Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Mol Cancer ; 23(1): 156, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095771

RESUMEN

BACKGROUND: Elevated microRNA-155 (miR-155) expression in non-small-cell lung cancer (NSCLC) promotes cisplatin resistance and negatively impacts treatment outcomes. However, miR-155 can also boost anti-tumor immunity by suppressing PD-L1 expression. Therapeutic targeting of miR-155 through its antagonist, anti-miR-155, has proven challenging due to its dual molecular effects. METHODS: We developed a multiscale mechanistic model, calibrated with in vivo data and then extrapolated to humans, to investigate the therapeutic effects of nanoparticle-delivered anti-miR-155 in NSCLC, alone or in combination with standard-of-care drugs. RESULTS: Model simulations and analyses of the clinical scenario revealed that monotherapy with anti-miR-155 at a dose of 2.5 mg/kg administered once every three weeks has substantial anti-cancer activity. It led to a median progression-free survival (PFS) of 6.7 months, which compared favorably to cisplatin and immune checkpoint inhibitors. Further, we explored the combinations of anti-miR-155 with standard-of-care drugs, and found strongly synergistic two- and three-drug combinations. A three-drug combination of anti-miR-155, cisplatin, and pembrolizumab resulted in a median PFS of 13.1 months, while a two-drug combination of anti-miR-155 and cisplatin resulted in a median PFS of 11.3 months, which emerged as a more practical option due to its simple design and cost-effectiveness. Our analyses also provided valuable insights into unfavorable dose ratios for drug combinations, highlighting the need for optimizing dose regimens to prevent antagonistic effects. CONCLUSIONS: This work bridges the gap between preclinical development and clinical translation of anti-miR-155 and unravels the potential of anti-miR-155 combination therapies in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , MicroARNs/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Nivel de Atención , Investigación Biomédica Traslacional
2.
Microb Pathog ; 193: 106787, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38992510

RESUMEN

A unique approach is imperative for the development of drugs aimed at inhibiting various stages of infection, rather than solely focusing on bacterial viability. Among the array of unconventional targets explored for formulating novel antimicrobial medications, blocking the quorum-sensing (QS) system emerges as a highly effective and promising strategy against a variety of pathogenic microbes. In this investigation, we have successfully assessed nine α-aminoamides for their anti-QS activity using Agrobacterium tumefaciensNT1 as a biosensor strain. Among these compounds, three (2, 3and, 4) have been identified as potential anti-QS candidates. Molecular docking studies have further reinforced these findings, indicating that these compounds exhibit favorable pharmacokinetic profiles. Additionally, we have assessed the ligand's stability within the protein's binding pocket using molecular dynamics (MD) simulations and MMGBSA analysis. Further, combination of antiquorum sensing properties with antibiotics viaself-assembly represents a promising approach to enhance antibacterial efficacy, overcome resistance, and mitigate the virulence of bacterial pathogens. The release study also reflects a slow and gradual release of the metronidazole at both pH 6.5 and pH 7.4, avoiding the peaks and troughs associated with more immediate release formulations.


Asunto(s)
Agrobacterium tumefaciens , Antibacterianos , Metronidazol , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Percepción de Quorum , Agrobacterium tumefaciens/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Metronidazol/farmacología , Metronidazol/química , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Geles/química , Sinergismo Farmacológico , Liberación de Fármacos
3.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396735

RESUMEN

The in-silico strategy of identifying novel uses for already existing drugs, known as drug repositioning, has enhanced drug discovery. Previous studies have shown a positive correlation between expression changes induced by the anticancer agent trabectedin and those caused by irinotecan, a topoisomerase I inhibitor. Leveraging the availability of transcriptional datasets, we developed a general in-silico drug-repositioning approach that we applied to investigate novel trabectedin synergisms. We set a workflow allowing the identification of genes selectively modulated by a drug and possible novel drug interactions. To show its effectiveness, we selected trabectedin as a case-study drug. We retrieved eight transcriptional cancer datasets including controls and samples treated with trabectedin or its analog lurbinectedin. We compared gene signature associated with each dataset to the 476,251 signatures from the Connectivity Map database. The most significant connections referred to mitomycin-c, topoisomerase II inhibitors, a PKC inhibitor, a Chk1 inhibitor, an antifungal agent, and an antagonist of the glutamate receptor. Genes coherently modulated by the drugs were involved in cell cycle, PPARalpha, and Rho GTPases pathways. Our in-silico approach for drug synergism identification showed that trabectedin modulates specific pathways that are shared with other drugs, suggesting possible synergisms.


Asunto(s)
Antineoplásicos , Tetrahidroisoquinolinas , Trabectedina/farmacología , Trabectedina/uso terapéutico , Tetrahidroisoquinolinas/farmacología , Dioxoles/farmacología , Sinergismo Farmacológico
4.
Molecules ; 29(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39064825

RESUMEN

Alkaloid-based urea derivatives were produced with high yield through the reaction of anabasine and cytisine with isoxazolylphenylcarbamates in boiling benzene. Their antitumor activity, in combination with the commonly used five anticancer drugs, namely cyclophosphane, fluorouracil, etoposide, cisplatin, ribomustine with different mechanisms of action, was investigated. Based on the quantum chemical calculations data and molecular docking, hypotheses have been put forward to explain their mutual influence when affecting C6 rat glioma model cells.


Asunto(s)
Alcaloides , Antineoplásicos , Glioma , Simulación del Acoplamiento Molecular , Animales , Glioma/tratamiento farmacológico , Glioma/patología , Ratas , Alcaloides/química , Alcaloides/farmacología , Alcaloides/síntesis química , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Urea/química , Urea/farmacología , Urea/análogos & derivados , Proliferación Celular/efectos de los fármacos
5.
Int J Med Microbiol ; 313(2): 151578, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37001448

RESUMEN

There has been an explosion in the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) because of the indiscriminate use of antibiotics. In this study, we repurposed hexestrol (HXS) as an antibacterial agent to fight planktonic and biofilm-related MRSA infections. HXS is a nonsteroidal synthetic estrogen that targets estrogen receptors (ERα and ERß) and has been used as a hormonal antineoplastic agent. In our work, the minimum inhibitory concentrations (MICs) were determined using the antimicrobial susceptibility of MSSA and MRSA strains. Anti-biofilm activity was evaluated using biofilm inhibition and eradication assays. Biofilm-related genes were analyzed with or without HXS treatment using RTqPCR analysis of S. aureus. HXS was tested using the checkerboard dilution assay to identify antibiotics that may have synergistic effects. Measurement of ATP and detection of ATPase allowed the determination of bacterial energy metabolism. As shown in the results, HXS showed effective antimicrobial activity against S. aureus, including both type strains and clinical isolations, with MICs of 16 µg/mL. Sub-HXS strongly inhibited the adhesion of S. aureus. The content of extracellular polymeric substances (EPS) and the relative transcription levels of eno, sacC, clfA, pls and fnbpB were reduced after HXS treatment. HXS showed antibacterial effects against S. aureus and synergistic activity with aminoglycosides by directly interfering with cellular energy metabolism. HXS inhibits adhesion and biofilm formation and eradicates biofilms formed by MRSA by reducing the expression of related genes. Furthermore, HXS increases the susceptibility of aminoglycosides against MRSA. In conclusion, HXS is a repurposed drug that may be a promising therapeutic option for MRSA infection.


Asunto(s)
Hexestrol , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Hexestrol/farmacología , Staphylococcus aureus , Reposicionamiento de Medicamentos , Antibacterianos/farmacología , Aminoglicósidos/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana
6.
Cancer Cell Int ; 23(1): 161, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37568211

RESUMEN

BACKGROUND: Acute myeloid leukaemia (AML) remains difficult to treat despite the development of novel formulations and targeted therapies. Activating mutations in the FLT3 gene are common among patients and make the tumour susceptible to FLT3 inhibitors, but resistance to such inhibitors develops quickly. METHODS: We examined combination therapies aimed at FLT3+-AML, and studied the development of resistance using a newly developed protocol. Combinations of FLT3, CDK4/6 and PI3K inhibitors were tested for synergism. RESULTS: We show that AML cells express CDK4 and that the CDK4/6 inhibitors palbociclib and abemaciclib inhibit cellular growth. PI3K inhibitors were also effective in inhibiting the growth of AML cell lines that express FLT3-ITD. Whereas resistance to quizartinib develops quickly, the combinations overcome such resistance. CONCLUSIONS: This study suggests that a multi-targeted intervention involving a CDK4/6 inhibitor with a FLT3 inhibitor or a pan-PI3K inhibitor might be a valuable therapeutic strategy for AML to overcome drug resistance. Moreover, many patients cannot tolerate high doses of the drugs that were studied (quizartinib, palbociclib and PI3K inhibitors) for longer periods, and it is therefore of high significance that the drugs act synergistically and lower doses can be used.

7.
Mol Pharm ; 20(3): 1453-1479, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36802711

RESUMEN

A novel strategy in metallodrug discovery today is incorporating clinically approved drugs into metal complexes as coordinating ligands. Using this strategy, various drugs have been repurposed to prepare organometallic complexes to overcome the resistance of drugs and to design promising alternatives to currently available metal-based drugs. Notably, the combination of organoruthenium moiety and clinical drug in a single molecule has been shown, in some instances, to enhance pharmacological activity and reduce toxicity in comparison to the parent drug. Thus, for the past two decades, there has been increasing interest in exploiting metal-drug synergism to develop multifunctional organoruthenium drug candidates. Herein, we summarized the recent reports of rationally designed half-sandwich Ru(arene) complexes containing different FDA-approved drugs. This review also focuses on the mode of coordination of drugs, ligand-exchange kinetics, mechanism of action, and structure-activity relationship of organoruthenated complexes containing drugs. We hope this discussion may serve to shed light on future developments in ruthenium-based metallopharmaceuticals.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Compuestos Organometálicos , Rutenio , Antineoplásicos/farmacología , Rutenio/farmacología , Ligandos , Sinergismo Farmacológico , Complejos de Coordinación/farmacología , Estructura Molecular , Compuestos Organometálicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales
8.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36768182

RESUMEN

Minimizing side effects, overcoming cancer drug resistance, and preventing metastasis of cancer cells are of growing interest in current cancer therapeutics. Phytochemicals are being researched in depth as they are protective to normal cells and have fewer side effects. Hesperetin is a citrus bioflavonoid known to inhibit TGFß-induced epithelial-to-mesenchymal transition (EMT), migration, and invasion of prostate cancer cells. Targeting epigenetic modifications that cause cancer is another class of upcoming therapeutics, as these changes are reversible. Global H3K27me3 levels have been found to be reduced in invasive prostate adenocarcinomas. Combining a demethylase inhibitor and a known anti-cancer phytochemical is a unique approach to targeting cancer to attain the aforementioned objectives. In the current study, we used an H3K27 demethylase (JMJD3/KDM6B) inhibitor to study its effects on TGFß-induced EMT in prostate cancer cells. We then gave a combined hesperetin and GSK-J4 treatment to the PC-3 and LNCaP cells. There was a dose-dependent increase in cytotoxicity and inhibition of TGFß-induced migration and invasion of prostate cancer cells after GSK-J4 treatment. GSK-J4 not only induced trimethylation of H3K27 but also induced the trimethylation of H3K4. Surprisingly, there was a reduction in the H3K9me3 levels. GSK-J4 alone and a combination of hesperetin and GSK-J4 treatment effectively inhibit the important hallmarks of cancer, such as cell proliferation, migration, and invasion, by altering the epigenetic landscape of cancer cells.


Asunto(s)
Histona Demetilasas , Neoplasias de la Próstata , Humanos , Masculino , Histona Demetilasas/farmacología , Factor de Crecimiento Transformador beta/farmacología , Histona Demetilasas con Dominio de Jumonji , Transición Epitelial-Mesenquimal , Proliferación Celular , Neoplasias de la Próstata/tratamiento farmacológico
9.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613510

RESUMEN

Chemotherapy is the main treatment for most early-stage cancers; nevertheless, its efficacy is usually limited by drug resistance, toxicity, and tumor heterogeneity. Cell-penetrating peptides (CPPs) are small peptide sequences that can be used to increase the delivery rate of chemotherapeutic drugs to the tumor site, therefore contributing to overcoming these problems and enhancing the efficacy of chemotherapy. The drug combination is another promising strategy to overcome the aforementioned problems since the combined drugs can synergize through interconnected biological processes and target different pathways simultaneously. Here, we hypothesized that different peptides (P1-P4) could be used to enhance the delivery of chemotherapeutic agents into three different cancer cells (HT-29, MCF-7, and PC-3). In silico studies were performed to simulate the pharmacokinetic (PK) parameters of each peptide and antineoplastic agent to help predict synergistic interactions in vitro. These simulations predicted peptides P2-P4 to have higher bioavailability and lower Tmax, as well as the chemotherapeutic agent 5-fluorouracil (5-FU) to have enhanced permeability properties over other antineoplastic agents, with P3 having prominent accumulation in the colon. In vitro studies were then performed to evaluate the combination of each peptide with the chemotherapeutic agents as well as to assess the nature of drug interactions through the quantification of the Combination Index (CI). Our findings in MCF-7 and PC-3 cancer cells demonstrated that the combination of these peptides with paclitaxel (PTX) and doxorubicin (DOXO), respectively, is not advantageous over a single treatment with the chemotherapeutic agent. In the case of HT-29 colorectal cancer cells, the combination of P2-P4 with 5-FU resulted in synergistic cytotoxic effects, as predicted by the in silico simulations. Taken together, these findings demonstrate that these CPP6-conjugates can be used as adjuvant agents to increase the delivery of 5-FU into HT-29 colorectal cancer cells. Moreover, these results support the use of in silico approaches for the prediction of the interaction between drugs in combination therapy for cancer.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Fluorouracilo/uso terapéutico , Paclitaxel , Sinergismo Farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Doxorrubicina/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Péptidos/farmacología , Péptidos/uso terapéutico , Línea Celular Tumoral
10.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269635

RESUMEN

Human cytomegalovirus (HCMV) is a pathogenic human herpesvirus associated with serious, potentially life-threatening symptoms in the immunocompromised or immunonaïve host. The limitations encountered by antiviral therapy options currently available include a narrow panel of accessible targets, the induction of viral drug resistance as well as severe drug dosage-mediated side-effects. Improved drug-targeting strategies to resolve these issues are the focus of our investigations. In particular, pharmaceutical kinase inhibitors (PKIs), either directed to host kinases or directed to the viral protein kinase pUL97, have been considered to overcome these restrictions. Recently, we reported the identification of a synergistic combination of two PKIs directed to host cyclin-dependent kinase 7 (CDK7) and viral CDK ortholog pUL97. Here, we substantiate these findings with the following results: (i) true drug synergy was exhibited by various chemical classes of PKI pairs directed to pUL97 and CDK7; (ii) no putative amplification of cytotoxicity by these drug combinations was observed; (iii) a reduction in drug dosage levels for synergistic combinations was defined on a quantitative basis and compared to monotreatments; (iv) the quantities of target proteins CDK7 and pUL97 expressed in HCMV-infected cells were assessed by confocal imaging, indicating a strong down-modulation of CDK7 levels as a result of synergistic drug treatment; (v) the functional importance of these target kinases, both binding to cyclin H, was illustrated by assessing HCMV replication under the viral genomic deletion of ORF-UL97 or cellular cyclin knock-out; (vi) new combinations of HCMV-specific drug synergy were demonstrated for solely host-directed treatments using PKIs against CDK2, CDK7, CDK8 and/or CDK9 and (vii) a triple PKI combination provided further support for the synergy approach. With these combined findings, this study highlights the potential of therapeutic drug combinations of approved, developmental and preclinical PKIs for expanding future options for anti-HCMV therapy.


Asunto(s)
Quinasas Ciclina-Dependientes , Citomegalovirus , Quinasas Ciclina-Dependientes/metabolismo , Citomegalovirus/genética , Combinación de Medicamentos , Farmacorresistencia Viral , Humanos , Proteínas Virales/metabolismo , Replicación Viral
11.
Molecules ; 27(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36234683

RESUMEN

The World Health Organization has put drug resistance in tuberculosis on its list of significant threats, with a critical emphasis on resolving the genetic differences in Mycobacterium tuberculosis. This provides an opportunity for a better understanding of the evolutionary progression leading to anti-microbial resistance. Anti-microbial resistance has a great impact on the economic stability of the global healthcare sector. We performed a timeline genomic analysis from 2003 to 2021 of 578 mycobacterium genomes to understand the pattern underlying genomic variations. Potential drug targets based on functional annotation was subjected to pharmacophore-based screening of FDA-approved phyto-actives. Reaction search, MD simulations, and metadynamics studies were performed. A total of 4,76,063 mutations with a transition/transversion ratio of 0.448 was observed. The top 10 proteins with the least number of mutations were high-confidence drug targets. Aminoglycoside 2'-N-acetyltransferase protein (AAC2'), conferring resistance to aminoglycosides, was shortlisted as a potential drug target based on its function and role in bait drug synergism. Gentamicin-AAC2' binding pose was used as a pharmacophore template to screen 10,570 phyto-actives. A total of 66 potential hits were docked to obtain naloxone as a lead-active with a docking score of -6.317. Naloxone is an FDA-approved drug that rapidly reverses opioid overdose. This is a classic case of a repurposed phyto-active. Naloxone consists of an amine group, but the addition of the acetyl group is unfavorable, with a reaction energy of 612.248 kcal/mol. With gentamicin as a positive control, molecular dynamic simulation studies were performed for 200 ns to check the stability of binding. Metadynamics-based studies were carried out to compare unbinding energy with gentamicin. The unbinding energies were found to be -68 and -74 kcal/mol for naloxone and gentamycin, respectively. This study identifies naloxone as a potential drug candidate for a bait drug synergistic approach against Mycobacterium tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Aminas , Aminoglicósidos , Antituberculosos/química , Antituberculosos/farmacología , Sinergismo Farmacológico , Gentamicinas , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/genética , Naloxona , Tuberculosis/microbiología
12.
J Virol ; 94(2)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31666384

RESUMEN

To counteract the serious health threat posed by known and novel viral pathogens, drugs that target a variety of viruses through a common mechanism have attracted recent attention due to their potential in treating (re)emerging infections, for which direct-acting antivirals are not available. We found that labyrinthopeptins A1 and A2, the prototype congeners of carbacyclic lanthipeptides, inhibit the proliferation of diverse enveloped viruses, including dengue virus, Zika virus, West Nile virus, hepatitis C virus, chikungunya virus, Kaposi's sarcoma-associated herpesvirus, cytomegalovirus, and herpes simplex virus, in the low micromolar to nanomolar range. Mechanistic studies on viral particles revealed that labyrinthopeptins induce a virolytic effect through binding to the viral membrane lipid phosphatidylethanolamine (PE). These effects are enhanced by a combined equimolar application of both labyrinthopeptins, and a clear synergism was observed across a concentration range corresponding to 10% to 90% inhibitory concentrations of the compounds. Time-resolved experiments with large unilamellar vesicles (LUVs) reveal that membrane lipid raft compositions (phosphatidylcholine [PC]/PE/cholesterol/sphingomyelin at 17:10:33:40) are particularly sensitive to labyrinthopeptins in comparison to PC/PE (90:10) LUVs, even though the overall PE amount remains constant. Labyrinthopeptins exhibited low cytotoxicity and had favorable pharmacokinetic properties in mice (half-life [t1/2] = 10.0 h), which designates them promising antiviral compounds acting by an unusual viral lipid targeting mechanism.IMPORTANCE For many viral infections, current treatment options are insufficient. Because the development of each antiviral drug is time-consuming and expensive, the prospect of finding broad-spectrum antivirals that can fight multiple, diverse viruses-well-known viruses as well as (re)emerging species-has gained attention, especially for the treatment of viral coinfections. While most known broad-spectrum agents address processes in the host cell, we found that targeting lipids of the free virus outside the host cell with the natural products labyrinthopeptin A1 and A2 is a viable strategy to inhibit the proliferation of a broad range of viruses from different families, including chikungunya virus, dengue virus, Zika virus, Kaposi's sarcoma-associated herpesvirus, and cytomegalovirus. Labyrinthopeptins bind to viral phosphatidylethanolamine and induce virolysis without exerting cytotoxicity on host cells. This represents a novel and unusual mechanism to tackle medically relevant viral infections.


Asunto(s)
Bacteriocinas/farmacología , Microdominios de Membrana/metabolismo , Virosis/metabolismo , Virus/metabolismo , Aedes , Animales , Línea Celular , Microdominios de Membrana/virología , Fosfatidiletanolaminas/metabolismo , Virosis/tratamiento farmacológico
13.
Mol Pharm ; 18(3): 1208-1228, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33371687

RESUMEN

Hydrocortisone, a natural glucocorticoid secreted by adrenal and extra-adrenal tissues, locally governs the transcription of genes involved in inflammation, immune response, metabolism, and energy homeostasis via binding to its cognate glucocorticoid receptor (GR). In this study, we show that modified hydrocortisone (HC16), a cancer-selective cytotoxic molecule, showed synergism in combination with drugs like Doxorubicin and docetaxel, self-assembled into vesicles, entrapped docetaxel and complexed with anti-cancer plasmid DNA for enhanced killing of cancer cells. These vesicles exhibited GR-mediated nuclear localization, delivery of the p53 gene, and also inhibited cell viability selectively in RKO, HCT15, and CT26 colon cancer cells but not in normal cells like CHO and HEK293T. Apart from exerting its own anti-cancer activity, the self-assembled HC16 vesicles loaded with docetaxel sensitized the cancer cells to its drug cargo by downregulating the drug metabolizing CYP3A4 gene. This indirectly reduces the risk of nonspecific adverse effects in normal cells, as the viability of sensitized cancer cells could be significantly reduced even in low doses of cytotoxic docetaxel. The near infrared (NIR)-dye-associated self-assemblies accumulated in a colon tumor with higher orders of NIR intensity compared to those in a colon of healthy mice. Thereafter, the treatment of HC16-docetaxel-p53 vesicle/DNA complex led to significant tumor regression, which resulted in a cecum/body weight ratio in tumor-bearing mice similar to that of healthy mice measured at 24 h postcompletion of treatment. There was an up to 2.5-fold enhancement in the overall survivability of colon-tumor-bearing mice treated with HC16-docetaxel-p53 vesicle/DNA complexes when compared against the pristine docetaxel-treated groups. Further, the HC16-docetaxel-p53 vesicle/DNA complex-treated group showed reduced nuclear accumulation of cell proliferation marker Ki67, reduced protein levels of prosurvival and mesenchymal proteins like Bcl-2, PARP, vimentin, and N-cadherin, and increased the levels of pro-apoptotic activated caspases as compared to the pristine docetaxel-treated groups. The therapeutic package described herein is expected to find future use as a rational, multifaceted, GR-targeted approach for inhibiting colon tumor progression.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Hidrocortisona/farmacología , Receptores de Glucocorticoides/metabolismo , Células A549 , Animales , Apoptosis/efectos de los fármacos , Células CHO , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Cricetulus , Docetaxel/farmacología , Doxorrubicina/farmacología , Sinergismo Farmacológico , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Células 3T3 NIH
14.
Can J Microbiol ; 67(8): 599-612, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33481681

RESUMEN

Bacterial resistance has become one of the most serious public health problems, globally, and drug repurposing is being investigated to speed up the identification of effective drugs. The aim of this study was to investigate the repurposing of escitalopram oxalate and clonazepam drugs individually, and in combination with the antibiotics ciprofloxacin and sulfamethoxazole-trimethoprim, to treat multidrug-resistant (MDR) microorganisms and to evaluate the potential chemical nuclease activity. The minimum inhibitory concentration, minimum bactericidal concentration, fractional inhibitory concentration index, and tolerance level were determined for each microorganism tested. In vitro antibacterial activity was evaluated against 47 multidrug-resistant clinical isolates and 11 standard bacterial strains from the American Type Culture Collection. Escitalopram oxalate was mainly active against Gram-positive bacteria, and clonazepam was active against both Gram-positive and Gram-negative bacteria. When associated with the two antibiotics mentioned, they had a significant synergistic effect. Clonazepam cleaved plasmid DNA, and the mechanisms involved were oxidative and hydrolytic. These results indicate the potential for repurposing these non-antibiotic drugs to treat bacterial infections. However, further studies on the mechanism of action of these drugs should be performed to ensure their safe use.


Asunto(s)
Ciprofloxacina , Bacterias Gramnegativas , Antibacterianos/farmacología , Ciprofloxacina/farmacología , Citalopram/farmacología , Clonazepam/farmacología , ADN , Reposicionamiento de Medicamentos , Farmacorresistencia Bacteriana Múltiple , Bacterias Grampositivas , Humanos , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Sulfametoxazol/farmacología , Trimetoprim/farmacología
15.
Mycoses ; 64(11): 1308-1316, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33774879

RESUMEN

Candida auris is an emerging and drug-resistant pathogen. Drug combination is a promising approach against such pathogens. This study was conducted to provide an overview of all the studied drug combinations against C. auris. Relevant articles reporting results of any drug/non-drug combinations against C. auris were found by a systematic search in PubMed, Scopus and Web of Science (ISI), and in Google Scholar up to 1 October 2020. From 187 articles retrieved in the primary search, 23 met the inclusion criteria. In total, 124 different combinations including antifungal with antifungal (45), antifungal with other antimicrobials (11), antifungal with non-antimicrobials (32), antifungal with natural compounds (25) and between natural compounds (11) have been reported. Complete or partial synergistic effects have been reported for 3 out of 45 (6.67%) combinations of two antifungal agents, 8 out of 11 (72.73%) combinations involving antifungal agents and antimicrobials, 15 out of 32 (46.88%) of combinations between antifungal agents with non-antimicrobials, 16 out of 25 (64%) of combinations involving antifungal agents and natural compounds, and 3 out of 11 (22.27%) of combinations involving multiple natural compounds. Antagonistic interactions have been reported for 1 out of 32 (3.13%) and 8 out of 25 (32%) of combinations between antifungal drugs with non-antimicrobials and with natural compounds, respectively. Different drugs/compounds could potentiate the activity of antifungal drugs using this approach. However, despite the availability of this promising initial data, many more studies will be required to elucidate whether favourable interactions observed in vitro might translate into tangible clinical benefits.


Asunto(s)
Antifúngicos/administración & dosificación , Candida/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Infección Hospitalaria/microbiología , Antibacterianos/administración & dosificación , Antiinflamatorios no Esteroideos/administración & dosificación , Anticolesterolemiantes/administración & dosificación , Antidepresivos/administración & dosificación , Antineoplásicos/administración & dosificación , Antioxidantes/administración & dosificación , Antiparasitarios/administración & dosificación , Productos Biológicos/administración & dosificación , Candidiasis/microbiología , Infección Hospitalaria/tratamiento farmacológico , Combinación de Medicamentos , Farmacorresistencia Fúngica , Humanos , Vasodilatadores/administración & dosificación
16.
Int J Mol Sci ; 22(14)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34299028

RESUMEN

Several central nervous system (CNS) drugs exhibit potent anti-cancer activities. This study aimed to design a novel model of combination that combines different CNS agents and antineoplastic drugs (5-fluorouracil (5-FU) and paclitaxel (PTX)) for colorectal and breast cancer therapy, respectively. Cytotoxic effects of 5-FU and PTX alone and in combination with different CNS agents were evaluated on HT-29 colon and MCF-7 breast cancer cells, respectively. Three antimalarials alone and in combination with 5-FU were also evaluated in HT-29 cells. Different schedules and concentrations in a fixed ratio were added to the cultured cells and incubated for 48 h. Cell viability was evaluated using MTT and SRB assays. Synergism was evaluated using the Chou-Talalay, Bliss Independence and HSA methods. Our results demonstrate that fluphenazine, fluoxetine and benztropine have enhanced anticancer activity when used alone as compared to being used in combination, making them ideal candidates for drug repurposing in colorectal cancer (CRC). Regarding MCF-7 cells, sertraline was the most promising candidate alone for drug repurposing, with the lowest IC50 value. For HT-29 cells, the CNS drugs sertraline and thioridazine in simultaneous combination with 5-FU demonstrated the strongest synergism among all combinations. In MCF-7 breast cancer cells, the combination of fluoxetine, fluphenazine and benztropine with PTX resulted in synergism for all concentrations below IC50. We also found that the antimalarial artesunate administration prior to 5-FU produces better results in reducing HT-29 cell viability than the inverse drug schedule or the simultaneous combination. These results demonstrate that CNS drugs activity differs between the two selected cell lines, both alone and in combination, and support that some CNS agents may be promising candidates for drug repurposing in these types of cancers. Additionally, these results demonstrate that 5-FU or a combination of PTX with CNS drugs should be further evaluated. These results also demonstrate that antimalarial drugs may also be used as antitumor agents in colorectal cancer, besides breast cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Antipsicóticos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias del Colon/tratamiento farmacológico , Sinergismo Farmacológico , Apoptosis , Neoplasias de la Mama/patología , Proliferación Celular , Neoplasias del Colon/patología , Quimioterapia Combinada , Femenino , Fluorouracilo/administración & dosificación , Humanos , Paclitaxel/administración & dosificación , Células Tumorales Cultivadas
17.
Med Chem Res ; 30(12): 2301-2315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720564

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Staphylococcus aureus (VRSA) are primary causes of skin and soft tissue infections worldwide. To address the emergency caused due to increasing multidrug-resistant (MDR) bacterial infections, a series of novel fluoro and trifluoromethyl-substituted salicylanilide derivatives were synthesized and their antimicrobial activity was investigated. MIC data reveal that the compounds inhibited S. aureus specifically (MIC 0.25-64 µg/mL). The in vitro cytotoxicity of compounds with MIC < 1 µg/mL against Vero cells led to identification of four compounds (20, 22, 24 and 25) with selectivity index above 10. These four compounds were tested against MDR S. aureus panel. Remarkably, 5-chloro-N-(4'-bromo-3'-trifluoromethylphenyl)-2-hydroxybenzamide (22) demonstrated excellent activity against nine MRSA and three VRSA strains with MIC 0.031-0.062 µg/mL, which is significantly better than the control drugs methicillin and vancomycin. The comparative time-kill kinetic experiment revealed that the effect of bacterial killing of 22 is comparable with vancomycin. Compound 22 did not synergize with or antagonize any FDA-approved antibiotic and reduced pre-formed S. aureus biofilm better than vancomycin. Overall, study suggested that 22 could be further developed as a potent anti-staphylococcal therapeutic.

18.
Artículo en Inglés | MEDLINE | ID: mdl-32041716

RESUMEN

New drugs or therapeutic combinations are urgently needed against Mycobacterium abscessus Previously, we demonstrated the potent activity of indole-2-carboxamides 6 and 12 against M. abscessus We show here that these compounds act synergistically with imipenem and cefoxitin in vitro and increase the bactericidal activity of the ß-lactams against M. abscessus In addition, compound 12 also displays synergism with imipenem and cefoxitin within infected macrophages. The clinical potential of these new drug combinations requires further evaluation.


Asunto(s)
Antibacterianos/farmacología , Indoles/farmacología , Mycobacterium abscessus/efectos de los fármacos , beta-Lactamas/farmacología , Cefoxitina/farmacología , Recuento de Colonia Microbiana , Sinergismo Farmacológico , Humanos , Imipenem/farmacología , Macrófagos/microbiología , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología
19.
Mol Cell Biochem ; 475(1-2): 119-126, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32754875

RESUMEN

Doxorubicin (Dox) is a widely neoplasm chemotherapeutic drug with high incidences of cardiotoxicity. Prodigiosin (PG), a red bacterial pigment from Serratia marcescens, has been demonstrated to potentiate Dox's cytotoxicity against oral squamous cell carcinoma cells through elevating Dox influx and identified as a Dox enhancer via PG-induced autophagy; however, toxicity of normal cell remains unclear. This study is conducted to evaluate putative cytotoxicity features of PG/Dox synergism in the liver, kidney, and heart cells and further elucidate whether PG augmented Dox's effect via modulating Dox metabolism in normal cells. Murine hepatocytes FL83B, cardio-myoblast h9c2, and human kidney epithelial cells HK-2 were sequentially treated with PG and Dox by measuring cell viability, cell death characteristics, oxidative stress, Dox flux, and Dox metabolism. PG could slightly significant increase Dox cytotoxicity in all tested normal cells whose toxic alteration was less than that of oral squamous carcinoma cells. The augmentation of Dox cytotoxicity might be attributed to the increase of Dox-mediated ROS accumulation that might cause slight reduction of Dox influx and reduction of Dox metabolism. It was noteworthy to notice that sustained cytotoxicity appeared in normal cells after PG and Dox were removed. Taken together, moderately metabolic reduction of Dox might be ascribed to the mechanism of increase Dox cytotoxicity in PG-induced normal cells; nevertheless, the determination of PG/Dox dose with sustained cytotoxicity in normal cells needs to be comprehensively considered.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Doxorrubicina/farmacología , Neoplasias/tratamiento farmacológico , Prodigiosina/farmacología , Animales , Antibacterianos/toxicidad , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Sinergismo Farmacológico , Humanos , Ratones , Neoplasias/metabolismo , Neoplasias/patología , Prodigiosina/efectos adversos , Inhibidores de Topoisomerasa II/metabolismo , Inhibidores de Topoisomerasa II/toxicidad
20.
Pharm Res ; 37(7): 142, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32661774

RESUMEN

PURPOSE: This study aimed to develop a hydrogel system for treating aggressive triple negative breast cancer (TNBC) via kinetically-controlled delivery of the synergistic drug pair doxorubicin (DOX) and gemcitabine (GEM). A 2D assay was adopted to evaluate therapeutic efficacy by determining combination index (CI), and a 3D assay using cancer spheroids was implemented to assess the potential for translation in vivo. METHODS: The release of DOX and GEM from an acetylated-chitosan (ACS, degree of acetylation χAc = 40 ± 5%) was characterized to identify a combined drug loading that affords release kinetics and dose that are therapeutically synergistic. The selected DOX/GEM-ACS formulation was evaluated in vitro with 2-D and 3-D models of TNBC to determine the combination index (CI) and the tumor volume reduction, respectively. RESULTS: Therapeutically desired release dosages and kinetics of GEM and DOX were achieved. When evaluated with a 2-D model of TNBC, the hydrogel afforded a CI of 0.14, indicating a stronger synergism than concurrent administration of DOX and GEM (CI = 0.23). Finally, the therapeutic hydrogel accomplished a notable volume reduction of the cancer spheroids (up to 30%), whereas the corresponding dosages of free drugs only reduced growth rate. CONCLUSIONS: The ACS hydrogel delivery system accomplishes drug release kinetics and molar ratio that affords strong therapeutically synergism. These results, in combination with the choice of ACS as affordable and highly abundant source material, provide a strong pre-clinical demonstration of the potential of the proposed system for complementing surgical resection of aggressive solid tumors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Quitosano/química , Desoxicitidina/análogos & derivados , Doxorrubicina/farmacología , Portadores de Fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Acetilación , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Desoxicitidina/administración & dosificación , Desoxicitidina/química , Desoxicitidina/farmacología , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Composición de Medicamentos , Liberación de Fármacos , Sinergismo Farmacológico , Femenino , Humanos , Hidrogeles , Cinética , Esferoides Celulares , Neoplasias de la Mama Triple Negativas/patología , Gemcitabina
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda