Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 34.832
Filtrar
Más filtros

Publication year range
1.
Cell ; 187(10): 2502-2520.e17, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729110

RESUMEN

Human tissue, which is inherently three-dimensional (3D), is traditionally examined through standard-of-care histopathology as limited two-dimensional (2D) cross-sections that can insufficiently represent the tissue due to sampling bias. To holistically characterize histomorphology, 3D imaging modalities have been developed, but clinical translation is hampered by complex manual evaluation and lack of computational platforms to distill clinical insights from large, high-resolution datasets. We present TriPath, a deep-learning platform for processing tissue volumes and efficiently predicting clinical outcomes based on 3D morphological features. Recurrence risk-stratification models were trained on prostate cancer specimens imaged with open-top light-sheet microscopy or microcomputed tomography. By comprehensively capturing 3D morphologies, 3D volume-based prognostication achieves superior performance to traditional 2D slice-based approaches, including clinical/histopathological baselines from six certified genitourinary pathologists. Incorporating greater tissue volume improves prognostic performance and mitigates risk prediction variability from sampling bias, further emphasizing the value of capturing larger extents of heterogeneous morphology.


Asunto(s)
Imagenología Tridimensional , Neoplasias de la Próstata , Aprendizaje Automático Supervisado , Humanos , Masculino , Aprendizaje Profundo , Imagenología Tridimensional/métodos , Pronóstico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Microtomografía por Rayos X/métodos
2.
Cell ; 187(3): 526-544, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306980

RESUMEN

Methods from artificial intelligence (AI) trained on large datasets of sequences and structures can now "write" proteins with new shapes and molecular functions de novo, without starting from proteins found in nature. In this Perspective, I will discuss the state of the field of de novo protein design at the juncture of physics-based modeling approaches and AI. New protein folds and higher-order assemblies can be designed with considerable experimental success rates, and difficult problems requiring tunable control over protein conformations and precise shape complementarity for molecular recognition are coming into reach. Emerging approaches incorporate engineering principles-tunability, controllability, and modularity-into the design process from the beginning. Exciting frontiers lie in deconstructing cellular functions with de novo proteins and, conversely, constructing synthetic cellular signaling from the ground up. As methods improve, many more challenges are unsolved.


Asunto(s)
Inteligencia Artificial , Proteínas , Conformación Proteica , Proteínas/química , Proteínas/metabolismo , Ingeniería de Proteínas , Aprendizaje Profundo
3.
Cell ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39389057

RESUMEN

Current metagenomic tools can fail to identify highly divergent RNA viruses. We developed a deep learning algorithm, termed LucaProt, to discover highly divergent RNA-dependent RNA polymerase (RdRP) sequences in 10,487 metatranscriptomes generated from diverse global ecosystems. LucaProt integrates both sequence and predicted structural information, enabling the accurate detection of RdRP sequences. Using this approach, we identified 161,979 potential RNA virus species and 180 RNA virus supergroups, including many previously poorly studied groups, as well as RNA virus genomes of exceptional length (up to 47,250 nucleotides) and genomic complexity. A subset of these novel RNA viruses was confirmed by RT-PCR and RNA/DNA sequencing. Newly discovered RNA viruses were present in diverse environments, including air, hot springs, and hydrothermal vents, with virus diversity and abundance varying substantially among ecosystems. This study advances virus discovery, highlights the scale of the virosphere, and provides computational tools to better document the global RNA virome.

4.
Cell ; 187(21): 5814-5832, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39423801

RESUMEN

A central principle in neuroscience is that neurons within the brain act in concert to produce perception, cognition, and adaptive behavior. Neurons are organized into specialized brain areas, dedicated to different functions to varying extents, and their function relies on distributed circuits to continuously encode relevant environmental and body-state features, enabling other areas to decode (interpret) these representations for computing meaningful decisions and executing precise movements. Thus, the distributed brain can be thought of as a series of computations that act to encode and decode information. In this perspective, we detail important concepts of neural encoding and decoding and highlight the mathematical tools used to measure them, including deep learning methods. We provide case studies where decoding concepts enable foundational and translational science in motor, visual, and language processing.


Asunto(s)
Encéfalo , Modelos Neurológicos , Neuronas , Encéfalo/fisiología , Humanos , Neuronas/fisiología , Animales
5.
Cell ; 187(6): 1490-1507.e21, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38452761

RESUMEN

Cell cycle progression relies on coordinated changes in the composition and subcellular localization of the proteome. By applying two distinct convolutional neural networks on images of millions of live yeast cells, we resolved proteome-level dynamics in both concentration and localization during the cell cycle, with resolution of ∼20 subcellular localization classes. We show that a quarter of the proteome displays cell cycle periodicity, with proteins tending to be controlled either at the level of localization or concentration, but not both. Distinct levels of protein regulation are preferentially utilized for different aspects of the cell cycle, with changes in protein concentration being mostly involved in cell cycle control and changes in protein localization in the biophysical implementation of the cell cycle program. We present a resource for exploring global proteome dynamics during the cell cycle, which will aid in understanding a fundamental biological process at a systems level.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Células Eucariotas/metabolismo , Redes Neurales de la Computación , Proteoma/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Cell ; 186(10): 2256-2272.e23, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37119812

RESUMEN

Applications of prime editing are often limited due to insufficient efficiencies, and it can require substantial time and resources to determine the most efficient pegRNAs and prime editors (PEs) to generate a desired edit under various experimental conditions. Here, we evaluated prime editing efficiencies for a total of 338,996 pairs of pegRNAs including 3,979 epegRNAs and target sequences in an error-free manner. These datasets enabled a systematic determination of factors affecting prime editing efficiencies. Then, we developed computational models, named DeepPrime and DeepPrime-FT, that can predict prime editing efficiencies for eight prime editing systems in seven cell types for all possible types of editing of up to 3 base pairs. We also extensively profiled the prime editing efficiencies at mismatched targets and developed a computational model predicting editing efficiencies at such targets. These computational models, together with our improved knowledge about prime editing efficiency determinants, will greatly facilitate prime editing applications.


Asunto(s)
Simulación por Computador , Edición Génica , ARN Guía de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas , Edición Génica/métodos , Conocimiento , ARN Guía de Sistemas CRISPR-Cas/química , Especificidad de Órganos , Conjuntos de Datos como Asunto
7.
Cell ; 185(21): 4008-4022.e14, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36150393

RESUMEN

The continual evolution of SARS-CoV-2 and the emergence of variants that show resistance to vaccines and neutralizing antibodies threaten to prolong the COVID-19 pandemic. Selection and emergence of SARS-CoV-2 variants are driven in part by mutations within the viral spike protein and in particular the ACE2 receptor-binding domain (RBD), a primary target site for neutralizing antibodies. Here, we develop deep mutational learning (DML), a machine-learning-guided protein engineering technology, which is used to investigate a massive sequence space of combinatorial mutations, representing billions of RBD variants, by accurately predicting their impact on ACE2 binding and antibody escape. A highly diverse landscape of possible SARS-CoV-2 variants is identified that could emerge from a multitude of evolutionary trajectories. DML may be used for predictive profiling on current and prospective variants, including highly mutated variants such as Omicron, thus guiding the development of therapeutic antibody treatments and vaccines for COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Humanos , Mutación , Pandemias , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
8.
Cell ; 185(26): 5040-5058.e19, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36563667

RESUMEN

Spatial molecular profiling of complex tissues is essential to investigate cellular function in physiological and pathological states. However, methods for molecular analysis of large biological specimens imaged in 3D are lacking. Here, we present DISCO-MS, a technology that combines whole-organ/whole-organism clearing and imaging, deep-learning-based image analysis, robotic tissue extraction, and ultra-high-sensitivity mass spectrometry. DISCO-MS yielded proteome data indistinguishable from uncleared samples in both rodent and human tissues. We used DISCO-MS to investigate microglia activation along axonal tracts after brain injury and characterized early- and late-stage individual amyloid-beta plaques in a mouse model of Alzheimer's disease. DISCO-bot robotic sample extraction enabled us to study the regional heterogeneity of immune cells in intact mouse bodies and aortic plaques in a complete human heart. DISCO-MS enables unbiased proteome analysis of preclinical and clinical tissues after unbiased imaging of entire specimens in 3D, identifying diagnostic and therapeutic opportunities for complex diseases. VIDEO ABSTRACT.


Asunto(s)
Enfermedad de Alzheimer , Proteoma , Ratones , Humanos , Animales , Proteoma/análisis , Proteómica/métodos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Espectrometría de Masas , Placa Amiloide
9.
Cell ; 183(2): 335-346.e13, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33035452

RESUMEN

Muscle spasticity after nervous system injuries and painful low back spasm affect more than 10% of global population. Current medications are of limited efficacy and cause neurological and cardiovascular side effects because they target upstream regulators of muscle contraction. Direct myosin inhibition could provide optimal muscle relaxation; however, targeting skeletal myosin is particularly challenging because of its similarity to the cardiac isoform. We identified a key residue difference between these myosin isoforms, located in the communication center of the functional regions, which allowed us to design a selective inhibitor, MPH-220. Mutagenic analysis and the atomic structure of MPH-220-bound skeletal muscle myosin confirmed the mechanism of specificity. Targeting skeletal muscle myosin by MPH-220 enabled muscle relaxation, in human and model systems, without cardiovascular side effects and improved spastic gait disorders after brain injury in a disease model. MPH-220 provides a potential nervous-system-independent option to treat spasticity and muscle stiffness.


Asunto(s)
Músculo Esquelético/metabolismo , Miosinas del Músculo Esquelético/efectos de los fármacos , Miosinas del Músculo Esquelético/genética , Adulto , Animales , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Línea Celular , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Masculino , Ratones , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/fisiología , Espasticidad Muscular/genética , Espasticidad Muscular/fisiopatología , Músculo Esquelético/fisiología , Miosinas/efectos de los fármacos , Miosinas/genética , Miosinas/metabolismo , Isoformas de Proteínas , Ratas , Ratas Wistar , Miosinas del Músculo Esquelético/metabolismo
10.
Cell ; 181(6): 1423-1433.e11, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32416069

RESUMEN

Many COVID-19 patients infected by SARS-CoV-2 virus develop pneumonia (called novel coronavirus pneumonia, NCP) and rapidly progress to respiratory failure. However, rapid diagnosis and identification of high-risk patients for early intervention are challenging. Using a large computed tomography (CT) database from 3,777 patients, we developed an AI system that can diagnose NCP and differentiate it from other common pneumonia and normal controls. The AI system can assist radiologists and physicians in performing a quick diagnosis especially when the health system is overloaded. Significantly, our AI system identified important clinical markers that correlated with the NCP lesion properties. Together with the clinical data, our AI system was able to provide accurate clinical prognosis that can aid clinicians to consider appropriate early clinical management and allocate resources appropriately. We have made this AI system available globally to assist the clinicians to combat COVID-19.


Asunto(s)
Inteligencia Artificial , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Tomografía Computarizada por Rayos X , COVID-19 , China , Estudios de Cohortes , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/terapia , Conjuntos de Datos como Asunto , Humanos , Pulmón/patología , Modelos Biológicos , Pandemias , Proyectos Piloto , Neumonía Viral/patología , Neumonía Viral/terapia , Pronóstico , Radiólogos , Insuficiencia Respiratoria/diagnóstico
11.
Cell ; 176(3): 535-548.e24, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30661751

RESUMEN

The splicing of pre-mRNAs into mature transcripts is remarkable for its precision, but the mechanisms by which the cellular machinery achieves such specificity are incompletely understood. Here, we describe a deep neural network that accurately predicts splice junctions from an arbitrary pre-mRNA transcript sequence, enabling precise prediction of noncoding genetic variants that cause cryptic splicing. Synonymous and intronic mutations with predicted splice-altering consequence validate at a high rate on RNA-seq and are strongly deleterious in the human population. De novo mutations with predicted splice-altering consequence are significantly enriched in patients with autism and intellectual disability compared to healthy controls and validate against RNA-seq in 21 out of 28 of these patients. We estimate that 9%-11% of pathogenic mutations in patients with rare genetic disorders are caused by this previously underappreciated class of disease variation.


Asunto(s)
Predicción/métodos , Precursores del ARN/genética , Empalme del ARN/genética , Algoritmos , Empalme Alternativo/genética , Trastorno Autístico/genética , Aprendizaje Profundo , Exones/genética , Humanos , Discapacidad Intelectual/genética , Intrones/genética , Redes Neurales de la Computación , Precursores del ARN/metabolismo , Sitios de Empalme de ARN/genética , Sitios de Empalme de ARN/fisiología
12.
Cell ; 179(7): 1661-1676.e19, 2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31835038

RESUMEN

Reliable detection of disseminated tumor cells and of the biodistribution of tumor-targeting therapeutic antibodies within the entire body has long been needed to better understand and treat cancer metastasis. Here, we developed an integrated pipeline for automated quantification of cancer metastases and therapeutic antibody targeting, named DeepMACT. First, we enhanced the fluorescent signal of cancer cells more than 100-fold by applying the vDISCO method to image metastasis in transparent mice. Second, we developed deep learning algorithms for automated quantification of metastases with an accuracy matching human expert manual annotation. Deep learning-based quantification in 5 different metastatic cancer models including breast, lung, and pancreatic cancer with distinct organotropisms allowed us to systematically analyze features such as size, shape, spatial distribution, and the degree to which metastases are targeted by a therapeutic monoclonal antibody in entire mice. DeepMACT can thus considerably improve the discovery of effective antibody-based therapeutics at the pre-clinical stage. VIDEO ABSTRACT.


Asunto(s)
Anticuerpos/uso terapéutico , Aprendizaje Profundo , Diagnóstico por Computador/métodos , Quimioterapia Asistida por Computador/métodos , Neoplasias/patología , Animales , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones SCID , Metástasis de la Neoplasia , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Programas Informáticos , Microambiente Tumoral
13.
Cell ; 178(1): 91-106.e23, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31178116

RESUMEN

Alternative polyadenylation (APA) is a major driver of transcriptome diversity in human cells. Here, we use deep learning to predict APA from DNA sequence alone. We trained our model (APARENT, APA REgression NeT) on isoform expression data from over 3 million APA reporters. APARENT's predictions are highly accurate when tasked with inferring APA in synthetic and human 3'UTRs. Visualizing features learned across all network layers reveals that APARENT recognizes sequence motifs known to recruit APA regulators, discovers previously unknown sequence determinants of 3' end processing, and integrates these features into a comprehensive, interpretable, cis-regulatory code. We apply APARENT to forward engineer functional polyadenylation signals with precisely defined cleavage position and isoform usage and validate predictions experimentally. Finally, we use APARENT to quantify the impact of genetic variants on APA. Our approach detects pathogenic variants in a wide range of disease contexts, expanding our understanding of the genetic origins of disease.


Asunto(s)
Aprendizaje Profundo , Modelos Genéticos , Poliadenilación/genética , Regiones no Traducidas 3'/genética , Secuencia de Bases/genética , Bases de Datos Genéticas , Expresión Génica/genética , Células HEK293 , Humanos , Mutagénesis/genética , División del ARN/genética , ARN Mensajero/genética , RNA-Seq , Biología Sintética , Transcriptoma
14.
Immunity ; 57(10): 2453-2465.e7, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39163866

RESUMEN

Despite decades of antibody research, it remains challenging to predict the specificity of an antibody solely based on its sequence. Two major obstacles are the lack of appropriate models and the inaccessibility of datasets for model training. In this study, we curated >5,000 influenza hemagglutinin (HA) antibodies by mining research publications and patents, which revealed many distinct sequence features between antibodies to HA head and stem domains. We then leveraged this dataset to develop a lightweight memory B cell language model (mBLM) for sequence-based antibody specificity prediction. Model explainability analysis showed that mBLM could identify key sequence features of HA stem antibodies. Additionally, by applying mBLM to HA antibodies with unknown epitopes, we discovered and experimentally validated many HA stem antibodies. Overall, this study not only advances our molecular understanding of the antibody response to the influenza virus but also provides a valuable resource for applying deep learning to antibody research.


Asunto(s)
Anticuerpos Antivirales , Especificidad de Anticuerpos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos/inmunología , Gripe Humana/inmunología , Epítopos/inmunología , Animales , Aprendizaje Profundo
15.
Cell ; 173(3): 792-803.e19, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29656897

RESUMEN

Microscopy is a central method in life sciences. Many popular methods, such as antibody labeling, are used to add physical fluorescent labels to specific cellular constituents. However, these approaches have significant drawbacks, including inconsistency; limitations in the number of simultaneous labels because of spectral overlap; and necessary perturbations of the experiment, such as fixing the cells, to generate the measurement. Here, we show that a computational machine-learning approach, which we call "in silico labeling" (ISL), reliably predicts some fluorescent labels from transmitted-light images of unlabeled fixed or live biological samples. ISL predicts a range of labels, such as those for nuclei, cell type (e.g., neural), and cell state (e.g., cell death). Because prediction happens in silico, the method is consistent, is not limited by spectral overlap, and does not disturb the experiment. ISL generates biological measurements that would otherwise be problematic or impossible to acquire.


Asunto(s)
Colorantes Fluorescentes/química , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Neuronas Motoras/citología , Algoritmos , Animales , Línea Celular Tumoral , Supervivencia Celular , Corteza Cerebral/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Aprendizaje Automático , Redes Neurales de la Computación , Neurociencias , Ratas , Programas Informáticos , Células Madre/citología
16.
Cell ; 173(7): 1581-1592, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29887378

RESUMEN

Machine learning, a collection of data-analytical techniques aimed at building predictive models from multi-dimensional datasets, is becoming integral to modern biological research. By enabling one to generate models that learn from large datasets and make predictions on likely outcomes, machine learning can be used to study complex cellular systems such as biological networks. Here, we provide a primer on machine learning for life scientists, including an introduction to deep learning. We discuss opportunities and challenges at the intersection of machine learning and network biology, which could impact disease biology, drug discovery, microbiome research, and synthetic biology.


Asunto(s)
Biología Computacional/métodos , Aprendizaje Automático , Algoritmos , Bases de Datos Factuales , Descubrimiento de Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Microbiota , Redes Neurales de la Computación
17.
Cell ; 175(1): 266-276.e13, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30166209

RESUMEN

A fundamental challenge of biology is to understand the vast heterogeneity of cells, particularly how cellular composition, structure, and morphology are linked to cellular physiology. Unfortunately, conventional technologies are limited in uncovering these relations. We present a machine-intelligence technology based on a radically different architecture that realizes real-time image-based intelligent cell sorting at an unprecedented rate. This technology, which we refer to as intelligent image-activated cell sorting, integrates high-throughput cell microscopy, focusing, and sorting on a hybrid software-hardware data-management infrastructure, enabling real-time automated operation for data acquisition, data processing, decision-making, and actuation. We use it to demonstrate real-time sorting of microalgal and blood cells based on intracellular protein localization and cell-cell interaction from large heterogeneous populations for studying photosynthesis and atherothrombosis, respectively. The technology is highly versatile and expected to enable machine-based scientific discovery in biological, pharmaceutical, and medical sciences.


Asunto(s)
Citometría de Flujo/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Animales , Aprendizaje Profundo , Humanos
18.
Cell ; 172(5): 1122-1131.e9, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474911

RESUMEN

The implementation of clinical-decision support algorithms for medical imaging faces challenges with reliability and interpretability. Here, we establish a diagnostic tool based on a deep-learning framework for the screening of patients with common treatable blinding retinal diseases. Our framework utilizes transfer learning, which trains a neural network with a fraction of the data of conventional approaches. Applying this approach to a dataset of optical coherence tomography images, we demonstrate performance comparable to that of human experts in classifying age-related macular degeneration and diabetic macular edema. We also provide a more transparent and interpretable diagnosis by highlighting the regions recognized by the neural network. We further demonstrate the general applicability of our AI system for diagnosis of pediatric pneumonia using chest X-ray images. This tool may ultimately aid in expediting the diagnosis and referral of these treatable conditions, thereby facilitating earlier treatment, resulting in improved clinical outcomes. VIDEO ABSTRACT.


Asunto(s)
Aprendizaje Profundo , Diagnóstico por Imagen , Neumonía/diagnóstico , Niño , Humanos , Redes Neurales de la Computación , Neumonía/diagnóstico por imagen , Curva ROC , Reproducibilidad de los Resultados , Tomografía de Coherencia Óptica
19.
Immunity ; 55(6): 1105-1117.e4, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35397794

RESUMEN

Global research to combat the COVID-19 pandemic has led to the isolation and characterization of thousands of human antibodies to the SARS-CoV-2 spike protein, providing an unprecedented opportunity to study the antibody response to a single antigen. Using the information derived from 88 research publications and 13 patents, we assembled a dataset of ∼8,000 human antibodies to the SARS-CoV-2 spike protein from >200 donors. By analyzing immunoglobulin V and D gene usages, complementarity-determining region H3 sequences, and somatic hypermutations, we demonstrated that the common (public) responses to different domains of the spike protein were quite different. We further used these sequences to train a deep-learning model to accurately distinguish between the human antibodies to SARS-CoV-2 spike protein and those to influenza hemagglutinin protein. Overall, this study provides an informative resource for antibody research and enhances our molecular understanding of public antibody responses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Humanos , Pandemias , Glicoproteína de la Espiga del Coronavirus
20.
Mol Cell ; 83(22): 3953-3971, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37802077

RESUMEN

tRNA function is based on unique structures that enable mRNA decoding using anticodon trinucleotides. These structures interact with specific aminoacyl-tRNA synthetases and ribosomes using 3D shape and sequence signatures. Beyond translation, tRNAs serve as versatile signaling molecules interacting with other RNAs and proteins. Through evolutionary processes, tRNA fragmentation emerges as not merely random degradation but an act of recreation, generating specific shorter molecules called tRNA-derived small RNAs (tsRNAs). These tsRNAs exploit their linear sequences and newly arranged 3D structures for unexpected biological functions, epitomizing the tRNA "renovatio" (from Latin, meaning renewal, renovation, and rebirth). Emerging methods to uncover full tRNA/tsRNA sequences and modifications, combined with techniques to study RNA structures and to integrate AI-powered predictions, will enable comprehensive investigations of tRNA fragmentation products and new interaction potentials in relation to their biological functions. We anticipate that these directions will herald a new era for understanding biological complexity and advancing pharmaceutical engineering.


Asunto(s)
Aminoacil-ARNt Sintetasas , ARN de Transferencia , ARN de Transferencia/metabolismo , Anticodón , Aminoacil-ARNt Sintetasas/metabolismo , Ribosomas/metabolismo , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda