Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Appl Clin Med Phys ; 23(11): e13766, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36094024

RESUMEN

BACKGROUND: An analytical tool is empirically validated and used to assess the delivered dose to liver lesions accounting for different types of errors in robotic radiosurgery treatment. MATERIAL AND METHODS: A tool is proposed to estimate the target doses taking into account the translation, rotation, and deformation of a target. Translational errors are modeled as a spatial convolution of the planned dose with a probability distribution function derived from treatment data. Rotations are modeled by rotating the target volume about the imaging isocenter. Target deformation is simulated as an isotropic target expansion or contraction based on changes in inter-fiducial spacing. The estimated dose is validated using radiochromic film measurements in nine experimental conditions, including in-phase and out-of-phase internal-and-external breathing motion patterns, with and without uncorrectable rotations, and for homogenous and heterogeneous phantoms. The measured dose is compared to the perturbed and planned doses using gamma analyses. This proposed tool is applied to assess the dose coverage for liver treatments using D99/Rx where D99 and Rx are the minimum target and prescription doses, respectively. These metrics are used to evaluate plan robustness to different magnitudes of rotational errors. Case studies are presented to illustrate how to improve plan robustness against delivery errors. RESULTS: In the experimental validations, measured dose agrees with the estimated dose at the 2%/2 mm level. When accounting for translational and rotational tracking residual errors using this tool, approximately one-fifth of targets are considered underdosed (D99/Rx < 1.0). If target expansion or contraction is modeled, approximately one-third of targets are underdosed. The dose coverage can be improved if treatments are planned following proposed guidelines. CONCLUSION: The dose perturbation model can be used to assess dose delivery accuracy and investigate plan robustness to different types of errors.


Asunto(s)
Neoplasias Hepáticas , Radiocirugia , Procedimientos Quirúrgicos Robotizados , Humanos , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/cirugía , Neoplasias Hepáticas/patología
2.
J Appl Clin Med Phys ; 19(4): 230-238, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29905004

RESUMEN

This study compared three-dimensional (3D) and two-dimensional (2D) percentage gamma passing rates (%GPs) for detection sensitivity to IMRT delivery errors and investigated the correlation between two kinds of %GP. Eleven prostate IMRT cases were selected, and errors in multileaf collimator (MLC) bank sag, MLC leaf traveling, and machine output were simulated by recalculating the dose distributions in patients. 2D doses were extracted from the 3D doses at the isocenter position. The 3D and 2D %GPs with different gamma criteria were then obtained by comparing the recalculated and original doses in specific regions of interest (ROI), such as the whole body, the planning target volume (PTV), the bladder, and the rectum. The sensitivities to simulated errors of the two types of %GP were compared, and the correlation between the 2D and 3D %GPs for different ROIs were analyzed. For the whole-body evaluation, both the 2D and 3D %GPs with the 3%/3 mm criterion were above 90% for all tested MLC errors and for MU deviations up to 4%, and the 3D %GP was higher than the 2D %GP. In organ-specific evaluations, the PTV-specific 2D and 3D %GP gradients were -4.70% and -5.14% per millimeter of the MLC traveling error, and -17.79% and -20.50% per percentage of MU error, respectively. However, a stricter criterion (2%/1 mm) was needed to detect the tested MLC sag error. The Pearson correlation analysis showed a significant strong correlation (r > 0.8 and P < 0.001) between the 2D and 3D %GPs in the whole body and PTV-specific gamma evaluations. The whole-body %GP with the 3%/3 mm criterion was inadequate to detect the tested MLC and MU errors, and a stricter criterion may be needed. The PTV-specific gamma evaluation helped to improve the sensitivity of the error detection, especially using the 3D GP%.


Asunto(s)
Radioterapia de Intensidad Modulada , Algoritmos , Rayos gamma , Humanos , Masculino , Aceleradores de Partículas , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
3.
Med Phys ; 51(2): 910-921, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141043

RESUMEN

BACKGROUND: The use of modulated techniques for intra-cranial stereotactic radiosurgery (SRS) results in highly modulated fields with small apertures, which may be susceptible to uncertainties in the delivery device. PURPOSE: This study aimed to quantify the impact of simulated delivery errors on treatment plan dosimetry and how this is affected by treatment planning system (TPS), plan geometry, delivery technique, and plan complexity. A beam modelling error was also included as context to the dose uncertainties due to treatment delivery errors. METHODS: Delivery errors were assessed for multiple-target brain SRS plans obtained through the Trans-Tasman Radiation Oncology Group (TROG) international treatment planning challenge (2018). The challenge dataset consisted of five intra-cranial targets, each with a prescription of 20 Gy. Of the final dataset of 54 plans, 51 were created using the volumetric modulated arc therapy (VMAT) technique and three used intensity modulated arc therapy (IMRT). Thirty-five plans were from the Varian Eclipse TPS, 17 from Elekta Monaco TPS, and one plan each from RayStation and Philips Pinnacle TPS. The errors introduced included: monitor unit calibration errors, multi-leaf collimator (MLC) bank offset, single MLC leaf offset, couch rotations, and collimator rotations. Dosimetric leaf gap (DLG) error was also included as a beam modelling error. Dose to targets was assessed via dose covering 98% of planning target volume (PTV) (D98%), dose covering 2% of PTV (D2%), and dose covering 99% of gross tumor volume (GTV) (D99%). Dose to organs at risk (OARs) was assessed using the volume of normal brain receiving 12 Gy (V12Gy), mean dose to normal brain, and maximum dose covering 0.03cc brainstem (D0.03cc). Plan complexity was also assessed via edge metric, modulation complexity score (MCS), mean MLC gap, mean MLC speed, and plan modulation (PM). RESULTS: PTV D98% showed high robustness on average to most errors with the exception of a bank shift of 1.0 mm and large rotational errors ≥1.0° for either the couch or collimator. However, in some cases, errors close to or within generally accepted machine tolerances resulted in clinically relevant impacts. The greatest impact upon normal brain V12Gy, mean dose to normal brain, and D0.03cc brainstem was found for DLG error in alignment with other recent studies. All delivery errors had on average a minimal impact across these parameters. Comparing plans from the Monaco TPS and the Eclipse TPS, showed a lesser increase to V12Gy, mean dose to normal brain, and D0.03cc brainstem for Monaco plans (p < 0.01) when DLG error was simulated. Monaco plans also correlated to lower plan complexity. Using Spearman's correlation coefficient (r) a strong negative correlation (r ≤ -0.8) was found between the mean MLC gap and dose to OARs for DLG errors. CONCLUSIONS: Reducing MLC complexity and using larger mean MLC gaps is recommended to improve plan robustness and reduce sensitivity to delivery and modelling errors. For cases in which the calculated dose distribution or dose indices are close to the clinically acceptable limits, this is especially important.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Radiocirugia/métodos , Dosificación Radioterapéutica , Radiometría , Neoplasias Encefálicas/cirugía , Órganos en Riesgo , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos
4.
Phys Med ; 52: 65-71, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30139611

RESUMEN

PURPOSE: The aim of this paper is to characterize two different EPID-based solutions for pre-treatment VMAT quality assurance, the 2D portal dosimetry and the 3D projection technique. Their ability to catch the main critical delivery errors was studied. METHODS: Measurements were performed with a linac accelerator equipped with EPID aSi1000, Portal Dose Image Prediction (PDIP), and PerFRACTION softwares. Their performances were studied simulating perturbations of a reference plan through systematic variations in dose values and micromultileaf collimator position. The performance of PDIP, based on 2D forward method, was evaluated calculating gamma passing rate (%GP) between no-error and error-simulated measurements. The impact of errors with PerFRACTION, based on 3D projection technique, was analyzed by calculating the difference between reference and perturbed DVH (%ΔD). Subsequently pre-treatment verification with PerFRACTION was done for 27 patients of different pathologies. RESULTS: The sensitivity of PerFRACTION was slightly higher than sensitivity of PDIP, reaching a maximum of 0.9. Specificity was 1 for PerFRACTION and 0.6 for PDIP. The analysis of patients' DVHs indicated that the mean %ΔD was (1.2 ±â€¯1.9)% for D2%, (0.6 ±â€¯1.7)% for D95% and (-0.0 ±â€¯1.2)% for Dmean of PTV. Regarding OARs, we observed important discrepancies on DVH but that the higher dose variations were in low dose area (<10 Gy). CONCLUSIONS: This study supports the introduction of the new 3D forward projection method for pretreatment QA raising the claim that the visualization of the delivered dose distribution on patient anatomy has major advantages over traditional portal dosimetry QA systems.


Asunto(s)
Garantía de la Calidad de Atención de Salud/métodos , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , Neoplasias Encefálicas/radioterapia , Neoplasias de la Mama/radioterapia , Calibración , Humanos , Neoplasias Hepáticas/radioterapia , Masculino , Órganos en Riesgo , Aceleradores de Partículas , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Sarcoma/radioterapia , Programas Informáticos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda