption of short-chain PFASs primarily relied on a Zr hydroxyl-based ligand exchange force, which would take place at Brønsted acid sites. The existence of massive structural disorder in amorphous UiO-66 led to the development of larger pores, thus improving the accessibility of abundant adsorption sites and facilitating adsorption and diffusion. The presence of multiple types of interactions and flexible structure in defect-rich amorphous UiO-66 significantly increased the exposure of functional groups to the adsorbates. Additionally, this material possessed outstanding regeneration efficiency and outperformed other MOF-based adsorbents with high affinity for targets. It enhances our understanding of the adsorption performances and mechanisms of amorphous materials toward PFASs, thereby paving the way for designing more efficient PFAS adsorbents.


Asunto(s)
Fluorocarburos , Estructuras Metalorgánicas , Ácidos Ftálicos , Contaminantes Químicos del Agua , Solventes , Disolventes Eutécticos Profundos , Adsorción , Agua , Carbono , Fluorocarburos/toxicidad , Contaminantes Químicos del Agua/análisis
15.
J Nanobiotechnology ; 22(1): 272, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773580

RESUMEN

BACKGROUND: Transdermal delivery of sparingly soluble drugs is challenging due to their low solubility and poor permeability. Deep eutectic solvent (DES)/or ionic liquid (IL)-mediated nanocarriers are attracting increasing attention. However, most of them require the addition of auxiliary materials (such as surfactants or organic solvents) to maintain the stability of formulations, which may cause skin irritation and potential toxicity. RESULTS: We fabricated an amphiphilic DES using natural oxymatrine and lauric acid and constructed a novel self-assembled reverse nanomicelle system (DES-RM) based on the features of this DES. Synthesized DESs showed the broad liquid window and significantly solubilized a series of sparingly soluble drugs, and quantitative structure-activity relationship (QSAR) models with good prediction ability were further built. The experimental and molecular dynamics simulation elucidated that the self-assembly of DES-RM was adjusted by noncovalent intermolecular forces. Choosing triamcinolone acetonide (TA) as a model drug, the skin penetration studies revealed that DES-RM significantly enhanced TA penetration and retention in comparison with their corresponding DES and oil. Furthermore, in vivo animal experiments demonstrated that TA@DES-RM exhibited good anti-psoriasis therapeutic efficacy as well as biocompatibility. CONCLUSIONS: The present study offers innovative insights into the optimal design of micellar nanodelivery system based on DES combining experiments and computational simulations and provides a promising strategy for developing efficient transdermal delivery systems for sparingly soluble drugs.


Asunto(s)
Administración Cutánea , Micelas , Absorción Cutánea , Solubilidad , Solventes , Animales , Solventes/química , Piel/metabolismo , Piel/efectos de los fármacos , Ratones , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Relación Estructura-Actividad Cuantitativa , Masculino , Simulación de Dinámica Molecular , Portadores de Fármacos/química
16.
J Sep Sci ; 47(4): e2300842, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403445

RESUMEN

The study explored ferulic acid extraction from palm empty fruit bunch (EFB) fiber using deep eutectic solvent (DES) of chlorine chloride-acetic acid as the extraction medium and the way to recover and recycle the DES thereafter. Antisolvent was added to selectively precipitate the ferulic acid, which was recovered by filtration thereafter. Recycling the DES without further purification led to increased ferulic acid yield with each subsequent extraction, likely due to retained ferulic acid. The retained ferulic acid and other impurities could be removed by precipitation brought upon by the addition of a second antisolvent. 1H nuclear magnetic resonance revealed that there was no excess ferulic acid in the recycled DES-treated with two types of antisolvents (ethanol and water). The yield of ferulic acid increased from 0.1367-0.1856 g/g when treated with only one antisolvent to 0.1368-0.2897 g/g with two antisolvent treatments. Oil droplets were also observed in the DES upon the addition of antisolvent 2, with recovered oil ranging from 0.6% to 3%. The study emphasized the significance of using DES as an extraction medium for ferulic acid from oil palm EFB fiber and the method to recycle the DES for subsequent processes.


Asunto(s)
Ácidos Cumáricos , Disolventes Eutécticos Profundos , Frutas , Aceite de Palma , Carbohidratos
17.
J Sep Sci ; 47(1): e2300796, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38234030

RESUMEN

In this study, a hydroxyl-rich ferrofluid was prepared by dispersing silica-coated magnetic nanoparticles into a methyltrioctylammonium chloride-glycerol deep eutectic solvent and then employed in the preconcentration of trace-level of cinnamic acid derivatives (caffeic acid, p-hydroxycinnamic acid, ferulic acid, and cinnamic acid) in traditional Chinese medicine prior to high-performance liquid chromatography analysis. The structures of the synthesized materials were characterized by X-ray diffraction and infrared spectroscopy. The experimental parameters affecting the extraction performance, such as deep eutectic solvent composition, dosage of ferrofluid, pH of aqueous sample solution, salt concentration, extraction time, type, and volume of desorption solvent, were studied and optimized. Under the optimum conditions, the enrichment factors of four cinnamic acid derivatives were in the range of 107-114. Low detection limits (0.2-0.9 ng/mL), good precisions (relative standard deviations 1.2%-9.5%), and satisfactory recoveries (96.0%-104.7%) were achieved. Subsequently, the possible microextraction mechanism of the proposed method was explored and elucidated. It showed that the prepared ferrofluid is easily dispersed in the aqueous sample and achieved recovery after the extraction. The developed approach is a simple, convenient, and efficient method for preconcentration and determination of cinnamic acid derivatives in complex matrices.


Asunto(s)
Microextracción en Fase Líquida , Medicina Tradicional China , Microextracción en Fase Líquida/métodos , Disolventes Eutécticos Profundos , Cinamatos/análisis , Coloides/análisis , Solventes/química , Límite de Detección , Cromatografía Líquida de Alta Presión
18.
J Sep Sci ; 47(1): e2300776, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38066356

RESUMEN

A microextraction based on pH-responsive deep eutectic solvent combined with high-performance liquid chromatography was developed for the separation, preconcentration, and determination of bisphenol A in water samples. Five deep eutectic solvents were prepared using thymol (hydrogen bond acceptor) and 6-, 8-, 9-, 10-, and 12-carbon carboxylic acids (hydrogen bond donor), and were used as extraction solvent. Herein, by alkalinizing the environment, phase transition takes place, and by adding acid, phase separation and extraction of analytes occur simultaneously. Some important parameters on the extraction such as deep eutectic solvent type, molar ratio of deep eutectic solvent components, deep eutectic solvent volume, potassium hydroxide concentration, hydrochloric acid volume, extraction time, and salt addition were optimized. Under the optimum conditions, intra- and interday precisions of the method based on seven replicate measurements of 10 µg L-1 of bisphenol A in water samples were 2.2% and 4.3%, respectively. The analytical performance of the method showed linearity over the concentration of 0.05-50 µg L-1 with the detection limit of 0.02 µg L-1 . The accuracy of the method was confirmed by spiking different concentrations of bisphenol A in real water samples and obtaining relative recoveries in the range of 92.5%-105.2%.

19.
J Sep Sci ; 47(15): e2400275, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39091185

RESUMEN

In this study, we propose a novel strategy utilizing deep eutectic solvents (DESs) as both the extraction solvent and dispersing liquid, with nanometer zinc oxide (ZnO) serving as the adsorbent. This method incorporates ultrasound-assisted matrix solid phase dispersion (UA-MSPD) for the extraction of six active components (salidroside, echinacoside, acteoside, specnuezhenide, nuezhenoside G13, and oleanolic acid) from Ligustri Lucidi Fructus samples. The extracts were then analyzed using high-performance liquid chromatography equipped with a diode array detector. The effects of various parameters such as dispersant dosage, DESs volume, grinding time, ultrasonication duration, and eluent volume on extraction recovery were investigated and optimized using a central composite design under response surface methodology. The optimized conditions yielded detection limits ranging from 0.003 to 0.01 mg/g and relative standard deviations of 8.7% or lower. Extraction recoveries varied between 93% and 98%. The method demonstrated excellent linearity for the analytes (R2 ≥ 0.9997). The simple, green, and efficient DESs/ZnO-UA-MSPD technique proved to be rapid, accurate, and reliable for extracting and analyzing the six active ingredients in Ligustri Lucidi Fructus samples.


Asunto(s)
Ligustrum , Extracción en Fase Sólida , Ondas Ultrasónicas , Óxido de Zinc , Extracción en Fase Sólida/métodos , Óxido de Zinc/química , Ligustrum/química , Disolventes Eutécticos Profundos/química , Cromatografía Líquida de Alta Presión , Frutas/química , Extractos Vegetales/química , Extractos Vegetales/análisis , Tamaño de la Partícula , Solventes/química
20.
J Sep Sci ; 47(5): e2300070, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38466171

RESUMEN

Herein, a deep eutectic solvent (DES)-based miniaturized pressurized liquid extraction in combination with DES-based dispersive liquid-liquid microextraction (DLLME) was developed for the extraction of organophosphorus pesticides (parathion-methyl, triazophos, parathion, diazinon, and phoxim) from egg powder samples prior to their analysis by a high-performance liquid chromatography-diode array detector. In this work, first, the analytes' extraction was done by a pressurized liquid phase extraction for effective extraction of the analytes from the solid matrix, and then they were concentrated on a DLLME for more concentration of the analytes to reach low limits of detections. The use of DESs was done in both steps to omit the use of toxic organic solvents. Satisfactory results including high extraction recoveries (74-90%), great repeatability (relative standard deviations equal or less than 4.3% and 5.3% for intra- and inter-day precisions), and low limits of detection (0.11-0.29 ng/g) and quantification (0.38-0.98 ng/g) were attained under the optimum conditions. Lastly, the suggested approach was utilized for the determination of the studied pesticides in various egg powder samples marketed in Tabriz, Iran.


Asunto(s)
Microextracción en Fase Líquida , Paratión , Residuos de Plaguicidas , Plaguicidas , Compuestos Organofosforados , Cromatografía Líquida de Alta Presión , Disolventes Eutécticos Profundos , Polvos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda