Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
J Cell Sci ; 137(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39258310

RESUMEN

Desmosomes play a crucial role in maintaining tissue barrier integrity, particularly in mechanically stressed tissues. The assembly of desmosomes is regulated by the cytoskeleton and its regulators, and desmosomes also function as a central hub for regulating F-actin. However, the specific mechanisms underlying the crosstalk between desmosomes and F-actin remain unclear. Here, we identified that ARHGAP32, a Rho GTPase-activating protein, is located in desmosomes through its interaction with desmoplakin (DSP) via its GAB2-interacting domain (GAB2-ID). We confirmed that ARHGAP32 is required for desmosomal organization, maturation and length regulation. Notably, loss of ARHGAP32 increased formation of F-actin stress fibers and phosphorylation of the regulatory myosin light chain Myl9 at T18/S19. Inhibition of ROCK activity in ARHGAP32-knockout (KO) cells effectively restored desmosomal organization and the integrity of epithelial cell sheets. Moreover, loss of DSP impaired desmosomal ARHGAP32 location and led to decreased actomyosin contractility. ARHGAP32 with a deletion of the GAB2-ID domain showed enhanced association with RhoA in the cytosol and failed to rescue the desmosomal organization in ARHGAP32-KO cells. Collectively, our study unveils that ARHGAP32 associates with and regulates desmosomes by interacting with DSP. This interaction potentially facilitates the crosstalk between desmosomes and F-actin.


Asunto(s)
Desmoplaquinas , Desmosomas , Proteínas Activadoras de GTPasa , Desmosomas/metabolismo , Humanos , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Desmoplaquinas/metabolismo , Desmoplaquinas/genética , Animales , Actinas/metabolismo , Unión Proteica , Proteína de Unión al GTP rhoA/metabolismo , Perros , Fosforilación , Células de Riñón Canino Madin Darby , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Cadenas Ligeras de Miosina/metabolismo , Cadenas Ligeras de Miosina/genética
2.
Mol Cell Proteomics ; 23(3): 100735, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342409

RESUMEN

Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca2+ dependence to the mature, Ca2+-independent, hyper-adhesive state, which predominates in tissues. Results suggest that individual desmosomal proteins have distinct roles in connecting to cellular signaling pathways and that these roles alter substantially when cells change their adhesion state. The data provide further support for a dualistic concept of desmosomes in which the properties of Pkp2a differ from those of the other, more stable proteins. This body of data provides an invaluable resource for the analysis of desmosome function.


Asunto(s)
Desmosomas , Placofilinas , Animales , Perros , Desmosomas/metabolismo , Membrana Celular/metabolismo , Placofilinas/metabolismo , Células de Riñón Canino Madin Darby , Transducción de Señal , Adhesión Celular , Desmoplaquinas/metabolismo
3.
J Mol Cell Cardiol ; 195: 36-44, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39079569

RESUMEN

Cadherins are calcium dependent adhesion proteins that establish and maintain the intercellular mechanical contact by bridging the gap between adjacent cells. Desmoglein-2 (Dsg2) and desmocollin-2 (Dsc2) are tissue specific cadherin isoforms of the cell-cell contact in cardiac desmosomes. Mutations in the DSG2-gene and in the DSC2-gene are related to arrhythmogenic right ventricular cardiomyopathy (ARVC) a rare but severe heart muscle disease. Here, several possible homophilic and heterophilic binding interactions of wild-type Dsg2, wild-type Dsc2, as well as one Dsg2- and two Dsc2-variants, each associated with ARVC, are investigated. Using single molecule force spectroscopy (SMFS) with atomic force microscopy (AFM) and applying Jarzynski's equality the kinetics and thermodynamics of Dsg2/Dsc2 interaction can be determined. The free energy landscape of Dsg2/Dsc2 dimerization exposes a high activation energy barrier, which is in line with the proposed strand-swapping binding motif. Although the binding motif is not affected by any of the mutations, the binding kinetics of the interactions differ significantly from the wild-type. While wild-type cadherins exhibit an average complex lifetime of approx. 0.3 s interactions involving a variant consistently show - lifetimes that are substantially larger. The lifetimes of the wild-type interactions give rise to the picture of a dynamic adhesion interface consisting of continuously dissociating and (re)associating molecular bonds, while the delayed binding kinetics of interactions involving an ARVC-associated variant might be part of the pathogenesis. Our data provide a comprehensive and consistent thermodynamic and kinetic description of cardiac cadherin binding, allowing detailed insight into the molecular mechanisms of cell adhesion.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Cadherinas , Desmocolinas , Desmogleína 2 , Desmosomas , Unión Proteica , Desmosomas/metabolismo , Humanos , Cinética , Desmogleína 2/metabolismo , Desmogleína 2/genética , Displasia Ventricular Derecha Arritmogénica/metabolismo , Displasia Ventricular Derecha Arritmogénica/genética , Desmocolinas/metabolismo , Desmocolinas/genética , Cadherinas/metabolismo , Cadherinas/genética , Mutación , Microscopía de Fuerza Atómica , Termodinámica
4.
J Physiol ; 602(18): 4409-4436, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38345865

RESUMEN

Androgenic anabolic steroids (AAS) are commonly abused by young men. Male sex and increased AAS levels are associated with earlier and more severe manifestation of common cardiac conditions, such as atrial fibrillation, and rare ones, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Clinical observations suggest a potential atrial involvement in ARVC. Arrhythmogenic right ventricular cardiomyopathy is caused by desmosomal gene defects, including reduced plakoglobin expression. Here, we analysed clinical records from 146 ARVC patients to identify that ARVC is more common in males than females. Patients with ARVC also had an increased incidence of atrial arrhythmias and P wave changes. To study desmosomal vulnerability and the effects of AAS on the atria, young adult male mice, heterozygously deficient for plakoglobin (Plako+/-), and wild type (WT) littermates were chronically exposed to 5α-dihydrotestosterone (DHT) or placebo. The DHT increased atrial expression of pro-hypertrophic, fibrotic and inflammatory transcripts. In mice with reduced plakoglobin, DHT exaggerated P wave abnormalities, atrial conduction slowing, sodium current depletion, action potential amplitude reduction and the fall in action potential depolarization rate. Super-resolution microscopy revealed a decrease in NaV1.5 membrane clustering in Plako+/- atrial cardiomyocytes after DHT exposure. In summary, AAS combined with plakoglobin deficiency cause pathological atrial electrical remodelling in young male hearts. Male sex is likely to increase the risk of atrial arrhythmia, particularly in those with desmosomal gene variants. This risk is likely to be exaggerated further by AAS use. KEY POINTS: Androgenic male sex hormones, such as testosterone, might increase the risk of atrial fibrillation in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), which is often caused by desmosomal gene defects (e.g. reduced plakoglobin expression). In this study, we observed a significantly higher proportion of males who had ARVC compared with females, and atrial arrhythmias and P wave changes represented a common observation in advanced ARVC stages. In mice with reduced plakoglobin expression, chronic administration of 5α-dihydrotestosterone led to P wave abnormalities, atrial conduction slowing, sodium current depletion and a decrease in membrane-localized NaV1.5 clusters. 5α-Dihydrotestosterone, therefore, represents a stimulus aggravating the pro-arrhythmic phenotype in carriers of desmosomal mutations and can affect atrial electrical function.


Asunto(s)
gamma Catenina , Animales , Masculino , Femenino , Ratones , Humanos , gamma Catenina/genética , gamma Catenina/metabolismo , Adulto , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/metabolismo , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/fisiopatología , Displasia Ventricular Derecha Arritmogénica/metabolismo , Dihidrotestosterona/farmacología , Andrógenos/farmacología , Potenciales de Acción/efectos de los fármacos , Ratones Endogámicos C57BL , Adulto Joven , Anabolizantes/farmacología , Esteroides Anabólicos Androgénicos
5.
Mol Cancer ; 23(1): 205, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304899

RESUMEN

BACKGROUND: Growth hormone-secreting pituitary neuroendocrine tumors can be pathologically classified into densely granulated (DGGH) and sparsely granulated types (SGGH). SGGH is more aggressive and associated with a poorer prognosis. While epigenetic regulation is vital in tumorigenesis and progression, the role of N6-methyladenosine (m6A) in aggressive behavior has yet to be elucidated. METHODS: We performed m6A-sequencing on tumor samples from 8 DGGH and 8 SGGH patients, complemented by a suite of assays including ELISA, immuno-histochemistry, -blotting and -fluorescence, qPCR, MeRIP, RIP, and RNA stability experiments, aiming to delineate the influence of m6A on tumor behavior. We further assessed the therapeutic potential of targeted drugs using cell cultures, organoid models, and animal studies. RESULTS: We discovered a significant reduction of m6A levels in SGGH compared to DGGH, with an elevated expression of fat mass and obesity-associated protein (FTO), an m6A demethylase, in SGGH subtype. Series of in vivo and in vitro experiments demonstrated that FTO inhibition in tumor cells robustly diminishes hypoxia resistance, attenuates growth hormone secretion, and augments responsiveness to octreotide. Mechanically, FTO-mediated m6A demethylation destabilizes desmoplakin (DSP) mRNA, mediated by the m6A reader FMR1, leading to prohibited desmosome integrity and enhanced tumor hypoxia tolerance. Targeting the FTO-DSP-SSTR2 axis curtailed growth hormone secretion, therefor sensitizing tumors to octreotide therapy. CONCLUSION: Our study reveals the critical role of FTO in the aggressive growth hormone-secreting pituitary neuroendocrine tumors subtype and suggests FTO may represent a new therapeutic target for refractory/persistent SGGH.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Desmetilación , Tumores Neuroendocrinos , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Humanos , Animales , Ratones , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Adenosina/análogos & derivados , Adenosina/metabolismo , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/patología , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Femenino , Masculino , Adenoma Hipofisario Secretor de Hormona del Crecimiento/metabolismo , Adenoma Hipofisario Secretor de Hormona del Crecimiento/genética , Adenoma Hipofisario Secretor de Hormona del Crecimiento/patología
6.
Cancer Sci ; 115(1): 17-23, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38048779

RESUMEN

Plakophilin 3 (PKP3), a component of desmosome, is aberrantly expressed in many kinds of human diseases, especially in cancers. Through direct interaction, PKP3 binds with a series of desmosomal proteins, such as desmoglein, desmocollin, plakoglobin, and desmoplakin, to initiate desmosome aggregation, then promotes its stability. As PKP3 is mostly expressed in the skin, loss of PKP3 promotes the development of several skin diseases, such as paraneoplastic pemphigus, pemphigus vulgaris, and hypertrophic scar. Moreover, accumulated clinical data indicate that PKP3 dysregulates in diverse cancers, including breast, ovarian, colon, and lung cancers. Numerous lines of evidence have shown that PKP3 plays important roles in multiple cellular processes during cancer progression, including metastasis, invasion, tumor formation, autophagy, and proliferation. This review examines the diverse functions of PKP3 in regulating tumor formation and development in various types of cancers and summarizes its detailed mechanisms in the occurrence of skin diseases.


Asunto(s)
Neoplasias , Placofilinas , Enfermedades de la Piel , Humanos , Desmosomas/metabolismo , Neoplasias/metabolismo , Placofilinas/genética , Placofilinas/metabolismo
7.
Kidney Int ; 105(5): 1035-1048, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38395410

RESUMEN

Desmosomes are multi-protein cell-cell adhesion structures supporting cell stability and mechanical stress resilience of tissues, best described in skin and heart. The kidney is exposed to various mechanical stimuli and stress, yet little is known about kidney desmosomes. In healthy kidneys, we found desmosomal proteins located at the apical-junctional complex in tubular epithelial cells. In four different animal models and patient biopsies with various kidney diseases, desmosomal components were significantly upregulated and partly miss-localized outside of the apical-junctional complexes along the whole lateral tubular epithelial cell membrane. The most upregulated component was desmoglein-2 (Dsg2). Mice with constitutive tubular epithelial cell-specific deletion of Dsg2 developed normally, and other desmosomal components were not altered in these mice. When challenged with different types of tubular epithelial cell injury (unilateral ureteral obstruction, ischemia-reperfusion, and 2,8-dihydroxyadenine crystal nephropathy), we found increased tubular epithelial cell apoptosis, proliferation, tubular atrophy, and inflammation compared to wild-type mice in all models and time points. In vitro, silencing DSG2 via siRNA weakened cell-cell adhesion in HK-2 cells and increased cell death. Thus, our data show a prominent upregulation of desmosomal components in tubular cells across species and diseases and suggest a protective role of Dsg2 against various injurious stimuli.


Asunto(s)
Desmosomas , Enfermedades Renales , Animales , Humanos , Ratones , Adhesión Celular , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmosomas/metabolismo , Corazón , Enfermedades Renales/genética , Enfermedades Renales/metabolismo
8.
Mol Carcinog ; 63(10): 1855-1865, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38888207

RESUMEN

Plakophilin 1 (PKP1) belongs to the desmosome family as an anchoring junction protein in cellular junctions. It localizes at the interface of the cell membrane and cytoplasm. Although PKP1 is a non-transmembrane protein, it may become associated with the cell membrane via transmembrane proteins such as desmocollins and desmogleins. Homozygous deletion of PKP1 results in ectodermal dysplasia-skin fragility syndrome (EDSF) and complete knockout of PKP1 in mice produces comparable symptoms to EDSF in humans, although mice do not survive more than 24 h. PKP1 is not limited to expression in desmosomal structures, but is rather widely expressed in cytoplasm and nucleus, where it assumes important cellular functions. This review will summarize distinct roles of PKP1 in the cell membrane, cytoplasm, and nucleus with an overview of relevant studies on its function in diverse types of cancer.


Asunto(s)
Carcinogénesis , Neoplasias , Placofilinas , Humanos , Placofilinas/genética , Placofilinas/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Citoplasma/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Desmosomas/metabolismo , Desmosomas/genética
9.
Histochem Cell Biol ; 161(4): 345-357, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38227055

RESUMEN

c-Jun NH2-terminal protein kinase (JNK) and p38 are stress-activated mitogen-activated protein kinases (MAPK) that are phosphorylated by various stimuli. It has been reported that the loss of desmoglein (DSG) 3, a desmosomal transmembrane core molecule, in keratinocytes impairs cell-cell adhesion accompanied by p38 MAPK activation. To understand the biological role of DSG3 in desmosomes and its relationship with stress-activated MAPKs, we established DSG3 knockout keratinocytes (KO cells). Wild-type cells showed a linear localization of DSG1 to cell-cell contacts, whereas KO cells showed a remarkable reduction despite the increased protein levels of DSG1. Cell-cell adhesion in KO cells was impaired over time, as demonstrated by dispase-based dissociation assays. The linear localization of DSG1 to cell-cell contacts and the strength of cell-cell adhesion were promoted by the pharmacological inhibition of JNK. Conversely, pharmacological activation of JNK, but not p38 MAPK, in wild-type cells reduced the linear localization of DSG1 in cell-cell contacts. Our data indicate that DSG1 and DSG2 in KO cells cannot compensate for the attenuation of cell-cell adhesion strength caused by DSG3 deficiency and that JNK inhibition restores the strength of cell-cell adhesion by increasing the linear localization of DSG1 in cell-cell contacts in KO cells. Inhibition of JNK signaling may improve cell-cell adhesion in diseases in which DSG3 expression is impaired.


Asunto(s)
Desmogleína 3 , Queratinocitos , Adhesión Celular/genética , Desmogleína 3/genética , Desmogleína 3/metabolismo , Queratinocitos/metabolismo , Sistema de Señalización de MAP Quinasas
10.
Exp Dermatol ; 33(3): e15046, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38509711

RESUMEN

Desmoplakin (DSP) is a desmosomal component expressed in skin and heart, essential for desmosome stability and intermediate filament connection. Pathogenic variants in the DSP gene encoding DSP, lead to heterogeneous skin, adnexa and heart-related phenotypes, including skin fragility, woolly hair (WH), palmoplantar keratoderma (PPK) and arrhythmogenic/dilated cardiomyopathy (ACM/DCM). The ambiguity of computer-based prediction analysis of pathogenicity and effect of DSP variants, indicates a necessity for functional analysis. Here, we report a heterozygous DSP variant that was not previously described, NM_004415.4:c.3337C>T (NM_004415.4(NP_004406.2):p.(Arg1113*)) in a patient with PPK, WH and ACM. RNA and protein analysis revealed ~50% reduction of DSP mRNA and protein expression. Patient's keratinocytes showed fragile cell-cell connections and perinuclear retracted intermediate filaments. Epidermal growth factor receptor (EGFR) is a transmembrane protein expressed in the basal epidermal layer involved in proliferation and differentiation, processes that are disrupted in the development of PPK, and in the regulation of the desmosome. In skin of the abovementioned patient, evident EGFR upregulation was observed. EGFR inhibition in patient's keratinocytes strongly increased DSP expression at the plasma membrane, improved intermediate filament connection with the membrane edges and reduced the cell-cell fragility. This cell phenotypic recovery was due to a translocation of DSP to the plasma membrane together with an increased number of desmosomes. These results indicate a therapeutic potential of EGFR inhibitors for disorders caused by DSP haploinsufficiency.


Asunto(s)
Desmoplaquinas , Receptores ErbB , Enfermedades del Cabello , Queratodermia Palmoplantar , Humanos , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Epidermis/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Enfermedades del Cabello/genética , Queratinocitos/metabolismo , Queratodermia Palmoplantar/genética , Fenotipo , Piel/metabolismo
11.
J Nanobiotechnology ; 22(1): 312, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840221

RESUMEN

Zinc oxide nanoparticles (ZNPs) are widely used in sunscreens and nanomedicines, and it was recently confirmed that ZNPs can penetrate stratum corneum into deep epidermis. Therefore, it is necessary to determine the impact of ZNPs on epidermis. In this study, ZNPs were applied to mouse skin at a relatively low concentration for one week. As a result, desmosomes in epidermal tissues were depolymerized, epidermal mechanical strain resistance was reduced, and the levels of desmosomal cadherins were decreased in cell membrane lysates and increased in cytoplasmic lysates. This finding suggested that ZNPs promote desmosomal cadherin endocytosis, which causes desmosome depolymerization. In further studies, ZNPs were proved to decrease mammalian target of rapamycin complex 1 (mTORC1) activity, activate transcription factor EB (TFEB), upregulate biogenesis of lysosome-related organelle complex 1 subunit 3 (BLOC1S3) and consequently promote desmosomal cadherin endocytosis. In addition, the key role of mTORC1 in ZNP-induced decrease in mechanical strain resistance was determined both in vitro and in vivo. It can be concluded that ZNPs reduce epidermal mechanical strain resistance by promoting desmosomal cadherin endocytosis via the mTORC1-TFEB-BLOC1S3 axis. This study helps elucidate the biological effects of ZNPs and suggests that ZNPs increase the risk of epidermal fragmentation.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Cadherinas , Endocitosis , Epidermis , Diana Mecanicista del Complejo 1 de la Rapamicina , Óxido de Zinc , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Endocitosis/efectos de los fármacos , Ratones , Cadherinas/metabolismo , Epidermis/metabolismo , Epidermis/efectos de los fármacos , Óxido de Zinc/farmacología , Óxido de Zinc/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Desmosomas/metabolismo , Nanopartículas/química , Estrés Mecánico
12.
Cell Mol Life Sci ; 80(1): 25, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36602635

RESUMEN

Desmoglein 3 (Dsg3) is a desmosomal cadherin mediating cell adhesion within desmosomes and is the antigen of the autoimmune blistering skin disease pemphigus vulgaris. Therefore, understanding of the complex desmosome turnover process is of high biomedical relevance. Recently, super resolution microscopy was used to characterize desmosome composition and turnover. However, studies were limited because adhesion measurements on living cells were not possible in parallel. Before desmosomal cadherins are incorporated into nascent desmosomes, they are not bound to intermediate filaments but were suggested to be associated with the actin cytoskeleton. However, direct proof that adhesion of a pool of desmosomal cadherins is dependent on actin is missing. Here, we applied single-molecule force spectroscopy measurements with the novel single molecule hybrid-technique STED/SMFS-AFM to investigate the cytoskeletal anchorage of Dsg3 on living keratinocytes for the first time. By application of pharmacological agents we discriminated two different Dsg3 pools, only one of which is anchored to actin filaments. We applied the actin polymerization inhibitor Latrunculin B to modify the actin cytoskeleton and the PKCα activator PMA to modulate intermediate filament anchorage. On the cellular surface Dsg3 adhesion was actin-dependent. In contrast, at cell-cell contacts, Dsg3 adhesion was independent from actin but rather is regulated by PKC which is well established to control desmosome turn-over via intermediate filament anchorage. Taken together, using the novel STED/SMFS-AFM technique, we demonstrated the existence of two Dsg3 pools with different cytoskeletal anchorage mechanisms.


Asunto(s)
Enfermedades Autoinmunes , Pénfigo , Humanos , Desmogleína 3/metabolismo , Actinas/metabolismo , Desmosomas/metabolismo , Queratinocitos/metabolismo , Pénfigo/metabolismo , Cadherinas/metabolismo , Adhesión Celular , Enfermedades Autoinmunes/metabolismo
13.
Cell Mol Life Sci ; 80(8): 203, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37450050

RESUMEN

AIMS: Arrhythmogenic cardiomyopathy (AC) is a severe heart disease predisposing to ventricular arrhythmias and sudden cardiac death caused by mutations affecting intercalated disc (ICD) proteins and aggravated by physical exercise. Recently, autoantibodies targeting ICD proteins, including the desmosomal cadherin desmoglein 2 (DSG2), were reported in AC patients and were considered relevant for disease development and progression, particularly in patients without underlying pathogenic mutations. However, it is unclear at present whether these autoantibodies are pathogenic and by which mechanisms show specificity for DSG2 and thus can be used as a diagnostic tool. METHODS AND RESULTS: IgG fractions were purified from 15 AC patients and 4 healthy controls. Immunostainings dissociation assays, atomic force microscopy (AFM), Western blot analysis and Triton X-100 assays were performed utilizing human heart left ventricle tissue, HL-1 cells and murine cardiac slices. Immunostainings revealed that autoantibodies against ICD proteins are prevalent in AC and most autoantibody fractions have catalytic properties and cleave the ICD adhesion molecules DSG2 and N-cadherin, thereby reducing cadherin interactions as revealed by AFM. Furthermore, most of the AC-IgG fractions causing loss of cardiomyocyte cohesion activated p38MAPK, which is known to contribute to a loss of desmosomal adhesion in different cell types, including cardiomyocytes. In addition, p38MAPK inhibition rescued the loss of cardiomyocyte cohesion induced by AC-IgGs. CONCLUSION: Our study demonstrates that catalytic autoantibodies play a pathogenic role by cleaving ICD cadherins and thereby reducing cardiomyocyte cohesion by a mechanism involving p38MAPK activation. Finally, we conclude that DSG2 cleavage by autoantibodies could be used as a diagnostic tool for AC.


Asunto(s)
Anticuerpos Catalíticos , Cardiomiopatías , Humanos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Cadherinas/metabolismo , Desmogleína 2/genética , Anticuerpos Catalíticos/metabolismo , Adhesión Celular/genética , Autoanticuerpos/metabolismo , Cardiomiopatías/metabolismo , Inmunoglobulina G/metabolismo , Desmogleína 3/metabolismo , Desmosomas/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-38641164

RESUMEN

The Notch signaling pathway plays a pivotal role in governing cell fate determinations within the gonadal niche. This study provides an extensive elucidation of the male and female gonadal niches within Crassostrea gigas. Examination via transmission electron microscopy revealed the presence of desmosome-like connection not only between germ cells and niche cells but also among adjacent niche cells within the oyster gonad. Transcriptomic analysis identified several putative Notch pathway components, including CgJAG1, CgNOTCH1, CgSuh, and CgHey1. Phylogenetic analysis indicated a close evolutionary relationship between CgJAG1, CgNOTCH1, and CgHey1 and Notch members present in Drosophila. Expression profiling results indicated a notable abundance of CgHey1 in the gonads, while CgJAG1 and CgNOTCH1 displayed distinct expression patterns associated with sexual dimorphism. In situ hybridization findings corroborated the predominant expression of CgJAG1 in male niche cells, while CgNOTCH1 was expressed in both male and female germ cells, as well as female niche cells. These findings demonstrate the important role of the Notch signaling pathway in the gonadal niche of oysters.


Asunto(s)
Comunicación Celular , Crassostrea , Gónadas , Filogenia , Receptores Notch , Transducción de Señal , Animales , Crassostrea/genética , Crassostrea/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Masculino , Femenino , Gónadas/metabolismo , Células Germinativas/metabolismo
15.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892168

RESUMEN

Pinin (PNN) is a desmosome-associated protein that reinforces the organization of keratin intermediate filaments and stabilizes the anchoring of the cytoskeleton network to the lateral surface of the plasma membrane. The aberrant expression of PNN affects the strength of cell adhesion as well as modifies the intracellular signal transduction pathways leading to the onset of CRC. In our previous studies, we characterized the role of miR-195-5p in the regulation of desmosome junctions and in CRC progression. Here, with the aim of investigating additional mechanisms related to the desmosome complex, we identified PNN as a miR-195-5p putative target. Using a public data repository, we found that PNN was a negative prognostic factor and was overexpressed in colon cancer tissues from stage 1 of the disease. Then, we assessed PNN expression in CRC tissue specimens, confirming the overexpression of PNN in tumor sections. The increase in intracellular levels of miR-195-5p revealed a significant decrease in PNN at the mRNA and protein levels. As a consequence of PNN regulation by miR-195-5p, the expression of KRT8 and KRT19, closely connected to PNN, was affected. Finally, we investigated the in vivo effect of miR-195-5p on PNN expression in the colon of AOM/DSS-treated mice. In conclusion, we have revealed a new mechanism driven by miR-195-5p in the regulation of desmosome components, suggesting a potential pharmacological target for CRC therapy.


Asunto(s)
Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , MicroARNs , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , MicroARNs/genética , MicroARNs/metabolismo
16.
J Cell Sci ; 134(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34635908

RESUMEN

Desmosomes, strong cell-cell junctions of epithelia and cardiac muscle, link intermediate filaments to cell membranes and mechanically integrate cells across tissues, dissipating mechanical stress. They comprise five major protein classes - desmocollins and desmogleins (the desmosomal cadherins), plakoglobin, plakophilins and desmoplakin - whose individual contribution to the structure and turnover of desmosomes is poorly understood. Using live-cell imaging together with fluorescence recovery after photobleaching (FRAP) and fluorescence loss and localisation after photobleaching (FLAP), we show that desmosomes consist of two contrasting protein moieties or modules: a very stable moiety of desmosomal cadherins, desmoplakin and plakoglobin, and a highly mobile plakophilin (Pkp2a). As desmosomes mature from Ca2+ dependence to Ca2+-independent hyper-adhesion, their stability increases, but Pkp2a remains highly mobile. We show that desmosome downregulation during growth-factor-induced cell scattering proceeds by internalisation of whole desmosomes, which still retain a stable moiety and highly mobile Pkp2a. This molecular mobility of Pkp2a suggests a transient and probably regulatory role for Pkp2a in desmosomes. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Desmosomas , Placofilinas , Cadherinas , Membrana Celular , Desmogleínas , Desmoplaquinas/genética , Humanos , Placofilinas/genética , gamma Catenina
17.
Cancer Cell Int ; 23(1): 47, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927383

RESUMEN

BACKGROUND: The disruption of epithelial features represents a critical step during breast cancer spread. In this context, the dysregulation of desmosomal proteins has been associated with malignant progression and metastasis formation. Curiously, both tumour suppressive and pro-metastatic roles have been attributed to desmosomal structures in different cancer entities. In the present study, we describe the pro-metastatic role of the desmosomal protein desmocollin 2 (DSC2) in breast cancer. METHODS: We analysed the prognostic role of DSC2 at mRNA and protein level using microarray data, western blot analysis and immunohistochemistry. Functional consequences of DSC2 overexpression and DSC2 knock down were investigated in the triple negative breast cancer (TNBC) cell line MDA-MB-231 and its brain-seeking subline MDA-MB-231-BR, respectively in vitro and in vivo. RESULTS: We found a significantly higher DSC2 expression in the more aggressive molecular subtypes HER2-positive and TNBC than in luminal breast cancers, as well as a significant correlation between increased DSC2 expression and a shorter disease-free-also in multivariate analysis-and overall survival. Additionally, a significant association between DSC2 expression in the primary tumour and an increased frequency of cerebral and lung metastasis could be observed. In vitro, ectopic DSC2 expression or DSC2 down-regulation in MDA-MB-231 and MDA-MB-231-BR led to a significant tumour cell aggregation increase and decrease, respectively. Furthermore, tumour cells displaying higher DSC2 levels showed increased chemoresistance in 3D structures, but not 2D monolayer structures, suggesting the importance of cell aggregation as a means for reduced drug diffusion. In an in vivo brain dissemination xenograft mouse model, reduced expression of DSC2 in the brain-seeking TNBC cells led to a decreased amount of circulating tumour cells/clusters and, in turn, to fewer and smaller brain metastatic lesions. CONCLUSION: We conclude that high DSC2 expression in primary TNBC is associated with a poorer prognosis, firstly by increasing tumour cell aggregation, secondly by reducing the diffusion and effectiveness of chemotherapeutic agents, and, lastly, by promoting the circulation and survival of tumour cell clusters, each of which facilitates distant organ colonisation.

18.
Cell Mol Life Sci ; 79(5): 223, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35380280

RESUMEN

Desmosomes are intercellular junctions which mediate cohesion and communication in tissues exposed to mechanical strain by tethering the intermediate filament cytoskeleton to the plasma membrane. While mature desmosomes are characterized by a hyperadhesive, Ca2+-independent state, they transiently loose this state during wound healing, pathogenesis and tissue regeneration. The mechanisms controlling the hyperadhesive state remain incompletely understood. Here, we show that upon Ca2+-induced keratinocyte differentiation, expression of keratin 17 (K17) prevents the formation of stable and hyperadhesive desmosomes, accompanied by a significant reduction of desmoplakin (DP), plakophilin-1 (PKP1), desmoglein-1 (Dsg1) and -3 (Dsg3) at intercellular cell borders. Atomic force microscopy revealed that both increased binding strength of desmoglein-3 molecules and amount of desmoglein-3 oligomers, known hallmarks of hyperadhesion, were reduced in K17- compared to K14-expressing cells. Importantly, overexpression of Dsg3 or DPII enhanced their localization at intercellular cell borders and increased the formation of Dsg3 oligomers, resulting in stable, hyperadhesive desmosomes despite the presence of K17. Notably, PKP1 was enriched in these desmosomes. Quantitative image analysis revealed that DPII overexpression contributed to desmosome hyperadhesion by increasing the abundance of K5/K17-positive keratin filaments in the proximity of desmosomes enriched in desmoglein-3. Thus, our data show that hyperadhesion can result from recruitment of keratin isotypes K5/K17 to desmosomes or from enhanced expression of DP and Dsg3 irrespective of keratin composition. The notion that hyperadhesive desmosomes failed to form in the absence of keratins underscores the essential role of keratins and suggest bidirectional control mechanisms at several levels.


Asunto(s)
Desmosomas , Queratinas , Adhesión Celular , Citoesqueleto/metabolismo , Desmogleínas/metabolismo , Desmosomas/metabolismo , Queratinocitos/metabolismo , Queratinas/metabolismo
19.
Proc Natl Acad Sci U S A ; 117(44): 27132-27140, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33067392

RESUMEN

Desmosomes are cell-cell junctions that link tissue cells experiencing intense mechanical stress. Although the structure of the desmosomal cadherins is known, the desmosome architecture-which is essential for mediating numerous functions-remains elusive. Here, we recorded cryo-electron tomograms (cryo-ET) in which individual cadherins can be discerned; they appear variable in shape, spacing, and tilt with respect to the membrane. The resulting sub-tomogram average reaches a resolution of ∼26 Å, limited by the inherent flexibility of desmosomes. To address this challenge typical of dynamic biological assemblies, we combine sub-tomogram averaging with atomistic molecular dynamics (MD) simulations. We generate models of possible cadherin arrangements and perform an in silico screening according to biophysical and structural properties extracted from MD simulation trajectories. We find a truss-like arrangement of cadherins that resembles the characteristic footprint seen in the electron micrograph. The resulting model of the desmosomal architecture explains their unique biophysical properties and strength.


Asunto(s)
Desmosomas/química , Tomografía con Microscopio Electrónico/métodos , Cadherinas/química , Cadherinas/metabolismo , Desmosomas/metabolismo , Desmosomas/fisiología , Humanos , Uniones Intercelulares , Simulación de Dinámica Molecular
20.
Int J Mol Sci ; 24(23)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38069408

RESUMEN

Desmosomes play a key role in the regulation of cell adhesion and signaling. Dysregulation of the desmosome complex is associated with the loss of epithelial cell polarity and disorganized tissue architecture typical of colorectal cancer (CRC). The aim of this study was to investigate and characterize the effect of miR-195-5p on desmosomal junction regulation in CRC. In detail, we proposed to investigate the deregulation of miR-195-5p and JUP, a gene target that encodes a desmosome component in CRC patients. JUP closely interacts with desmosomal cadherins, and downstream, it regulates several intracellular transduction factors. We restored the miR-195-5p levels by transient transfection in colonic epithelial cells to examine the effects of miR-195-5p on JUP mRNA and protein expression. The JUP regulation by miR-195-5p, in turn, determined a modulation of desmosome cadherins (Desmoglein 2 and Desmocollin 2). Furthermore, we focused on whether the miR-195-5p gain of function was also able to modulate the expression of key components of Wnt signaling, such as NLK, LEF1 and Cyclin D1. In conclusion, we have identified a novel mechanism controlled by miR-195-5p in the regulation of adhesive junctions, suggesting its potential clinical relevance for future miRNA-based therapy in CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , gamma Catenina/genética , gamma Catenina/metabolismo , Desmosomas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Vía de Señalización Wnt/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas Serina-Treonina Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda