Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Proc Biol Sci ; 286(1903): 20190544, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31113323

RESUMEN

Lepidosauria show a large diversity in dietary adaptations, both among extant and extinct tetrapods. Unlike mammals, Lepidosauria do not engage in sophisticated mastication of their food and most species have continuous tooth replacement, further reducing the wear of individual teeth. However, dietary tendency estimation of extinct lepidosaurs usually rely on tooth shape and body size, which allows only for broad distinction between faunivores and herbivores. Microscopic wear features on teeth have long been successfully applied to reconstruct the diet of mammals and allow for subtle discrimination of feeding strategies and food abrasiveness. Here, we present, to our knowledge, the first detailed analysis of dental microwear texture on extant lepidosaurs using a combination of 46 surface texture parameters to establish a framework for dietary tendency estimation of fossil reptilian taxa. We measured dental surface textures of 77 specimens, belonging to herbivorous, algaevorous, frugivorous, carnivorous, ovivorous, insectivorous, molluscivorous, as well as omnivorous species. Carnivores show low density and shallow depth of furrows, whereas frugivores are characterized by the highest density of furrows. Molluscivores show the deepest wear features and highest roughness, herbivores have lower surface roughness and shallower furrows compared to insectivores and omnivores, which overlap in all parameters. Our study shows that despite short food-tooth interaction, dental surface texture parameters enable discrimination of several feeding strategies in lepidosaurs. This result opens new research avenues to assess diet in a broad variety of extant and extinct non-mammalian taxa including dinosaurs and early synapsids.


Asunto(s)
Dieta , Reptiles/anatomía & histología , Reptiles/fisiología , Diente/anatomía & histología , Animales
2.
Proc Biol Sci ; 283(1838)2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27629027

RESUMEN

Both dust and silica phytoliths have been shown to contribute to reducing tooth volume during chewing. However, the way and the extent to which they individually contribute to tooth wear in natural conditions is unknown. There is still debate as to whether dental microwear represents a dietary or an environmental signal, with far-reaching implications on evolutionary mechanisms that promote dental phenotypes, such as molar hypsodonty in ruminants, molar lengthening in suids or enamel thickening in human ancestors. By combining controlled-food trials simulating natural conditions and dental microwear textural analysis on sheep, we show that the presence of dust on food items does not overwhelm the dietary signal. Our dataset explores variations in dental microwear textures between ewes fed on dust-free and dust-laden grass or browse fodders. Browsing diets with a dust supplement simulating Harmattan windswept environments contain more silica than dust-free grazing diets. Yet browsers given a dust supplement differ from dust-free grazers. Regardless of the presence or the absence of dust, sheep with different diets yield significantly different dental microwear textures. Dust appears a less significant determinant of dental microwear signatures than the intrinsic properties of ingested foods, implying that diet plays a critical role in driving the natural selection of dental innovations.


Asunto(s)
Dieta/veterinaria , Polvo , Desgaste de los Dientes , Animales , Femenino , Alimentos , Diente Molar , Ovinos , Porcinos
3.
J Hum Evol ; 99: 1-9, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27650577

RESUMEN

As the only extant graminivorous primate, gelada monkeys (Theropithecus gelada) offer unique insights into how hominins and other extinct primates with strong C4 isotopic signatures may have subsisted on graminoid-rich diets. Fossil Theropithecus species sharing a strong C4 signal (i.e., Theropithecus brumpti, Theropithecus darti, and Theropithecus oswaldi) have been reconstructed as predominantly graminivorous and potentially in ecological competition with contemporaneous hominins. However, inferring the breadth and variation of diet in these species (and therefore hominins) has proven problematic. Understanding how ecological variation within extant geladas impacts microwear and isotopic signatures may contribute to reconstructions of diet in fossil Theropithecus. Here, we build on a recent study at an ecologically intact tall grass ecosystem (Guassa, Ethiopia) that expanded the known diversity of gelada diets by demonstrating lower reliance on graminoids, greater consumption of forbs, and greater dietary species richness than previously described at disturbed sites. We used dental microwear texture analysis to explore how dietary variation among extant geladas may inform our understanding of the diets of fossil Theropithecus. First, we compared the dental microwear textures of geladas at Guassa to those of geladas from other sites. The microwear textures of geladas at Guassa exhibited more complexity, less anisotropy, and more variance in anisotropy and heterogeneity, reflecting the greater dietary diversity of Guassa geladas. Comparing microwear texture variables among this expanded gelada sample to those for T. brumpti, T. oswaldi, and T. darti yielded no significant differences. These results raise the intriguing possibility that data on how ecological variation and diet impact dental microwear and (possibly) isotopic signatures in extant geladas can be used to reconstruct the diets of extinct theropiths and, more broadly, hominins with strong C4 isotopic signatures. We conclude that extant gelada populations offer a powerful analog for inferring dietary variation among predominantly graminivorous fossil primates.


Asunto(s)
Fósiles/anatomía & histología , Diente Molar/anatomía & histología , Theropithecus/anatomía & histología , Animales , Isótopos de Carbono/análisis , Dieta , Ecología , Etiopía
4.
J Exp Biol ; 219(Pt 4): 501-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26889000

RESUMEN

Plant-herbivore interactions are hypothesized to drive vole population cycles through the grazing-induced production of phytoliths in leaves. Phytoliths act as mechanical defences because they deter herbivory and lower growth rates in mammals. However, how phytoliths impair herbivore performance is still unknown. Here, we tested whether the amount of phytoliths changes tooth wear patterns. If confirmed, abrasion from phytoliths could play a role in population crashes. We applied dental microwear texture analysis (DMTA) to laboratory and wild voles. Lab voles were fed two pelleted diets with differing amounts of silicon, which produced similar dental textures. This was most probably due to the loss of food mechanical properties through pelletization and/or the small difference in silicon concentration between diets. Wild voles were trapped in Poland during spring and summer, and every year across a population cycle. In spring, voles feed on silica-rich monocotyledons, while in the summer they also include silica-depleted dicotyledons. This was reflected in the results; the amount of silica therefore leaves a traceable record in the dental microwear texture of voles. Furthermore, voles from different phases of population cycles have different microwear textures. We tentatively propose that these differences result from grazing-induced phytolith concentrations. We hypothesize that the high amount of phytoliths in response to intense grazing in peak years may result in malocclusion and other dental abnormalities, which would explain how these silicon-based plant defences help provoke population crashes. DMTA could then be used to reconstruct vole population dynamics using teeth from pellets or palaeontological material.


Asunto(s)
Arvicolinae/fisiología , Plantas/química , Dióxido de Silicio/química , Desgaste de los Dientes , Animales , Arvicolinae/anatomía & histología , Dieta/veterinaria , Herbivoria , Hojas de la Planta/química , Polonia , Estaciones del Año , Dióxido de Silicio/administración & dosificación
5.
Evolution ; 75(8): 1983-1997, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34131927

RESUMEN

Extant colobine monkeys are specialized leaf eaters. But during the late Miocene, western Eurasia was home to colobines that were less efficient at chewing leaves than they were at breaking seed shells. To understand the link between folivory and granivory in this lineage, the dietary niche of Mesopithecus delsoni and Mesopithecus pentelicus was investigated in southeastern Europe, where a major environmental change occurred during the late Miocene. We combined dental topographic estimates of chewing efficiency with dental microwear texture analysis of enamel wear facets. Mesopithecus delsoni was more efficient at chewing leaves than M. pentelicus, the dental topography of which matches an opportunistic seed eater. Concurrently, microwear complexity increases in M. pentelicus, especially in the northernmost localities corresponding to present-day Bulgaria. This is interpreted as a dietary shift toward hard foods such as seeds or tubers, which is consistent with the savanna and open mixed forest biomes that covered Bulgaria during the Tortonian. The fact that M. delsoni was better adapted to folivory and consumed a lower amount of hard foods than M. pentelicus suggests that colobines either adapted to folivory before their dispersal to Europe or evolved adaptations to leaf consumption in multiple occurrences.


Asunto(s)
Colobinae , Animales , Dieta , Europa (Continente) , Fósiles , Hojas de la Planta
6.
PeerJ ; 8: e9346, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32617190

RESUMEN

BACKGROUND: Saber-toothed mammals, now all extinct, were cats or "cat-like" forms with enlarged, blade-like upper canines, proposed as specialists in taking large prey. During the last 66 Ma, the saber-tooth ecomorph has evolved convergently at least in five different mammalian lineages across both marsupials and placentals. Indeed, Thylacosmilus atrox, the so-called "marsupial saber-tooth," is often considered as a classic example of convergence with placental saber-tooth cats such as Smilodon fatalis. However, despite its superficial similarity to saber-toothed placentals, T. atrox lacks many of the critical anatomical features related to their inferred predatory behavior-that of employing their enlarged canines in a killing head strike. METHODS: Here we follow a multi-proxy approach using canonical correspondence analysis of discrete traits, biomechanical models of skull function using Finite Element Analysis, and 3D dental microwear texture analysis of upper and lower postcanine teeth, to investigate the degree of evolutionary convergence between T. atrox and placental saber-tooths, including S. fatalis. RESULTS: Correspondence analysis shows that the craniodental features of T. atrox are divergent from those of placental saber-tooths. Biomechanical analyses indicate a superior ability of T. atrox to placental saber-tooths in pulling back with the canines, with the unique lateral ridge of the canines adding strength to this function. The dental microwear of T. atrox indicates a soft diet, resembling that of the meat-specializing cheetah, but its blunted gross dental wear is not indicative of shearing meat. CONCLUSIONS: Our results indicate that despite its impressive canines, the "marsupial saber-tooth" was not the ecological analogue of placental saber-tooths, and likely did not use its canines to dispatch its prey. This oft-cited example of convergence requires reconsideration, and T. atrox may have had a unique type of ecology among mammals.

7.
Ecol Evol ; 6(16): 5559-69, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27547337

RESUMEN

While grazing as a selective factor towards hypsodont dentition on mammals has gained a lot of attention, the importance of fruits and seeds as fallback resources for many browsing ungulates has caught much less attention. Controlled-food experiments, by reducing the dietary range, allow for a direct quantification of the effect of each type of items separately on enamel abrasion. We present the results of a dental microwear texture analysis on 40 ewes clustered into four different controlled diets: clover alone, and then three diets composed of clover together with either barley, corn, or chestnuts. Among the seed-eating groups, only the barley one shows higher complexity than the seed-free group. Canonical discriminant analysis is successful at correctly classifying the majority of clover- and seed-fed ewes. Although this study focuses on diets which all fall within a single dietary category (browse), the groups show variations in dental microwear textures in relation with the presence and the type of seeds. More than a matter of seed size and hardness, a high amount of kernels ingested per day is found to be correlated with high complexity on enamel molar facets. This highlights the high variability of the physical properties of the foods falling under the browsing umbrella.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda