Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Ecotoxicol Environ Saf ; 178: 43-50, 2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-30991246

RESUMEN

Fluoroquinolones (FQs) are widely used in human and veterinary medicaments, and as such are ubiquitous environmental contaminants. Dissolved organic matter (DOM) is widely distributed in natural water and sediment and dissolved humic acid (DHA) is a major component of DOM. The coexistence of DHA might influence the sorption, migration and transformation of FQs, thus determining their environmental fate. In this study, the interaction of DHA and ofloxacin (OFL)/flumequine (FLU) was evaluated using dialysis-bag assays. The sorption of OFL and FLU to kaolinite in the presence of DHA under different pH conditions was investigated. The results revealed that the binding affinities of FQs to DHA were weakened with increasing pH from 4.0 to 10.0 due to the increased negative charge of DHA and subsequent electrostatic repulsion. Sorption experiments indicated that co-precipitation was an important mechanism for OFL/FLU removal from the aqueous phase under acidic conditions. At pH 7.0, the affinity of OFL-DHA/FLU-DHA to kaolinite was weaker than that of OFL/FLU thus suppressed its sorption. At pH 9.5, the affinity of OFL-DHA to kaolinite was stronger than that of OFL and consequently promoted its sorption, but there was no observed effect of DHA on FLU sorption. During desorption, DHA could bind to OFL/FLU and promote its desorption from kaolinite at neutral pH. In binary solute systems of OFL and FLU, OFL was a more effective competitor for the sorption sites of kaolinite than FLU.


Asunto(s)
Fluoroquinolonas/análisis , Sustancias Húmicas/análisis , Caolín/química , Modelos Químicos , Contaminantes Químicos del Agua/análisis , Adsorción , Concentración de Iones de Hidrógeno , Ofloxacino/análisis , Soluciones
2.
Water Res ; 196: 117054, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33770677

RESUMEN

Dissolved black carbon (DBC), widely found in soil and water environments is likely to affect the transport of nanoplastics in aquatic environments. The aggregation and deposition behaviors of fresh and aged polystyrene nanoplastics (PSs) with and without DBC in NaCl solution were investigated by time-resolved dynamic light scattering (DLS) and quartz crystal microbalance with dissipation monitoring equipment (QCM-D) techniques. The results suggest that DBC can screen the surface charges of PSs by interacting with PSs through hydrogen bonding, hydrophobic interactions and π-π interactions, although they were negatively charged. DBC promoted the aggregation of PSs under relatively low ionic strengths, and it minimally affected the stability of PSs under high ionic strength. Deposition experiments showed that both DBC in salt solution and DBC adsorption on silica surface facilitated the deposition of fresh PSs while HA inhibited both deposition processes. After aging, PSs were more stable, and the effects of DBC and HA were weakened. This study investigated the influence mechanism of DBC on the aggregation and deposition behaviors, which provides new insights into the stability and transport of PSs in complex aquatic environments.


Asunto(s)
Sustancias Húmicas , Poliestirenos , Carbono , Sustancias Húmicas/análisis , Microplásticos , Hollín
3.
Chemosphere ; 247: 125895, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31958649

RESUMEN

Humic acid plays an important role in controlling the toxicity of nanoparticles to organisms. However, little is known about the influence of different fractions of dissolved humic acid (DHA) from soil on the toxicity of nanoparticles to organisms. The concentration of γ-Fe2O3 and the exposure time affected the malondialdehyde (MDA) content, reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) activity in P. chrysosporium cells and were inversely proportional to the relative activities of the cells. P. chrysosporium was exposed to γ-Fe2O3 and DHA1 for 3 h, 6 h and 12 h. Catalase (CAT) and peroxidase (POD) activities were generally higher than control. Particularly, under the influence of 50 mg/L DHA1 and different concentrations of γ-Fe2O3 (10 and 50 mg/L), the CAT and POD activities were higher than those of cells exposed to γ-Fe2O3 alone. Conversely, both activities of P. chrysosporium exposed to DHA4 combined with γ-Fe2O3 for 12 h were lower than those of cells exposed to γ-Fe2O3 alone and gradually decreased with increasing DHA4 concentration (0, 10 and 50 mg/L). The µ-XAFS normalized spectrum indicated that Fe3+ entering the cells tended to transform into Fe2+ as the stress time prolonged. TEM analysis confirmed the toxicity of high concentrations of γ-Fe2O3 to P. chrysosporium. The comet assay showed that DHA4 in soil enhanced the toxicity of γ-Fe2O3 to P. chrysosporium more than DHA1 did. Namely, compared to DHA1, DHA4 made it easier for nano-Fe2O3 to enter P. chrysosporium cells, causing more toxicity of γ-Fe2O3 to P. chrysosporium.


Asunto(s)
Hongos/efectos de los fármacos , Sustancias Húmicas/análisis , Hierro/toxicidad , Nanopartículas/toxicidad , Catalasa , Compuestos Férricos/análisis , Hierro/análisis , Malondialdehído , Suelo
4.
Chemosphere ; 245: 125612, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31864948

RESUMEN

Humic substances are the dominant dissolved organic matter fraction in the aqueous phase of environmental media. They would inevitably react with chemicals released into the environment. The influence of dissolved humic acid (DHA) on the dissolution and dispersion of copper oxide nanoparticles (CuO NPs, 50 nm, 49.57 mg L-1) was therefore investigated in the present study. In addition to dispersing CuO NPs and reducing the size of the aggregates, the amount of released Cu from CuO NPs was found to increase over time with increasing concentrations of DHA, 96% of which was present as organic complexes after 72 h. At DHA concentrations exceeding 16.09 mg C L-1, the complexation coefficients of DHA with Cu and the adsorptivity of CuO NPs to DHA were both reduced due to increased homo-conjugation of DHA as promoted by negative charge-assisted H-bond. Although the adsorption capacity of DHA kept increasing up to 57.07 mg C L-1, the hydrodynamic diameter and ζ-potential were similar and the percentages of total released Cu continued to increase linearly to 4.92% at higher levels of DHA (30.13-57.07 mg C L-1). Thereupon, DHA promoted the dissolution of CuO NPs in a concentration-dependent fashion. The driving force was complexation of Cu by DHA, rather than the balancing between the exposed and the covered surface area of the CuO NPs due to DHA adsorption. Our findings facilitate understanding the underlying mechanisms on how DHA impacts the CuO NPs environmental behavior (or fate) as well as on their kinetics.


Asunto(s)
Cobre/química , Sustancias Húmicas , Nanopartículas del Metal/química , Adsorción , Difusión , Cinética , Solubilidad , Propiedades de Superficie
5.
Environ Pollut ; 231(Pt 1): 68-77, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28787706

RESUMEN

In order to investigate the effects of dissolved humic acid (DHA) and tourmaline on uptake of 2, 2', 4, 4', 5, 5'- hexabrominated diphenyl ether (BDE-153) by Lactuca sativa, different fractions of DHA, including DHA1 and DHA4, as well as different doses of tourmaline were introduced into BDE-153 contaminated solutions for plant growth. The levels of BDE-153 in L. sativa tissues were positively correlated with the Fe levels (R2 = 0.9264) in seedings of the treatments with different doses of tourmaline. However, when adding DHA1 and DHA4 into the system, the correlation coefficients (R2) decreased to 0.6976 and 0.5451 from 0.9264, respectively. In contrast with the Fe contents, the presence of DHAs didn't affect the R2 between the levels of BDE-153 and the lipid contents in plant tissues. Our results indicated that both DHA1 and DHA4 could severely alter the BDE-153 uptake by L. sativa through reducing the Fe uptake instead of the lipid contents. Additionally, DHA4 exhibited much stronger abilities to alter the BDE-153 accumulation than DHA1. Transmission electron microscopy (TEM) observations indicated that either DHA1 or tourmaline or co-treatment with DHA and tourmaline had no negative impact on L. sativa at the cellular level. The present study provides important information for the impacts of different fractions of DHA extracted from soil on the BDE-153 migration in plant systems. Moreover, we elucidated the importance of the iron in tourmaline for migration of the polybrominated diphenyl ethers (PBDEs) in plant systems.


Asunto(s)
Bifenilos Polibrominados/metabolismo , Silicatos/química , Adsorción , Éteres Difenilos Halogenados/análisis , Sustancias Húmicas/análisis , Bifenilos Polibrominados/química
6.
Huan Jing Ke Xue ; 38(1): 195-200, 2017 Jan 08.
Artículo en Zh | MEDLINE | ID: mdl-29965047

RESUMEN

A rapid recombinant human thyroid (hTR) gene yeast bioassay was used to evaluate the effect of dissolved humic acid on thyroid receptor antagonistic activity of ZnCl2.The concentration of bio-available zinc after its reaction with dissolved humic acids was measured by anodic stripping voltammetry (ASV).Furthermore,the reaction mechanism of humic acid and zinc was investigated by three-dimensional excitation-emission matrix fluorescence spectroscopy (3DEEM).The results revealed that ZnCl2 demonstrated strong thyroid receptor antagonistic activity,and the concentration inhibiting 20% of the maximum effect of ZnCl2 was 1.70×10-5 mol·L-1.The thyroid receptor antagonistic activity of ZnCl2 was reduced by 30%-50% after the reaction of dissolved humic acids.The results of ASV showed that the concentration of bio-available zinc was decreased after the reaction of dissolved humic acids,the result was similar to that of bioassay test.The thyroid receptor antagonistic activity of the mixed solution of humic acid and ZnCl2 was increased after UV radiation treatment,however it was still lower than the antagonistic activity induced by ZnCl2.The results of 3DEEM showed that ZnCl2 could reduce the fluorescence peak intensity of humic acid,which could intuitively characterize the interaction between humic acid and ZnCl2.The above results can provide basic data and theoretical support for zinc toxicity study in aquatic environment and the establishment of water quality criteria for znic.


Asunto(s)
Cloruros/efectos adversos , Sustancias Húmicas/análisis , Receptores de Hormona Tiroidea/antagonistas & inhibidores , Contaminantes Químicos del Agua/efectos adversos , Compuestos de Zinc/efectos adversos , Bioensayo , Humanos , Espectrometría de Fluorescencia , Calidad del Agua , Levaduras , Zinc
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda