Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Molecules ; 29(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611755

RESUMEN

Density functional theory (DFT) characterizations were employed to resolve the structural and energetic aspects and product selectivities along the mechanistic reaction paths of the nickel-catalyzed three-component unsymmetrical bis-allylation of alkynes with alkenes. Our putative mechanism initiated with the in situ generation of the active catalytic species [Ni(0)L2] (L = NHC) from its precursors [Ni(COD)2, NHC·HCl] to activate the alkyne and alkene substrates to form the final skipped trienes. This proceeds via the following five sequential steps: oxidative addition (OA), ß-F elimination, ring-opening complexation, C-B cleavage and reductive elimination (RE). Both the OA and RE steps (with respective free energy barriers of 24.2 and 24.8 kcal·mol-1) contribute to the observed reaction rates, with the former being the selectivity-controlling step of the entire chemical transformation. Electrophilic/nucleophilic properties of selected substrates were accurately predicted through dual descriptors (based on Hirshfeld charges), with the chemo- and regio-selectivities being reasonably predicted and explained. Further distortion/interaction and interaction region indicator (IRI) analyses for key stationary points along reaction profiles indicate that the participation of the third component olefin (allylboronate) and tBuOK additive played a crucial role in facilitating the reaction and regenerating the active catalyst, ensuring smooth formation of the skipped triene product under a favorably low dosage of the Ni(COD)2 catalyst (5 mol%).

2.
J Comput Chem ; 42(18): 1296-1311, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33931864

RESUMEN

The selectivity and the mechanism of the uncatalyzed and AlCl3 catalyzed hetero-Diels-Alder reaction (HDR) between ([E]-4-methylpenta-2,4-dienyloxy)(tert-butyl)dimethylsilane 1 and benzaldehyde 2 have been studied using density functional theory at the MPWB1K/6-31G(d) level of theory. The uncatalyzed HDR between diene 1 and alkene 2 is characterized by a polar character and proceeds via an asynchronous one-step mechanism for the meta paths and synchronous for the ortho ones. In the presence of AlCl3 catalyst, the mechanism changes to be stepwise, while the first step is the rate-determining step. The activation energies widely decrease, and the polar character increases dramatically. A large analysis of the mechanism is performed using the activation strain model/energy decomposition analysis (ASM/EDA) model, the natural bond orbital (NBO) and state specific dual descriptors (SSDDs). The obtained results indicate that the combined interaction energy associated with the distortion of the reactants in these HDR are at the origin of the observed kinetics. NBO analyses were applied to estimate the Lewis-acid catalyst donor-acceptor interaction with the molecular system. The SSDD analysis shed light into the orientation effects on the reaction kinetics by providing important information about charge transfer interactions during the chemical reaction. It indicates that the more favorable HDR pathway have the lowest excitation energies, facilitating the interaction between diene 1 and benzaldehyde 2 moieties. Non-covalent interaction (NCI) and QTAIM analyses of the meta-endo structure indicate that the presence of several weak NCIs formed at this approach is at the origin of the meta-endo selectivity.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda