Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biol Pharm Bull ; 44(9): 1303-1308, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34471058

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPARγ) is a master transcription factor in adipocyte differentiation, while distal-less homeobox 5 (Dlx5) is essential for initiating osteoblast differentiation by driving Runt-related transcription factor 2 expression. Considering that adipocytes and osteoblasts share common progenitors, there is a reciprocal correlation between bone and fat formation. However, the mechanism by which Dlx5 controls PPARγ remains unclear. We elucidated that Dlx5 physically binds to PPARγ during immunoprecipitation; in particular, the ligand-binding and DNA-binding domains of PPARγ were involved in the interaction. Transcriptional activity of PPARγ was significantly decreased by Dlx5 overexpression, whereas the opposite results were detected with Dlx5 knockdown. Rosiglitazone, a PPARγ agonist, further enhanced the PPARγ-induced transcriptional activity; however, Dlx5 overexpression effectively repressed the rosiglitazone-mediated increase in activity. Finally, DNA-binding affinity assay revealed that Dlx5 interrupts the interaction of PPARγ with the PPARγ response element promoter. In conclusion, our findings indicate that Dlx5 impedes PPARγ-induced activity, and it may be useful for managing diabetes drug-mediated obesity.


Asunto(s)
Proteínas de Homeodominio/metabolismo , PPAR gamma/metabolismo , Células 3T3-L1 , Adipocitos/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Ratones , PPAR gamma/agonistas , Regiones Promotoras Genéticas , Dominios Proteicos , Rosiglitazona/farmacología , Activación Transcripcional
2.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919218

RESUMEN

Metallothioneins (MTs) are intracellular cysteine-rich proteins, and their expressions are enhanced under stress conditions. MTs are recognized as having the ability to regulate redox balance in living organisms; however, their role in regulating osteoblast differentiation is still unclear. In this research, we found that the expression of MT3, one member of the MT protein family, was specifically upregulated in the differentiation process of C2C12 myoblasts treated with bone morphogenetic protein 4 (BMP4). Transfection with MT3-overexpressing plasmids in C2C12 cells enhanced their differentiation to osteoblasts, together with upregulating the protein expression of bone specific transcription factors runt-related gene 2 (Runx2), Osterix, and distal-less homeobox 5 (Dlx5). Additionally, MT3 knockdown performed the opposite. Further studies revealed that overexpression of MT3 decreased reactive oxygen species (ROS) production in C2C12 cells treated with BMP4, and MT3 silencing enhanced ROS production. Treating C2C12 cells with antioxidant N-acetylcysteine also promoted osteoblast differentiation, and upregulated Runx2/Osterix/Dlx5, while ROS generator antimycin A treatment performed the opposite. Finally, antimycin A treatment inhibited osteoblast differentiation and Runx2/Osterix/Dlx5 expression in MT3-overexpressing C2C12 cells. These findings identify the role of MT3 in osteoblast differentiation and indicate that MT3 may have interesting potential in the field of osteogenesis research.


Asunto(s)
Diferenciación Celular , Regulación de la Expresión Génica , Mioblastos/citología , Proteínas del Tejido Nervioso/metabolismo , Osteoblastos/citología , Osteogénesis , Estrés Oxidativo , Animales , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Células Cultivadas , Metalotioneína 3 , Ratones , Mioblastos/metabolismo , Proteínas del Tejido Nervioso/genética , Osteoblastos/metabolismo
3.
Exp Cell Res ; 374(1): 221-230, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30503866

RESUMEN

Understanding the mechanism of osteo-/dentinogenic differentiation is beneficial for jaw bone and dental tissue regeneration. DLX5 is highly expressed in dental tissue-derived mesenchymal stem cells (MSCs) and is upregulated by lysine-specific demethylase 4B (KDM4B), enabling it to regulate osteo-/dentinogenic differentiation, while the function of DLX5 in osteo-/dentinogenesis has not been thoroughly elucidated to date. Therefore, we investigated DLX5 function using stem cells from apical papilla (SCAPs). SCAPs were obtained from the human wisdom tooth. Alkaline phosphatase (ALP) assay, Alizarin red staining (ARS), quantitative analysis of calcium, osteo-/dentinogenesis-related gene expression and in vivo transplantation were used to determine the osteo-/dentinogenic differentiation potential. Luciferase and ChIP assays were used to investigate the physical relationship between DLX5 and KDM4B. DLX5 and KDM4B were upregulated during osteogenic induction and were induced by BMP4 in SCAPs. Next, we found that DLX5 enhanced ALP activity, mineralization in vitro, and the expression of dentin sialophosphoprotein (DSPP), dentin matrix acidic phosphoprotein 1 (DMP1), osteopontin (OPN), and the key transcription factor osterix (OSX). Moreover, transplant experiments showed that DLX5 promoted osteo-/dentinogenesis in vivo. Interestingly, DLX5 enhanced KDM4B transcription by directly binding with its promoter. In addition, KDM4B upregulated DLX5 in SCAPs. These results indicate that DLX5 and KDM4B are positive effectors of BMP signaling and regulate each other via a positive feedback mechanism. DLX5 enhanced osteo-/dentinogenic differentiation via upregulated KDM4B in SCAPs, suggesting that activation of the DLX5/KDM4B signaling pathway might serve as an intrinsic mechanism that promotes tissue regeneration mediated by dental-derived MSCs.


Asunto(s)
Diferenciación Celular , Papila Dental/citología , Dentinogénesis , Retroalimentación Fisiológica , Proteínas de Homeodominio/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Osteogénesis , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Regulación hacia Abajo/genética , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Ratones Desnudos , Regiones Promotoras Genéticas/genética , Unión Proteica , Transducción de Señal , Proteína Smad4/metabolismo , Células Madre/citología , Transcripción Genética
4.
Int J Oncol ; 63(6)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37921060

RESUMEN

The transformation of myelodysplastic syndrome (MDS) into acute myeloid leukemia (AML) poses a significant clinical challenge. The trimethylation of H3 on lysine 27 (H3K27me3) methylase and de­methylase pathway is involved in the regulation of MDS progression. The present study investigated the functional mechanisms of the MEK/ERK and PI3K/AKT pathways in the MDS­to­AML transformation. MDS­AML mouse and SKM­1 cell models were first established and this was followed by treatment with the MEK/ERK pathway inhibitor, U0126, the PI3K/AKT pathway inhibitor, Ly294002, or their combination. H3K27me3 methylase, enhancer of zeste homolog (EZH)1, EZH2, demethylase Jumonji domain­containing protein­3 (JMJD3) and ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) and H3K27me3 protein levels were determined using western blot analysis. Cell viability, cycle distribution and proliferation were assessed using CCK­8, flow cytometry, EdU and colony formation assays. The ERK and AKT phosphorylation levels in clinical samples and established models were determined, and SKM­1 cell behaviors were assessed. The levels of H3K27me3 methylases and de­methylases and distal­less homeobox 5 (DLX5) were measured. The results revealed that the ERK and AKT phosphorylation levels were elevated in patients with MDS and MDS­AML, and in mouse models. Treatment with U0126, a MEK/ERK pathway inhibitor, and Ly294002, a PI3K/AKT pathway inhibitor, effectively suppressed ERK and AKT phosphorylation in mice with MDS­AML. It was observed that mice with MDS treated with U0126/Ly294002 exhibited reduced transformation to AML, delayed disease transformation and increased survival rates. Treatment of the SKM­1 cells with U0126/Ly294002 led to a decrease in cell viability and proliferation, and to an increase in cell cycle arrest by suppressing ERK/PI3K phosphorylation. Moreover, treatment with U0126/Ly294002 downregulated EZH2/EZH1 expression, and upregulated JMJD3/UTX expression. The effects of U0126/Ly294002 were nullified when EZH2/EZH1 was overexpressed or when JMJD3/UTX was inhibited in the SKM­1 cells. Treatment with U0126/Ly294002 also resulted in a decreased H3K27me3 protein level and H3K27me3 level in the DLX5 promoter region, leading to an increased DLX5 expression. Overall, the findings of the present study suggest that U0126/Ly294002 participates in MDS­AML transformation by modulating the levels of H3K27me3 methylases and de­methylases, and regulating DLX5 transcription and expression.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Ratones , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Histonas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Síndromes Mielodisplásicos/tratamiento farmacológico , Leucemia Mieloide Aguda/tratamiento farmacológico
6.
Biofactors ; 46(5): 788-802, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32856377

RESUMEN

Osteoarthritis (OA) represents a progressive degenerative disorder that predominantly affects the synovial membranes of joints. Recent studies have highlighted the significant role played by microRNAs (miRNAs) in OA development. The current study aimed to elucidate the underlying modulatory role of miR-27b-3p in the development of OA. The expression of miR-27b-3p in the OA patients and rat models post anterior cruciate ligament transection operation was measured using reverse transcription quantitative polymerase chain reaction, through which overexpressed miR-27b-3p was found in both of the samples. To further explore the miR-27b-3p functions in OA, western blot analysis, enzyme-linked immunosorbent assay, and ß-galactosidase activity assay were conducted with the results showing that knockdown of miR-27b-3p promoted expression of the osteogenic differentiation markers while inhibiting expression of the adipogenic differentiation markers, inflammatory factors, and cellular senescence of bone marrow mesenchymal stem cells (BMSCs). After that, the interactions between miR-27b-3p, lysine Demethylase 4B (KDM4B), and Distal-Less Homeobox 5 (DLX5) identified using dual-luciferase reporter gene assay and ChIP assay revealed that miR-27b-3p inhibited KDM4B and further reduced expression of DLX5. Finally, the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were assessed in rat models, and increased PWT and PWL were detected after miR-27b-3p silencing. In conclusion, suppression of miR-27b-3p could enhance KDM4B and DLX5 to alleviate OA pain, shedding light on a new potential therapeutic target for OA.


Asunto(s)
Proteínas de Homeodominio/genética , Histona Demetilasas con Dominio de Jumonji/genética , Osteoartritis/tratamiento farmacológico , Dolor/tratamiento farmacológico , Factores de Transcripción/genética , Adipogénesis/efectos de los fármacos , Animales , Ligamento Cruzado Anterior/crecimiento & desarrollo , Ligamento Cruzado Anterior/metabolismo , Ligamento Cruzado Anterior/patología , Lesiones del Ligamento Cruzado Anterior/tratamiento farmacológico , Lesiones del Ligamento Cruzado Anterior/genética , Lesiones del Ligamento Cruzado Anterior/patología , Diferenciación Celular/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Masculino , Células Madre Mesenquimatosas , MicroARNs/genética , Persona de Mediana Edad , Osteoartritis/genética , Osteoartritis/patología , Osteogénesis/efectos de los fármacos , Dolor/genética , Dolor/patología , Ratas
8.
Gene ; 534(2): 265-71, 2014 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-24211389

RESUMEN

Split-hand/split-foot malformation (SHFM), representing variable degree of median clefts of hands and feet, is a genetically heterogeneous group of limb malformations with seven loci mapped on different human chromosomes. However, only 3 genes (TP63, WNT10B, DLX5) for the seven loci have been identified. The study, presented here, described three consanguineous Pakistani families segregating SHFM in autosomal recessive manner. Linkage in the families was searched by genotyping microsatellite markers and mutation screening of candidate gene was performed by Sanger DNA sequencing. Clinical features of affected members of these families exhibited SHFM phenotype with involvement of hands and feet. Genotyping using microsatellite markers mapped the families to WNT10B gene at SHFM6 on chromosome 12q13.11-q13. Subsequently, sequence analysis of WNT10B gene revealed a novel 4-bp deletion mutation (c.1165_1168delAAGT) in one family and 7-bp duplication (c.300_306dupAGGGCGG) in two other families. Structure-based analysis showed a significant conformational shift in the active binding site of mutated WNT10B (p.Lys388Glufs*36), influencing binding with Fzd8. The mutations identified in the WNT10B gene extend the body of evidence implicating it in the pathogenesis of SHFM.


Asunto(s)
Genes Recesivos , Deformidades Congénitas de la Mano/genética , Deformidades Congénitas de las Extremidades/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Wnt/genética , Sitios de Unión , Consanguinidad , Femenino , Ligamiento Genético , Genotipo , Homocigoto , Humanos , Masculino , Fenotipo , Análisis de Secuencia de ADN/métodos , Eliminación de Secuencia
9.
Adipocyte ; 2(1): 50-54, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23700553

RESUMEN

In bone marrow, the differentiation of osteoblasts and adipocytes is reciprocally regulated. This inverse regulation occurs mainly through complex signaling crosstalk between transcriptional factors such as peroxisome proliferator-activated receptor-γ (PPARγ) and runt-related transcription factor 2 (Runx2). This commentary addresses the role of myeloid elf-1 like factor (MEF) and distal-less homeobox 5 (Dlx5) in the lineage commitment of bone marrow mesenchymal stem cells into adipocytes and osteoblasts, respectively. MEF suppresses osteoblastogenesis by preventing Runx2 from binding to the promoters of target genes and enhancing adipogenesis via transactivation of PPARγ expression. Conversely, Dlx5 enhances osteoblastogenesis through upregulation of the expression of Runx2 and osteoblast marker genes while suppressing adipogenesis through the downregulation of PPARγ expression by sequestering the cAMP response element binding protein and CCAAT/enhancer-binding protein α. Studies designed to examine the effects of physiological and pathologic signals on the expression of MEF and Dlx5 will provide further insight to the function of these transcription factors in vivo.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda