Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Genes Dev ; 34(3-4): 194-208, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31919191

RESUMEN

Promoting axon regeneration in the central and peripheral nervous system is of clinical importance in neural injury and neurodegenerative diseases. Both pro- and antiregeneration factors are being identified. We previously reported that the Rtca mediated RNA repair/splicing pathway restricts axon regeneration by inhibiting the nonconventional splicing of Xbp1 mRNA under cellular stress. However, the downstream effectors remain unknown. Here, through transcriptome profiling, we show that the tubulin polymerization-promoting protein (TPPP) ringmaker/ringer is dramatically increased in Rtca-deficient Drosophila sensory neurons, which is dependent on Xbp1. Ringer is expressed in sensory neurons before and after injury, and is cell-autonomously required for axon regeneration. While loss of ringer abolishes the regeneration enhancement in Rtca mutants, its overexpression is sufficient to promote regeneration both in the peripheral and central nervous system. Ringer maintains microtubule stability/dynamics with the microtubule-associated protein futsch/MAP1B, which is also required for axon regeneration. Furthermore, ringer lies downstream from and is negatively regulated by the microtubule-associated deacetylase HDAC6, which functions as a regeneration inhibitor. Taken together, our findings suggest that ringer acts as a hub for microtubule regulators that relays cellular status information, such as cellular stress, to the integrity of microtubules in order to instruct neuroregeneration.


Asunto(s)
Anilidas/metabolismo , Axones/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Ácidos Hidroxámicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Regeneración/genética , Animales , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Unión Proteica , Empalme del ARN/genética , Células Receptoras Sensoriales/fisiología
2.
Development ; 149(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36264221

RESUMEN

The evolutionarily conserved Glycogen Synthase Kinase 3ß (GSK3ß), a negative regulator of microtubules, is crucial for neuronal polarization, growth and migration during animal development. However, it remains unknown whether GSK3ß regulates neuronal pruning, which is a regressive process. Here, we report that the Drosophila GSK3ß homologue Shaggy (Sgg) is cell-autonomously required for dendrite pruning of ddaC sensory neurons during metamorphosis. Sgg is necessary and sufficient to promote microtubule depolymerization, turnover and disassembly in the dendrites. Although Sgg is not required for the minus-end-out microtubule orientation in dendrites, hyperactivated Sgg can disturb the dendritic microtubule orientation. Moreover, our pharmacological and genetic data suggest that Sgg is required to promote dendrite pruning at least partly via microtubule disassembly. We show that Sgg and Par-1 kinases act synergistically to promote microtubule disassembly and dendrite pruning. Thus, Sgg and Par-1 might converge on and phosphorylate a common downstream microtubule-associated protein(s) to disassemble microtubules and thereby facilitate dendrite pruning.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Dendritas/genética , Células Receptoras Sensoriales , Microtúbulos , Plasticidad Neuronal/genética , Drosophila melanogaster/genética
3.
J Neurosci ; 43(6): 918-935, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36604170

RESUMEN

The establishment of a functional cerebral cortex depends on the proper execution of multiple developmental steps, culminating in dendritic and axonal outgrowth and the formation and maturation of synaptic connections. Dysregulation of these processes can result in improper neuronal connectivity, including that associated with various neurodevelopmental disorders. The γ-Protocadherins (γ-Pcdhs), a family of 22 distinct cell adhesion molecules that share a C-terminal cytoplasmic domain, are involved in multiple aspects of neurodevelopment including neuronal survival, dendrite arborization, and synapse development. The extent to which individual γ-Pcdh family members play unique versus common roles remains unclear. We demonstrated previously that the γ-Pcdh-C3 isoform (γC3), via its unique "variable" cytoplasmic domain (VCD), interacts in cultured cells with Axin1, a Wnt-pathway scaffold protein that regulates the differentiation and morphology of neurons. Here, we confirm that γC3 and Axin1 interact in the cortex in vivo and show that both male and female mice specifically lacking γC3 exhibit disrupted Axin1 localization to synaptic fractions, without obvious changes in dendritic spine density or morphology. However, both male and female γC3 knock-out mice exhibit severely decreased dendritic complexity of cortical pyramidal neurons that is not observed in mouse lines lacking several other γ-Pcdh isoforms. Combining knock-out with rescue constructs in cultured cortical neurons pooled from both male and female mice, we show that γC3 promotes dendritic arborization through an Axin1-dependent mechanism mediated through its VCD. Together, these data identify a novel mechanism through which γC3 uniquely regulates the formation of cortical circuitry.SIGNIFICANCE STATEMENT The complexity of a neuron's dendritic arbor is critical for its function. We showed previously that the γ-Protocadherin (γ-Pcdh) family of 22 cell adhesion molecules promotes arborization during development; it remained unclear whether individual family members played unique roles. Here, we show that one γ-Pcdh isoform, γC3, interacts in the brain with Axin1, a scaffolding protein known to influence dendrite development. A CRISPR/Cas9-generated mutant mouse line lacking γC3 (but not lines lacking other γ-Pcdhs) exhibits severely reduced dendritic complexity of cerebral cortex neurons. Using cultured γC3 knock-out neurons and a variety of rescue constructs, we confirm that the γC3 cytoplasmic domain promotes arborization through an Axin1-dependent mechanism. Thus, γ-Pcdh isoforms are not interchangeable, but rather can play unique neurodevelopmental roles.


Asunto(s)
Dendritas , Protocadherinas , Animales , Femenino , Masculino , Ratones , Proteína Axina/metabolismo , Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Dendritas/fisiología , Ratones Noqueados , Plasticidad Neuronal , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
EMBO Rep ; 23(12): e54911, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36305233

RESUMEN

Major depressive disorder (MDD) is a severe mental illness. Decreased brain plasticity and dendritic fields have been consistently found in MDD patients and animal models; however, the underlying molecular mechanisms remain to be clarified. Here, we demonstrate that the deletion of cancerous inhibitor of PP2A (CIP2A), an endogenous inhibitor of protein phosphatase 2A (PP2A), leads to depression-like behaviors in mice. Hippocampal RNA sequencing analysis of CIP2A knockout mice shows alterations in the PI3K-AKT pathway and central nervous system development. In primary neurons, CIP2A stimulates AKT activity and promotes dendritic development. Further analysis reveals that the effect of CIP2A in promoting dendritic development is dependent on PP2A-AKT signaling. In vivo, CIP2A deficiency-induced depression-like behaviors and impaired dendritic arborization are rescued by AKT activation. Decreased CIP2A expression and impaired dendrite branching are observed in a mouse model of chronic unpredictable mild stress (CUMS). Indicative of clinical relevance to humans, CIP2A expression is found decreased in transcriptomes from MDD patients. In conclusion, we discover a novel mechanism that CIP2A deficiency promotes depression through the regulation of PP2A-AKT signaling and dendritic arborization.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Ratones , Animales , Trastorno Depresivo Mayor/genética , Fosfatidilinositol 3-Quinasas , Neuronas , Plasticidad Neuronal
5.
Am J Hum Genet ; 106(5): 623-631, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32275884

RESUMEN

Nucleoporins (NUPs) are an essential component of the nuclear-pore complex, which regulates nucleocytoplasmic transport of macromolecules. Pathogenic variants in NUP genes have been linked to several inherited human diseases, including a number with progressive neurological degeneration. We present six affected individuals with bi-allelic truncating variants in NUP188 and strikingly similar phenotypes and clinical courses, representing a recognizable genetic syndrome; the individuals are from four unrelated families. Key clinical features include congenital cataracts, hypotonia, prenatal-onset ventriculomegaly, white-matter abnormalities, hypoplastic corpus callosum, congenital heart defects, and central hypoventilation. Characteristic dysmorphic features include small palpebral fissures, a wide nasal bridge and nose, micrognathia, and digital anomalies. All affected individuals died as a result of respiratory failure, and five of them died within the first year of life. Nuclear import of proteins was decreased in affected individuals' fibroblasts, supporting a possible disease mechanism. CRISPR-mediated knockout of NUP188 in Drosophila revealed motor deficits and seizure susceptibility, partially recapitulating the neurological phenotype seen in affected individuals. Removal of NUP188 also resulted in aberrant dendrite tiling, suggesting a potential role of NUP188 in dendritic development. Two of the NUP188 pathogenic variants are enriched in the Ashkenazi Jewish population in gnomAD, a finding we confirmed with a separate targeted population screen of an international sampling of 3,225 healthy Ashkenazi Jewish individuals. Taken together, our results implicate bi-allelic loss-of-function NUP188 variants in a recessive syndrome characterized by a distinct neurologic, ophthalmologic, and facial phenotype.


Asunto(s)
Alelos , Encéfalo/anomalías , Proteínas de Drosophila/genética , Anomalías del Ojo/genética , Cardiopatías Congénitas/genética , Mutación con Pérdida de Función/genética , Proteínas de Complejo Poro Nuclear/genética , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/metabolismo , Preescolar , Dendritas/metabolismo , Dendritas/patología , Drosophila melanogaster , Anomalías del Ojo/mortalidad , Femenino , Fibroblastos , Genes Recesivos , Cardiopatías Congénitas/mortalidad , Humanos , Lactante , Recién Nacido , Judíos/genética , Masculino , Proteínas de Complejo Poro Nuclear/deficiencia , Convulsiones/metabolismo , Síndrome , beta Carioferinas/metabolismo
6.
Mov Disord ; 38(2): 256-266, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36350188

RESUMEN

BACKGROUND: The accumulation of α-synuclein (α-syn) fibrils in intraneuronal inclusions called Lewy bodies and Lewy neurites is a pathological signature of Parkinson's disease (PD). Although several aspects linked to α-syn-dependent pathology (concerning its spreading, aggregation, and activation of inflammatory and neurodegenerative processes) have been under intense investigation, less attention has been devoted to the real impact of α-syn overexpression on structural and functional properties of substantia nigra pars compacta (SNpc) dopamine (DA) neurons, particularly at tardive stages of α-syn buildup, despite this has obvious relevance to comprehending mechanisms beyond PD progression. OBJECTIVES: We aimed to determine the consequences of a prolonged α-syn overexpression on somatodendritic morphology and functions of SNpc DA neurons. METHODS: We performed immunohistochemistry, stereological DA cell counts, analyses of dendritic arborization, ex vivo patch-clamp recordings, and in vivo DA microdialysis measurements in a 12- to 13-month-old transgenic rat model overexpressing the full-length human α-syn (Snca+/+ ) and age-matched wild-type rats. RESULTS: Aged Snca+/+ rats have mild loss of SNpc DA neurons and decreased basal DA levels in the SN. Residual nigral DA neurons display smaller soma and compromised dendritic arborization and, in parallel, increased firing activity, switch in firing mode, and hyperexcitability associated with hypofunction of fast activating/inactivating voltage-gated K+ channels and Ca2+ - and voltage-activated large conductance K+ channels. These intrinsic currents underlie the repolarization/afterhyperpolarization phase of action potentials, thus affecting neuronal excitability. CONCLUSIONS: Besides clarifying α-syn-induced pathological landmarks, such evidence reveals compensatory functional mechanisms that nigral DA neurons could adopt during PD progression to counteract neurodegeneration. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Ratas , Humanos , Animales , Anciano , Lactante , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Neuronas Dopaminérgicas/metabolismo , Sustancia Negra/metabolismo , Porción Compacta de la Sustancia Negra/metabolismo , Ratas Transgénicas
7.
Metab Brain Dis ; 38(8): 2573-2581, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37728699

RESUMEN

BACKGROUND: Stroke remains the leading cause of death and disability in the world. A new potential treatment for stroke is the granulocyte colony-stimulating factor (G-CSF), which exerts neuroprotective effects through multiple mechanisms. Memory impairment is the most common cognitive problem after a stroke. The suggested treatment for memory impairments is cognitive rehabilitation, which is often ineffective. The hippocampus plays an important role in memory formation. This project aimed to study the effect of G-CSF on memory and dendritic morphology of hippocampal CA1 pyramidal neurons after middle cerebral artery occlusion (MCAO)in rats. METHODS: Male Sprague-Dawley rats were divided into three groups: the sham, control (MCAO + Vehicle), and treatment (MCAO + G-CSF) groups. G-CSF (50 µg/kg S.C) was administered at 6, 24, and 48 h after brain ischemia induction. The passive avoidance task to evaluate learning and memory was performed on days 6 and 7 post-ischemia. Seven days after MCAO, the brain was removed and the hippocampal slices were stained with Golgi. After that, the neurons were analyzed for dendritic morphology and maturity. OUTCOMES: The data showed that stroke was associated with a significant impairment in the acquisition and retention of passive avoidance tasks, while the G-CSF improved learning and memory loss. The dendritic length, arborization, spine density, and mature spines of the hippocampus CA1 neurons were significantly reduced in the control group, and treatment with G-CSF significantly increased these parameters. CONCLUSION: G-CSF, even with three doses, improved learning and memory deficits, and dendritic morphological changes in the CA1 hippocampal neurons resulted from brain ischemia.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Ratas , Animales , Masculino , Ratas Sprague-Dawley , Células Piramidales , Isquemia Encefálica/tratamiento farmacológico , Hipocampo , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Aprendizaje por Laberinto , Accidente Cerebrovascular/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Espinas Dendríticas
8.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768268

RESUMEN

Brain-derived neurotrophic factor (BDNF) induces activation of the TrkB receptor and several downstream pathways (MAPK, PI3K, PLC-γ), leading to neuronal survival, growth, and plasticity. It has been well established that TrkB signaling regulation is required for neurite formation and dendritic arborization, but the specific mechanism is not fully understood. The non-receptor tyrosine kinase c-Abl is a possible candidate regulator of this process, as it has been implicated in tyrosine kinase receptors' signaling and trafficking, as well as regulation of neuronal morphogenesis. To assess the role of c-Abl in BDNF-induced dendritic arborization, wild-type and c-Abl-KO neurons were stimulated with BDNF, and diverse strategies were employed to probe the function of c-Abl, including the use of pharmacological inhibitors, an allosteric c-Abl activator, and shRNA to downregulates c-Abl expression. Surprisingly, BDNF promoted c-Abl activation and interaction with TrkB receptors. Furthermore, pharmacological c-Abl inhibition and genetic ablation abolished BDNF-induced dendritic arborization and increased the availability of TrkB in the cell membrane. Interestingly, inhibition or genetic ablation of c-Abl had no effect on the classic TrkB downstream pathways. Together, our results suggest that BDNF/TrkB-dependent c-Abl activation is a novel and essential mechanism in TrkB signaling.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neuronas , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Neuronas/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Transducción de Señal , Proteínas Proto-Oncogénicas c-abl
9.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047715

RESUMEN

Dendritic morphology underlies the source and processing of neuronal signal inputs. Morphology can be broadly described by two types of geometric characteristics. The first is dendrogram topology, defined by the length and frequency of the arbor branches; the second is spatial embedding, mainly determined by branch angles and straightness. We have previously demonstrated that microtubules and actin filaments are associated with arbor elongation and branching, fully constraining dendrogram topology. Here, we relate the local distribution of these two primary cytoskeletal components with dendritic spatial embedding. We first reconstruct and analyze 167 sensory neurons from the Drosophila larva encompassing multiple cell classes and genotypes. We observe that branches with a higher microtubule concentration tend to deviate less from the direction of their parent branch across all neuron types. Higher microtubule branches are also overall straighter. F-actin displays a similar effect on angular deviation and branch straightness, but not as consistently across all neuron types as microtubule. These observations raise the question as to whether the associations between cytoskeletal distributions and arbor geometry are sufficient constraints to reproduce type-specific dendritic architecture. Therefore, we create a computational model of dendritic morphology purely constrained by the cytoskeletal composition measured from real neurons. The model quantitatively captures both spatial embedding and dendrogram topology across all tested neuron groups. These results suggest a common developmental mechanism regulating diverse morphologies, where the local cytoskeletal distribution can fully specify the overall emergent geometry of dendritic arbors.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Actinas/metabolismo , Proteínas de Drosophila/metabolismo , Dendritas/metabolismo , Microtúbulos/metabolismo , Células Receptoras Sensoriales/metabolismo , Citoesqueleto de Actina/metabolismo
10.
Neurobiol Learn Mem ; 187: 107559, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34808338

RESUMEN

Sleep deprivation-induced degenerative changes in the brain lead to the impairment of memory, anxiety, and quality of life. Several studies have reported the effects of sleep deprivation on CA1 and dentate gyrus regions of the hippocampus; in contrast, there is less known about the impact of chronic sleep deprivation (CSD) and sleep recovery on CA3 neurons and behavior. Hence, the present study aimed to understand the effect of CSD and sleep recovery on hippocampal CA3 neurons and spatial memory, and anxiety-like behavior in rats. Sixty male rats (Sprague Dawley) were grouped as control, environmental control (EC), CSD, 5 days sleep recovery (CSD + 5D SR), and 21 days sleep recovery (CSD + 21D SR). CSD, CSD + 5D SR and, CSD + 21D SR group rats were sleep deprived for 21 days (18 h/day). After CSD, the CSD + 5D SR and CSD + 21D SR rats were sleep recovered for 5- and 21-days respectively. Oxidative stress, dendritic arborization of CA3 neurons, spatial memory, and anxiety-like behavior was assessed. Spatial memory, basal, and apical dendritic branching points/intersections in hippocampal CA3 neurons were reduced, and anxiety-like behavior and oxidative stress increased significantly in the CSD group compared to control (p < 0.001). The CSD + 21D SR showed a significant improvement in spatial memory, reduction in anxiety-like behavior, and oxidative stress when compared to the CSD group (p < 0.05). The basal and apical dendritic branching points/intersections in hippocampal CA3 neurons were increased after CSD + 21D SR, however, it was not significant (p > 0.05). Even though the CSD + 21D SR showed a significant improvement in all the parameters, it did not reach the control level. There was an improvement in all the parameters after CSD + 5D SR but this was not significant compared to the CSD group (p > 0.05). Overall results indicate that the CSD-induced impairment of spatial memory and anxiety-like behavior was associated with oxidative stress and reduced dendritic arborization of hippocampal CA3 neurons. The CSD + 21D SR significantly reduced the damage caused by CSD, but it was not sufficient to reach the control level.


Asunto(s)
Ansiedad , Conducta Animal , Región CA3 Hipocampal/fisiopatología , Neuronas/efectos de los fármacos , Privación de Sueño/complicaciones , Memoria Espacial/fisiología , Animales , Encéfalo , Masculino , Plasticidad Neuronal , Estrés Oxidativo/fisiología , Ratas , Ratas Sprague-Dawley
11.
Mar Drugs ; 20(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36135748

RESUMEN

N-methyl-D-aspartate (NMDA) receptors play a critical role in activity-dependent dendritic arborization, spinogenesis, and synapse formation by stimulating calcium-dependent signaling pathways. Previously, we have shown that brevetoxin 2 (PbTx-2), a voltage-gated sodium channel (VGSC) activator, produces a concentration-dependent increase in intracellular sodium [Na+]I and increases NMDA receptor (NMDAR) open probabilities and NMDA-induced calcium (Ca2+) influxes. The objective of this study is to elucidate the downstream signaling mechanisms by which the sodium channel activator PbTx-2 influences neuronal morphology in murine cerebrocortical neurons. PbTx-2 and NMDA triggered distinct Ca2+-influx pathways, both of which involved the NMDA receptor 2B (GluN2B). PbTx-2-induced neurite outgrowth in day in vitro 1 (DIV-1) neurons required the small Rho GTPase Rac1 and was inhibited by both a PAK1 inhibitor and a PAK1 siRNA. PbTx-2 exposure increased the phosphorylation of PAK1 at Thr-212. At DIV-5, PbTx-2 induced increases in dendritic protrusion density, p-cofilin levels, and F-actin throughout the dendritic arbor and soma. Moreover, PbTx-2 increased miniature excitatory post-synaptic currents (mEPSCs). These data suggest that the stimulation of neurite outgrowth, spinogenesis, and synapse formation produced by PbTx-2 are mediated by GluN2B and PAK1 signaling.


Asunto(s)
Neuronas , Receptores de N-Metil-D-Aspartato , Quinasas p21 Activadas , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Animales , Calcio/metabolismo , Toxinas Marinas , Ratones , N-Metilaspartato , Proyección Neuronal , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxocinas , ARN Interferente Pequeño/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sodio/metabolismo , Agonistas de los Canales de Sodio/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rho/metabolismo
12.
J Neurosci ; 40(9): 1819-1833, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-31964717

RESUMEN

Dendritic arborization is highly regulated and requires tight control of dendritic growth, branching, cytoskeletal dynamics, and ion channel expression to ensure proper function. Abnormal dendritic development can result in altered network connectivity, which has been linked to neurodevelopmental disorders, including autism spectrum disorders (ASDs). How neuronal growth control programs tune dendritic arborization to ensure function is still not fully understood. Using Drosophila dendritic arborization (da) neurons as a model, we identified the conserved Ste20-like kinase Tao as a negative regulator of dendritic arborization. We show that Tao kinase activity regulates cytoskeletal dynamics and sensory channel localization required for proper sensory function in both male and female flies. We further provide evidence for functional conservation of Tao kinase, showing that its ASD-linked human ortholog, Tao kinase 2 (Taok2), could replace Drosophila Tao and rescue dendritic branching, dynamic microtubule alterations, and behavioral defects. However, several ASD-linked Taok2 variants displayed impaired rescue activity, suggesting that Tao/Taok2 mutations can disrupt sensory neuron development and function. Consistently, we show that Tao kinase activity is required in developing and as well as adult stages for maintaining normal dendritic arborization and sensory function to regulate escape and social behavior. Our data suggest an important role for Tao kinase signaling in cytoskeletal organization to maintain proper dendritic arborization and sensory function, providing a strong link between developmental sensory aberrations and behavioral abnormalities relevant for Taok2-dependent ASDs.SIGNIFICANCE STATEMENT Autism spectrum disorders (ASDs) are linked to abnormal dendritic arbors. However, the mechanisms of how dendritic arbors develop to promote functional and proper behavior are unclear. We identified Drosophila Tao kinase, the ortholog of the ASD risk gene Taok2, as a regulator of dendritic arborization in sensory neurons. We show that Tao kinase regulates cytoskeletal dynamics, controls sensory ion channel localization, and is required to maintain somatosensory function in vivo Interestingly, ASD-linked human Taok2 mutations rendered it nonfunctional, whereas its WT form could restore neuronal morphology and function in Drosophila lacking endogenous Tao. Our findings provide evidence for a conserved role of Tao kinase in dendritic development and function of sensory neurons, suggesting that aberrant sensory function might be a common feature of ASDs.


Asunto(s)
Citoesqueleto/fisiología , Dendritas/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Sensación/fisiología , Actinas/metabolismo , Animales , Animales Modificados Genéticamente , Citoesqueleto/ultraestructura , Dendritas/ultraestructura , Drosophila , Reacción de Fuga , Femenino , Humanos , Masculino , Mecanorreceptores/fisiología , Mutación/genética , Conducta Social
13.
J Nutr ; 151(1): 235-244, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33245133

RESUMEN

BACKGROUND: Both iron deficiency and overload may adversely affect neurodevelopment. OBJECTIVES: The study assessed how changes in early-life iron status affect iron homeostasis and cytoarchitecture of hippocampal neurons in a piglet model. METHODS: On postnatal day (PD) 1, 30 Hampshire × Yorkshire crossbreed piglets (n = 15/sex) were stratified by sex and litter and randomly assigned to experimental groups receiving low (L-Fe), adequate (A-Fe), or high (H-Fe) levels of iron supplement during the pre- (PD1-21) and postweaning periods (PD22-35). Pigs in the L-Fe, A-Fe, and H-Fe groups orally received 0, 1, and 30 mg Fe · kg weight-1 · d-1 preweaning and were fed a diet containing 30, 125, and 1000 mg Fe/kg postweaning, respectively. Heme indexes were analyzed weekly, and gene and protein expressions of iron regulatory proteins in duodenal mucosa, liver, and hippocampus were analyzed through qRT-PCR and western blot, respectively, on PD35. Hippocampal neurons stained using the Golgi-Cox method were traced and their dendritic arbors reconstructed in 3-D using Neurolucida. Dendritic complexity was quantified using Sholl and branch order analyses. RESULTS: Pigs in the L-Fe group developed iron deficiency anemia (hemoglobin = 8.2 g/dL, hematocrit = 20.1%) on PD35 and became stunted during week 5 with lower final body weight than H-Fe group pigs (6.6 compared with 9.6 kg, P < 0.05). In comparison with A-Fe, H-Fe increased hippocampal ferritin expression by 38% and L-Fe decreased its expression by 52% (P < 0.05), suggesting altered hippocampal iron stores. Pigs in the H-Fe group had greater dendritic complexity in CA1/3 pyramidal neurons than L-Fe group pigs as shown by more dendritic intersections with Sholl rings (P ≤ 0.04) and a greater number of dendrites (P ≤ 0.016). CONCLUSIONS: In piglets, the developing hippocampus is susceptible to perturbations by dietary iron, with deficiency and overload differentially affecting dendritic arborization.


Asunto(s)
Anemia Ferropénica , Dendritas , Hipocampo , Hierro de la Dieta , Células Piramidales , Porcinos , Animales , Femenino , Masculino , Anemia Ferropénica/veterinaria , Dendritas/fisiología , Relación Dosis-Respuesta a Droga , Duodeno , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Hierro de la Dieta/administración & dosificación , Células Piramidales/citología , Células Piramidales/efectos de los fármacos
14.
Dev Biol ; 445(1): 54-67, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30385274

RESUMEN

The role of agrin, Lrp4 and MuSK, key organizers of neuromuscular synaptogenesis, in the developing CNS is only poorly understood. We investigated the role of these proteins in cultured mouse embryonic cortical neurons from wildtype and from Lrp4- and MuSK-deficient mice. Neurons from Lrp4-deficient mice had fewer but longer primary dendrites and a decreased density of puncta containing excitatory and inhibitory synapse-associated proteins. Neurons from MuSK-deficient mice had an altered dendritic branching pattern but no change in the density of puncta stained by antibodies against synapse-associated proteins. Transfection of TM-agrin compensated the dendritic branching deficits in Lrp4-deficient but not in MuSK-deficient neurons. TM-agrin transfection increased the density of excitatory synaptic puncta in MuSK-deficient but not in Lrp4-deficient mice and reduced the number of inhibitory synaptic puncta irrespective of MuSK and Lrp4 expression. Addition of purified soluble agrin to microisland cultures of cortical neurons revealed an Lrp4-dependent increase in the size and density of glutamatergic synaptic puncta and in mEPSC but not in mIPSC frequency and amplitude. Thus, agrin induced an Lrp4-independent increase in dendritic branch complexity, an Lrp4-dependent increase of excitatory synaptic puncta and an Lrp4- and MuSK-independent decrease in the density of puncta containing inhibitory synapse-associated proteins. These results establish selective roles for agrin, Lrp4 and MuSK during dendritogenesis and synaptogenesis in cultured CNS neurons.


Asunto(s)
Agrina/metabolismo , Unión Neuromuscular/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de LDL/metabolismo , Sinapsis/metabolismo , Animales , Línea Celular , Células Cultivadas , Sistema Nervioso Central/patología , Dendritas/metabolismo , Femenino , Proteínas Relacionadas con Receptor de LDL , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis
15.
Neurochem Res ; 45(12): 2949-2958, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33033860

RESUMEN

The abnormal function of the voltage-gated potassium channel Kv10.2 can induce epilepsy. However, the physiological function of Kv10.2 in the central nervous system remains unclear. In this study, we found that Kv10.2 knockout (KO) increased the complexity of neurons in the CA3 subarea of hippocampus. Kv10.2 KO led to enlarged somata, elongated dendritic length, and increased the number of dendritic tips in cultured rat hippocampus neurons. Kv10.2 KO also increased Synapsin I and PSD95 protein density in cultured rat hippocampal neurons. Whole cell patch-clamp recordings of brain slices in the CA3 subarea of hippocampus revealed that Kv10.2 KO increased the amplitude of spontaneous excitatory postsynaptic currents (sEPSC) and miniature excitatory postsynaptic currents (mEPSC), depolarized the resting membrane potential and increased the action potential firing, reduced the rheobase and increased the input resistance, which results in enhanced neuronal excitability. Furthermore, we made electroencephalogram (EEG) recordings of brain activity in freely moving rats before and after inducing seizures by pentylenetetrazole (PTZ) injection. Kv10.2 KO rats dramatically increased the EEG amplitude during epilepsy. Behavioral observation after seizure induction revealed that Kv10.2 KO rats demonstrated shortened onset latency, prolonged duration, and increased seizure severity when compared with wild type rats. Therefore, this study provides a new link between Kv10.2 and neuronal morphology and higher intrinsic excitability.


Asunto(s)
Dendritas/metabolismo , Epilepsia/genética , Canales de Potasio Éter-A-Go-Go/deficiencia , Predisposición Genética a la Enfermedad , Plasticidad Neuronal/genética , Animales , Región CA3 Hipocampal/metabolismo , Región CA3 Hipocampal/patología , Dendritas/genética , Dendritas/patología , Homólogo 4 de la Proteína Discs Large/metabolismo , Epilepsia/patología , Canales de Potasio Éter-A-Go-Go/genética , Potenciales Postsinápticos Excitadores/fisiología , Técnicas de Inactivación de Genes , Ratas , Sinapsinas/metabolismo
16.
Cereb Cortex ; 29(7): 2890-2903, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29982499

RESUMEN

Higher brain function relies on proper development of the cerebral cortex, including correct positioning of neurons and dendrite morphology. Disruptions in these processes may result in various neurocognitive disorders. Mutations in the CPE gene, which encodes carboxypeptidase E (CPE), have been linked to depression and intellectual disability. However, it remains unclear whether CPE is involved in early brain development and in turn contributes to the pathophysiology of neurocognitive disorders. Here, we investigate the effects of CPE knockdown on early brain development and explore the functional significance of the interaction between CPE and its binding partner p150Glued. We demonstrate that CPE is required for cortical neuron migration and dendrite arborization. Furthermore, we show that expression of CPE-C10 redistributes p150Glued from the centrosome and that disruption of CPE interaction with p150Glued leads to abnormal neuronal migration and dendrite morphology, suggesting that a complex between CPE and p150Glued is necessary for proper neurodevelopment.


Asunto(s)
Carboxipeptidasa H/metabolismo , Corteza Cerebral/fisiología , Dendritas/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Animales , Células COS , Movimiento Celular/fisiología , Corteza Cerebral/embriología , Chlorocebus aethiops , Ratones , Ratas
17.
Mol Cell Neurosci ; 98: 19-31, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31059774

RESUMEN

EPAC2 is a guanine nucleotide exchange factor that regulates GTPase activity of the small GTPase Rap and Ras and is highly enriched at synapses. Activation of EPAC2 has been shown to induce dendritic spine shrinkage and increase spine motility, effects that are necessary for synaptic plasticity. These morphological effects are dysregulated by rare mutations of Epac2 associated with autism spectrum disorders. In addition, EPAC2 destabilizes synapses through the removal of synaptic GluA2/3-containing AMPA receptors. Previous work has shown that Epac2 knockout mice (Epac2-/-) display abnormal social interactions, as well as gross disorganization of the frontal cortex and abnormal spine motility in vivo. In this study we sought to further understand the cellular consequences of knocking out Epac2 on the development of neuronal and synaptic structure and organization of cortical neurons. Using primary cortical neurons generated from Epac2+/+ or Epac2-/- mice, we confirm that EPAC2 is required for cAMP-dependent spine shrinkage. Neurons from Epac2-/- mice also displayed increased synaptic expression of GluA2/3-containing AMPA receptors, as well as of the adhesion protein N-cadherin. Intriguingly, analysis of excitatory and inhibitory synaptic proteins revealed that loss of EPAC2 resulted in altered expression of vesicular GABA transporter (VGAT) but not vesicular glutamate transporter 1 (VGluT1), indicating an altered ratio of excitatory and inhibitory synapses onto neurons. Finally, examination of cortical neurons located within the anterior cingulate cortex further revealed subtle deficits in the establishment of dendritic arborization in vivo. These data provide evidence that loss of EPAC2 enhances the stability of excitatory synapses and increases the number of inhibitory inputs.


Asunto(s)
Espinas Dendríticas/fisiología , Factores de Intercambio de Guanina Nucleótido/genética , Potenciales Postsinápticos Inhibidores , Sinapsis/fisiología , Animales , Cadherinas/genética , Cadherinas/metabolismo , Células Cultivadas , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Potenciales Postsinápticos Excitadores , Factores de Intercambio de Guanina Nucleótido/metabolismo , Giro del Cíngulo/citología , Giro del Cíngulo/metabolismo , Giro del Cíngulo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
18.
Proc Natl Acad Sci U S A ; 114(44): E9376-E9385, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29078305

RESUMEN

A spinocerebellar ataxia type 5 (SCA5) L253P mutation in the actin-binding domain (ABD) of ß-III-spectrin causes high-affinity actin binding and decreased thermal stability in vitro. Here we show in mammalian cells, at physiological temperature, that the mutant ABD retains high-affinity actin binding. Significantly, we provide evidence that the mutation alters the mobility and recruitment of ß-III-spectrin in mammalian cells, pointing to a potential disease mechanism. To explore this mechanism, we developed a Drosophila SCA5 model in which an equivalent mutant Drosophila ß-spectrin is expressed in neurons that extend complex dendritic arbors, such as Purkinje cells, targeted in SCA5 pathogenesis. The mutation causes a proximal shift in arborization coincident with decreased ß-spectrin localization in distal dendrites. We show that SCA5 ß-spectrin dominantly mislocalizes α-spectrin and ankyrin-2, components of the endogenous spectrin cytoskeleton. Our data suggest that high-affinity actin binding by SCA5 ß-spectrin interferes with spectrin-actin cytoskeleton dynamics, leading to a loss of a cytoskeletal mechanism in distal dendrites required for dendrite stabilization and arbor outgrowth.


Asunto(s)
Citoesqueleto/genética , Dendritas/genética , Mutación/genética , Plasticidad Neuronal/genética , Espectrina/genética , Ataxias Espinocerebelosas/genética , Animales , Ancirinas/genética , Células Cultivadas , Drosophila/genética , Drosophila/fisiología , Células HEK293 , Humanos , Neuronas/fisiología , Unión Proteica/genética , Células de Purkinje/fisiología
19.
Proc Natl Acad Sci U S A ; 114(38): E8062-E8071, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28874572

RESUMEN

Neurons sometimes completely fill available space in their receptive fields with evenly spaced dendrites to uniformly sample sensory or synaptic information. The mechanisms that enable neurons to sense and innervate all space in their target tissues are poorly understood. Using Drosophila somatosensory neurons as a model, we show that heparan sulfate proteoglycans (HSPGs) Dally and Syndecan on the surface of epidermal cells act as local permissive signals for the dendritic growth and maintenance of space-filling nociceptive C4da neurons, allowing them to innervate the entire skin. Using long-term time-lapse imaging with intact Drosophila larvae, we found that dendrites grow into HSPG-deficient areas but fail to stay there. HSPGs are necessary to stabilize microtubules in newly formed high-order dendrites. In contrast to C4da neurons, non-space-filling sensory neurons that develop in the same microenvironment do not rely on HSPGs for their dendritic growth. Furthermore, HSPGs do not act by transporting extracellular diffusible ligands or require leukocyte antigen-related (Lar), a receptor protein tyrosine phosphatase (RPTP) and the only known Drosophila HSPG receptor, for promoting dendritic growth of space-filling neurons. Interestingly, another RPTP, Ptp69D, promotes dendritic growth of C4da neurons in parallel to HSPGs. Together, our data reveal an HSPG-dependent pathway that specifically allows dendrites of space-filling neurons to innervate all target tissues in Drosophila.


Asunto(s)
Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Heparina/análogos & derivados , Nociceptores/metabolismo , Proteoglicanos/metabolismo , Proteínas Tirosina Fosfatasas Similares a Receptores/metabolismo , Transducción de Señal , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Heparina/genética , Heparina/metabolismo , Nociceptores/citología , Proteoglicanos/genética , Proteínas Tirosina Fosfatasas Similares a Receptores/genética
20.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033061

RESUMEN

Despite being banned from production for decades, polychlorinated biphenyls (PCBs) continue to pose a significant risk to human health. This is due to not only the continued release of legacy PCBs from PCB-containing equipment and materials manufactured prior to the ban on PCB production, but also the inadvertent production of PCBs as byproducts of contemporary pigment and dye production. Evidence from human and animal studies clearly identifies developmental neurotoxicity as a primary endpoint of concern associated with PCB exposures. However, the relative role(s) of specific PCB congeners in mediating the adverse effects of PCBs on the developing nervous system, and the mechanism(s) by which PCBs disrupt typical neurodevelopment remain outstanding questions. New questions are also emerging regarding the potential developmental neurotoxicity of lower chlorinated PCBs that were not present in the legacy commercial PCB mixtures, but constitute a significant proportion of contemporary human PCB exposures. Here, we review behavioral and mechanistic data obtained from experimental models as well as recent epidemiological studies that suggest the non-dioxin-like (NDL) PCBs are primarily responsible for the developmental neurotoxicity associated with PCBs. We also discuss emerging data demonstrating the potential for non-legacy, lower chlorinated PCBs to cause adverse neurodevelopmental outcomes. Molecular targets, the relevance of PCB interactions with these targets to neurodevelopmental disorders, and critical data gaps are addressed as well.


Asunto(s)
Dioxinas/química , Síndromes de Neurotoxicidad/etiología , Bifenilos Policlorados/toxicidad , Animales , Contaminantes Ambientales/toxicidad , Halogenación , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda