Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38762789

RESUMEN

Identifying drug-target interactions (DTIs) holds significant importance in drug discovery and development, playing a crucial role in various areas such as virtual screening, drug repurposing and identification of potential drug side effects. However, existing methods commonly exploit only a single type of feature from drugs and targets, suffering from miscellaneous challenges such as high sparsity and cold-start problems. We propose a novel framework called MSI-DTI (Multi-Source Information-based Drug-Target Interaction Prediction) to enhance prediction performance, which obtains feature representations from different views by integrating biometric features and knowledge graph representations from multi-source information. Our approach involves constructing a Drug-Target Knowledge Graph (DTKG), obtaining multiple feature representations from diverse information sources for SMILES sequences and amino acid sequences, incorporating network features from DTKG and performing an effective multi-source information fusion. Subsequently, we employ a multi-head self-attention mechanism coupled with residual connections to capture higher-order interaction information between sparse features while preserving lower-order information. Experimental results on DTKG and two benchmark datasets demonstrate that our MSI-DTI outperforms several state-of-the-art DTIs prediction methods, yielding more accurate and robust predictions. The source codes and datasets are publicly accessible at https://github.com/KEAML-JLU/MSI-DTI.


Asunto(s)
Descubrimiento de Drogas , Biología Computacional/métodos , Algoritmos , Humanos
2.
Proc Natl Acad Sci U S A ; 120(24): e2220778120, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37289807

RESUMEN

Sequence-based prediction of drug-target interactions has the potential to accelerate drug discovery by complementing experimental screens. Such computational prediction needs to be generalizable and scalable while remaining sensitive to subtle variations in the inputs. However, current computational techniques fail to simultaneously meet these goals, often sacrificing performance of one to achieve the others. We develop a deep learning model, ConPLex, successfully leveraging the advances in pretrained protein language models ("PLex") and employing a protein-anchored contrastive coembedding ("Con") to outperform state-of-the-art approaches. ConPLex achieves high accuracy, broad adaptivity to unseen data, and specificity against decoy compounds. It makes predictions of binding based on the distance between learned representations, enabling predictions at the scale of massive compound libraries and the human proteome. Experimental testing of 19 kinase-drug interaction predictions validated 12 interactions, including four with subnanomolar affinity, plus a strongly binding EPHB1 inhibitor (KD = 1.3 nM). Furthermore, ConPLex embeddings are interpretable, which enables us to visualize the drug-target embedding space and use embeddings to characterize the function of human cell-surface proteins. We anticipate that ConPLex will facilitate efficient drug discovery by making highly sensitive in silico drug screening feasible at the genome scale. ConPLex is available open source at https://ConPLex.csail.mit.edu.


Asunto(s)
Descubrimiento de Drogas , Proteínas , Humanos , Proteínas/química , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos , Lenguaje
3.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36892155

RESUMEN

Drug-target interaction (DTI) prediction can identify novel ligands for specific protein targets, and facilitate the rapid screening of effective new drug candidates to speed up the drug discovery process. However, the current methods are not sensitive enough to complex topological structures, and complicated relations between multiple node types are not fully captured yet. To address the above challenges, we construct a metapath-based heterogeneous bioinformatics network, and then propose a DTI prediction method with metapath-based hierarchical transformer and attention network for drug-target interaction prediction (MHTAN-DTI), applying metapath instance-level transformer, single-semantic attention and multi-semantic attention to generate low-dimensional vector representations of drugs and proteins. Metapath instance-level transformer performs internal aggregation on the metapath instances, and models global context information to capture long-range dependencies. Single-semantic attention learns the semantics of a certain metapath type, introduces the central node weight and assigns different weights to different metapath instances to obtain the semantic-specific node embedding. Multi-semantic attention captures the importance of different metapath types and performs weighted fusion to attain the final node embedding. The hierarchical transformer and attention network weakens the influence of noise data on the DTI prediction results, and enhances the robustness and generalization ability of MHTAN-DTI. Compared with the state-of-the-art DTI prediction methods, MHTAN-DTI achieves significant performance improvements. In addition, we also conduct sufficient ablation studies and visualize the experimental results. All the results demonstrate that MHTAN-DTI can offer a powerful and interpretable tool for integrating heterogeneous information to predict DTIs and provide new insights into drug discovery.


Asunto(s)
Desarrollo de Medicamentos , Descubrimiento de Drogas , Simulación por Computador , Descubrimiento de Drogas/métodos , Proteínas/química , Aprendizaje
4.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36592060

RESUMEN

Drug-target interaction (DTI) prediction is an essential step in drug repositioning. A few graph neural network (GNN)-based methods have been proposed for DTI prediction using heterogeneous biological data. However, existing GNN-based methods only aggregate information from directly connected nodes restricted in a drug-related or a target-related network and are incapable of capturing high-order dependencies in the biological heterogeneous graph. In this paper, we propose a metapath-aggregated heterogeneous graph neural network (MHGNN) to capture complex structures and rich semantics in the biological heterogeneous graph for DTI prediction. Specifically, MHGNN enhances heterogeneous graph structure learning and high-order semantics learning by modeling high-order relations via metapaths. Additionally, MHGNN enriches high-order correlations between drug-target pairs (DTPs) by constructing a DTP correlation graph with DTPs as nodes. We conduct extensive experiments on three biological heterogeneous datasets. MHGNN favorably surpasses 17 state-of-the-art methods over 6 evaluation metrics, which verifies its efficacy for DTI prediction. The code is available at https://github.com/Zora-LM/MHGNN-DTI.


Asunto(s)
Benchmarking , Reposicionamiento de Medicamentos , Sistemas de Liberación de Medicamentos , Aprendizaje , Redes Neurales de la Computación
5.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36907663

RESUMEN

The discovery of drug-target interactions (DTIs) is a pivotal process in pharmaceutical development. Computational approaches are a promising and efficient alternative to tedious and costly wet-lab experiments for predicting novel DTIs from numerous candidates. Recently, with the availability of abundant heterogeneous biological information from diverse data sources, computational methods have been able to leverage multiple drug and target similarities to boost the performance of DTI prediction. Similarity integration is an effective and flexible strategy to extract crucial information across complementary similarity views, providing a compressed input for any similarity-based DTI prediction model. However, existing similarity integration methods filter and fuse similarities from a global perspective, neglecting the utility of similarity views for each drug and target. In this study, we propose a Fine-Grained Selective similarity integration approach, called FGS, which employs a local interaction consistency-based weight matrix to capture and exploit the importance of similarities at a finer granularity in both similarity selection and combination steps. We evaluate FGS on five DTI prediction datasets under various prediction settings. Experimental results show that our method not only outperforms similarity integration competitors with comparable computational costs, but also achieves better prediction performance than state-of-the-art DTI prediction approaches by collaborating with conventional base models. Furthermore, case studies on the analysis of similarity weights and on the verification of novel predictions confirm the practical ability of FGS.


Asunto(s)
Desarrollo de Medicamentos , Descubrimiento de Drogas , Descubrimiento de Drogas/métodos , Interacciones Farmacológicas
6.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36892153

RESUMEN

Accurate and effective drug-target interaction (DTI) prediction can greatly shorten the drug development lifecycle and reduce the cost of drug development. In the deep-learning-based paradigm for predicting DTI, robust drug and protein feature representations and their interaction features play a key role in improving the accuracy of DTI prediction. Additionally, the class imbalance problem and the overfitting problem in the drug-target dataset can also affect the prediction accuracy, and reducing the consumption of computational resources and speeding up the training process are also critical considerations. In this paper, we propose shared-weight-based MultiheadCrossAttention, a precise and concise attention mechanism that can establish the association between target and drug, making our models more accurate and faster. Then, we use the cross-attention mechanism to construct two models: MCANet and MCANet-B. In MCANet, the cross-attention mechanism is used to extract the interaction features between drugs and proteins for improving the feature representation ability of drugs and proteins, and the PolyLoss loss function is applied to alleviate the overfitting problem and the class imbalance problem in the drug-target dataset. In MCANet-B, the robustness of the model is improved by combining multiple MCANet models and prediction accuracy further increases. We train and evaluate our proposed methods on six public drug-target datasets and achieve state-of-the-art results. In comparison with other baselines, MCANet saves considerable computational resources while maintaining accuracy in the leading position; however, MCANet-B greatly improves prediction accuracy by combining multiple models while maintaining a balance between computational resource consumption and prediction accuracy.


Asunto(s)
Desarrollo de Medicamentos , Descubrimiento de Drogas , Descubrimiento de Drogas/métodos , Proteínas/metabolismo , Sistemas de Liberación de Medicamentos , Dominios Proteicos
7.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38145949

RESUMEN

Prediction of drug-target interactions (DTIs) is essential in medicine field, since it benefits the identification of molecular structures potentially interacting with drugs and facilitates the discovery and reposition of drugs. Recently, much attention has been attracted to network representation learning to learn rich information from heterogeneous data. Although network representation learning algorithms have achieved success in predicting DTI, several manually designed meta-graphs limit the capability of extracting complex semantic information. To address the problem, we introduce an adaptive meta-graph-based method, termed AMGDTI, for DTI prediction. In the proposed AMGDTI, the semantic information is automatically aggregated from a heterogeneous network by training an adaptive meta-graph, thereby achieving efficient information integration without requiring domain knowledge. The effectiveness of the proposed AMGDTI is verified on two benchmark datasets. Experimental results demonstrate that the AMGDTI method overall outperforms eight state-of-the-art methods in predicting DTI and achieves the accurate identification of novel DTIs. It is also verified that the adaptive meta-graph exhibits flexibility and effectively captures complex fine-grained semantic information, enabling the learning of intricate heterogeneous network topology and the inference of potential drug-target relationship.


Asunto(s)
Algoritmos , Medicina , Benchmarking , Sistemas de Liberación de Medicamentos , Semántica
8.
Brief Bioinform ; 24(3)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37096593

RESUMEN

While research into drug-target interaction (DTI) prediction is fairly mature, generalizability and interpretability are not always addressed in the existing works in this field. In this paper, we propose a deep learning (DL)-based framework, called BindingSite-AugmentedDTA, which improves drug-target affinity (DTA) predictions by reducing the search space of potential-binding sites of the protein, thus making the binding affinity prediction more efficient and accurate. Our BindingSite-AugmentedDTA is highly generalizable as it can be integrated with any DL-based regression model, while it significantly improves their prediction performance. Also, unlike many existing models, our model is highly interpretable due to its architecture and self-attention mechanism, which can provide a deeper understanding of its underlying prediction mechanism by mapping attention weights back to protein-binding sites. The computational results confirm that our framework can enhance the prediction performance of seven state-of-the-art DTA prediction algorithms in terms of four widely used evaluation metrics, including concordance index, mean squared error, modified squared correlation coefficient ($r^2_m$) and the area under the precision curve. We also contribute to three benchmark drug-traget interaction datasets by including additional information on 3D structure of all proteins contained in those datasets, which include the two most commonly used datasets, namely Kiba and Davis, as well as the data from IDG-DREAM drug-kinase binding prediction challenge. Furthermore, we experimentally validate the practical potential of our proposed framework through in-lab experiments. The relatively high agreement between computationally predicted and experimentally observed binding interactions supports the potential of our framework as the next-generation pipeline for prediction models in drug repurposing.


Asunto(s)
Algoritmos , Reposicionamiento de Medicamentos , Desarrollo de Medicamentos , Proteínas/química , Sitios de Unión
9.
Methods ; 226: 21-27, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608849

RESUMEN

Knowledge graph intent graph attention mechanism Predicting drug-target interactions (DTIs) plays a crucial role in drug discovery and drug development. Considering the high cost and risk of biological experiments, developing computational approaches to explore the interactions between drugs and targets can effectively reduce the time and cost of drug development. Recently, many methods have made significant progress in predicting DTIs. However, existing approaches still suffer from the high sparsity of DTI datasets and the cold start problem. In this paper, we develop a new model to predict drug-target interactions via a knowledge graph and intent graph named DTKGIN. Our method can effectively capture biological environment information for targets and drugs by mining their associated relations in the knowledge graph and considering drug-target interactions at a fine-grained level in the intent graph. DTKGIN learns the representation of drugs and targets from the knowledge graph and the intent graph. Then the probabilities of interactions between drugs and targets are obtained through the inner product of the representation of drugs and targets. Experimental results show that our proposed method outperforms other state-of-the-art methods in 10-fold cross-validation, especially in cold-start experimental settings. Furthermore, the case studies demonstrate the effectiveness of DTKGIN in predicting potential drug-target interactions. The code is available on GitHub: https://github.com/Royluoyi123/DTKGIN.


Asunto(s)
Descubrimiento de Drogas , Descubrimiento de Drogas/métodos , Humanos , Algoritmos , Biología Computacional/métodos , Desarrollo de Medicamentos/métodos
10.
Methods ; 223: 136-145, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360082

RESUMEN

MOTIVATION: Drug-target interaction prediction is an important area of research to predict whether there is an interaction between a drug molecule and its target protein. It plays a critical role in drug discovery and development by facilitating the identification of potential drug candidates and expediting the overall process. Given the time-consuming, expensive, and high-risk nature of traditional drug discovery methods, the prediction of drug-target interactions has become an indispensable tool. Using machine learning and deep learning to tackle this class of problems has become a mainstream approach, and graph-based models have recently received much attention in this field. However, many current graph-based Drug-Target Interaction (DTI) prediction methods rely on manually defined rules to construct the Drug-Protein Pair (DPP) network during the DPP representation learning process. However, these methods fail to capture the true underlying relationships between drug molecules and target proteins. RESULTS: We propose GSL-DTI, an automatic graph structure learning model used for predicting drug-target interactions (DTIs). Initially, we integrate large-scale heterogeneous networks using a graph convolution network based on meta-paths, effectively learning the representations of drugs and target proteins. Subsequently, we construct drug-protein pairs based on these representations. In contrast to previous studies that construct DPP networks based on manual rules, our method introduces an automatic graph structure learning approach. This approach utilizes a filter gate on the affinity scores of DPPs and relies on the classification loss of downstream tasks to guide the learning of the underlying DPP network structure. Based on the learned DPP network, we transform the prediction of drug-target interactions into a node classification problem. The comprehensive experiments conducted on three public datasets have shown the superiority of GSL-DTI in the tasks of DTI prediction. Additionally, GSL-DTI provides a fresh perspective for advancing research in graph structure learning for DTI prediction.


Asunto(s)
Sistemas de Liberación de Medicamentos , Descubrimiento de Drogas , Aprendizaje Automático
11.
Methods ; 231: 1-7, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218169

RESUMEN

Accurately predicting drug-target affinity is crucial in expediting the discovery and development of new drugs, which is a complex and risky process. Identifying these interactions not only aids in screening potential compounds but also guides further optimization. To address this, we propose a multi-perspective feature fusion model, MFF-DTA, which integrates chemical structure, biological sequence, and other data to comprehensively capture drug-target affinity features. The MFF-DTA model incorporates multiple feature learning components, each of which is capable of extracting drug molecular features and protein target information, respectively. These components are able to obtain key information from both global and local perspectives. Then, these features from different perspectives are efficiently combined using specific splicing strategies to create a comprehensive representation. Finally, the model uses the fused features to predict drug-target affinity. Comparative experiments show that MFF-DTA performs optimally on the Davis and KIBA data sets. Ablation experiments demonstrate that removing specific components results in the loss of unique information, thus confirming the effectiveness of the MFF-DTA design. Improvements in DTA prediction methods will decrease costs and time in drug development, enhancing industry efficiency and ultimately benefiting patients.

12.
BMC Biol ; 22(1): 216, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334132

RESUMEN

BACKGROUND: Drug-target interaction (DTI) prediction plays a pivotal role in drug discovery and drug repositioning, enabling the identification of potential drug candidates. However, most previous approaches often do not fully utilize the complementary relationships among multiple biological networks, which limits their ability to learn more consistent representations. Additionally, the selection strategy of negative samples significantly affects the performance of contrastive learning methods. RESULTS: In this study, we propose CCL-ASPS, a novel deep learning model that incorporates Collaborative Contrastive Learning (CCL) and Adaptive Self-Paced Sampling strategy (ASPS) for drug-target interaction prediction. CCL-ASPS leverages multiple networks to learn the fused embeddings of drugs and targets, ensuring their consistent representations from individual networks. Furthermore, ASPS dynamically selects more informative negative sample pairs for contrastive learning. Experiment results on the established dataset demonstrate that CCL-ASPS achieves significant improvements compared to current state-of-the-art methods. Moreover, ablation experiments confirm the contributions of the proposed CCL and ASPS strategies. CONCLUSIONS: By integrating Collaborative Contrastive Learning and Adaptive Self-Paced Sampling, the proposed CCL-ASPS effectively addresses the limitations of previous methods. This study demonstrates that CCL-ASPS achieves notable improvements in DTI predictive performance compared to current state-of-the-art approaches. The case study and cold start experiments further illustrate the capability of CCL-ASPS to effectively predict previously unknown DTI, potentially facilitating the identification of new drug-target interactions.


Asunto(s)
Aprendizaje Profundo , Descubrimiento de Drogas , Descubrimiento de Drogas/métodos , Humanos , Reposicionamiento de Medicamentos/métodos
13.
BMC Biol ; 22(1): 156, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39020316

RESUMEN

BACKGROUND: Identification of potential drug-target interactions (DTIs) with high accuracy is a key step in drug discovery and repositioning, especially concerning specific drug targets. Traditional experimental methods for identifying the DTIs are arduous, time-intensive, and financially burdensome. In addition, robust computational methods have been developed for predicting the DTIs and are widely applied in drug discovery research. However, advancing more precise algorithms for predicting DTIs is essential to meet the stringent standards demanded by drug discovery. RESULTS: We proposed a novel method called GSRF-DTI, which integrates networks with a deep learning algorithm to identify DTIs. Firstly, GSRF-DTI learned the embedding representation of drugs and targets by integrating multiple drug association information and target association information, respectively. Then, GSRF-DTI considered the influence of drug-target pair (DTP) association on DTI prediction to construct a drug-target pair network (DTP-NET). Next, we utilized GraphSAGE on DTP-NET to learn the potential features of the network and applied random forest (RF) to predict the DTIs. Furthermore, we conducted ablation experiments to validate the necessity of integrating different types of network features for identifying DTIs. It is worth noting that GSRF-DTI proposed three novel DTIs. CONCLUSIONS: GSRF-DTI not only considered the influence of the interaction relationship between drug and target but also considered the impact of DTP association relationship on DTI prediction. We initially use GraphSAGE to aggregate the neighbor information of nodes for better identification. Experimental analysis on Luo's dataset and the newly constructed dataset revealed that the GSRF-DTI framework outperformed several state-of-the-art methods significantly.


Asunto(s)
Descubrimiento de Drogas , Descubrimiento de Drogas/métodos , Aprendizaje Profundo , Biología Computacional/métodos , Algoritmos , Preparaciones Farmacéuticas
14.
BMC Bioinformatics ; 25(1): 141, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566002

RESUMEN

Accurate and efficient prediction of drug-target interaction (DTI) is critical to advance drug development and reduce the cost of drug discovery. Recently, the employment of deep learning methods has enhanced DTI prediction precision and efficacy, but it still encounters several challenges. The first challenge lies in the efficient learning of drug and protein feature representations alongside their interaction features to enhance DTI prediction. Another important challenge is to improve the generalization capability of the DTI model within real-world scenarios. To address these challenges, we propose CAT-DTI, a model based on cross-attention and Transformer, possessing domain adaptation capability. CAT-DTI effectively captures the drug-target interactions while adapting to out-of-distribution data. Specifically, we use a convolution neural network combined with a Transformer to encode the distance relationship between amino acids within protein sequences and employ a cross-attention module to capture the drug-target interaction features. Generalization to new DTI prediction scenarios is achieved by leveraging a conditional domain adversarial network, aligning DTI representations under diverse distributions. Experimental results within in-domain and cross-domain scenarios demonstrate that CAT-DTI model overall improves DTI prediction performance compared with previous methods.


Asunto(s)
Desarrollo de Medicamentos , Descubrimiento de Drogas , Interacciones Farmacológicas , Secuencia de Aminoácidos , Aminoácidos
15.
BMC Bioinformatics ; 25(1): 59, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321386

RESUMEN

The prediction of interactions between novel drugs and biological targets is a vital step in the early stage of the drug discovery pipeline. Many deep learning approaches have been proposed over the last decade, with a substantial fraction of them sharing the same underlying two-branch architecture. Their distinction is limited to the use of different types of feature representations and branches (multi-layer perceptrons, convolutional neural networks, graph neural networks and transformers). In contrast, the strategy used to combine the outputs (embeddings) of the branches has remained mostly the same. The same general architecture has also been used extensively in the area of recommender systems, where the choice of an aggregation strategy is still an open question. In this work, we investigate the effectiveness of three different embedding aggregation strategies in the area of drug-target interaction (DTI) prediction. We formally define these strategies and prove their universal approximator capabilities. We then present experiments that compare the different strategies on benchmark datasets from the area of DTI prediction, showcasing conditions under which specific strategies could be the obvious choice.


Asunto(s)
Benchmarking , Descubrimiento de Drogas , Suministros de Energía Eléctrica , Redes Neurales de la Computación
16.
BMC Bioinformatics ; 25(1): 48, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291364

RESUMEN

BACKGROUND: The Drug-Target Interaction (DTI) prediction uses a drug molecule and a protein sequence as inputs to predict the binding affinity value. In recent years, deep learning-based models have gotten more attention. These methods have two modules: the feature extraction module and the task prediction module. In most deep learning-based approaches, a simple task prediction loss (i.e., categorical cross entropy for the classification task and mean squared error for the regression task) is used to learn the model. In machine learning, contrastive-based loss functions are developed to learn more discriminative feature space. In a deep learning-based model, extracting more discriminative feature space leads to performance improvement for the task prediction module. RESULTS: In this paper, we have used multimodal knowledge as input and proposed an attention-based fusion technique to combine this knowledge. Also, we investigate how utilizing contrastive loss function along the task prediction loss could help the approach to learn a more powerful model. Four contrastive loss functions are considered: (1) max-margin contrastive loss function, (2) triplet loss function, (3) Multi-class N-pair Loss Objective, and (4) NT-Xent loss function. The proposed model is evaluated using four well-known datasets: Wang et al. dataset, Luo's dataset, Davis, and KIBA datasets. CONCLUSIONS: Accordingly, after reviewing the state-of-the-art methods, we developed a multimodal feature extraction network by combining protein sequences and drug molecules, along with protein-protein interaction networks and drug-drug interaction networks. The results show it performs significantly better than the comparable state-of-the-art approaches.


Asunto(s)
Conocimiento , Aprendizaje Automático , Secuencia de Aminoácidos , Interacciones Farmacológicas , Entropía
17.
BMC Bioinformatics ; 25(1): 156, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38641811

RESUMEN

BACKGROUND: Accurately identifying drug-target interaction (DTI), affinity (DTA), and binding sites (DTS) is crucial for drug screening, repositioning, and design, as well as for understanding the functions of target. Although there are a few online platforms based on deep learning for drug-target interaction, affinity, and binding sites identification, there is currently no integrated online platforms for all three aspects. RESULTS: Our solution, the novel integrated online platform Drug-Online, has been developed to facilitate drug screening, target identification, and understanding the functions of target in a progressive manner of "interaction-affinity-binding sites". Drug-Online platform consists of three parts: the first part uses the drug-target interaction identification method MGraphDTA, based on graph neural networks (GNN) and convolutional neural networks (CNN), to identify whether there is a drug-target interaction. If an interaction is identified, the second part employs the drug-target affinity identification method MMDTA, also based on GNN and CNN, to calculate the strength of drug-target interaction, i.e., affinity. Finally, the third part identifies drug-target binding sites, i.e., pockets. The method pt-lm-gnn used in this part is also based on GNN. CONCLUSIONS: Drug-Online is a reliable online platform that integrates drug-target interaction, affinity, and binding sites identification. It is freely available via the Internet at http://39.106.7.26:8000/Drug-Online/ .


Asunto(s)
Aprendizaje Profundo , Interacciones Farmacológicas , Sitios de Unión , Sistemas de Liberación de Medicamentos , Evaluación Preclínica de Medicamentos
18.
BMC Bioinformatics ; 25(1): 275, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179993

RESUMEN

BACKGROUND: The rise of network pharmacology has led to the widespread use of network-based computational methods in predicting drug target interaction (DTI). However, existing DTI prediction models typically rely on a limited amount of data to extract drug and target features, potentially affecting the comprehensiveness and robustness of features. In addition, although multiple networks are used for DTI prediction, the integration of heterogeneous information often involves simplistic aggregation and attention mechanisms, which may impose certain limitations. RESULTS: MSH-DTI, a deep learning model for predicting drug-target interactions, is proposed in this paper. The model uses self-supervised learning methods to obtain drug and target structure features. A Heterogeneous Interaction-enhanced Feature Fusion Module is designed for multi-graph construction, and the graph convolutional networks are used to extract node features. With the help of an attention mechanism, the model focuses on the important parts of different features for prediction. Experimental results show that the AUROC and AUPR of MSH-DTI are 0.9620 and 0.9605 respectively, outperforming other models on the DTINet dataset. CONCLUSION: The proposed MSH-DTI is a helpful tool to discover drug-target interactions, which is also validated through case studies in predicting new DTIs.


Asunto(s)
Aprendizaje Profundo , Aprendizaje Automático Supervisado , Biología Computacional/métodos , Farmacología en Red/métodos
19.
J Cell Mol Med ; 28(7): e18224, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38509739

RESUMEN

Drug-target interaction (DTI) prediction is essential for new drug design and development. Constructing heterogeneous network based on diverse information about drugs, proteins and diseases provides new opportunities for DTI prediction. However, the inherent complexity, high dimensionality and noise of such a network prevent us from taking full advantage of these network characteristics. This article proposes a novel method, NGCN, to predict drug-target interactions from an integrated heterogeneous network, from which to extract relevant biological properties and association information while maintaining the topology information. It focuses on learning the topology representation of drugs and targets to improve the performance of DTI prediction. Unlike traditional methods, it focuses on learning the low-dimensional topology representation of drugs and targets via graph-based convolutional neural network. NGCN achieves substantial performance improvements over other state-of-the-art methods, such as a nearly 1.0% increase in AUPR value. Moreover, we verify the robustness of NGCN through benchmark tests, and the experimental results demonstrate it is an extensible framework capable of combining heterogeneous information for DTI prediction.


Asunto(s)
Diseño de Fármacos , Redes Neurales de la Computación
20.
Brief Bioinform ; 23(6)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36274236

RESUMEN

MOTIVATION: The identification of drug-target interactions (DTIs) plays a vital role for in silico drug discovery, in which the drug is the chemical molecule, and the target is the protein residues in the binding pocket. Manual DTI annotation approaches remain reliable; however, it is notoriously laborious and time-consuming to test each drug-target pair exhaustively. Recently, the rapid growth of labelled DTI data has catalysed interests in high-throughput DTI prediction. Unfortunately, those methods highly rely on the manual features denoted by human, leading to errors. RESULTS: Here, we developed an end-to-end deep learning framework called CoaDTI to significantly improve the efficiency and interpretability of drug target annotation. CoaDTI incorporates the Co-attention mechanism to model the interaction information from the drug modality and protein modality. In particular, CoaDTI incorporates transformer to learn the protein representations from raw amino acid sequences, and GraphSage to extract the molecule graph features from SMILES. Furthermore, we proposed to employ the transfer learning strategy to encode protein features by pre-trained transformer to address the issue of scarce labelled data. The experimental results demonstrate that CoaDTI achieves competitive performance on three public datasets compared with state-of-the-art models. In addition, the transfer learning strategy further boosts the performance to an unprecedented level. The extended study reveals that CoaDTI can identify novel DTIs such as reactions between candidate drugs and severe acute respiratory syndrome coronavirus 2-associated proteins. The visualization of co-attention scores can illustrate the interpretability of our model for mechanistic insights. AVAILABILITY: Source code are publicly available at https://github.com/Layne-Huang/CoaDTI.


Asunto(s)
COVID-19 , Humanos , Simulación por Computador , Proteínas/química , Secuencia de Aminoácidos , Descubrimiento de Drogas/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda