Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; 19(24): e2207718, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36897011

RESUMEN

Dual-polarity response photodetectors (PDs) take full advantage of the directivity of the photocurrent to identify optical information. The dual-polarity signal ratio, a key parameter that represents the equilibrium degree of responses to different lights, is proposed for the first time. The synchronous enhancement of dual-polarity photocurrents and the amelioration of the dual-polarity signal ratio are beneficial to the practical applications. Herein, based on the selective light absorption and energy band structure design, a self-powered CdS/PEDOT:PSS/Au heterojunction PD consisting of a p-n junction and a Schottky junction exhibits unique wavelength-dependent dual-polarity response, where the photocurrent is negative and positive in the short and long wavelength regions, respectively. More importantly, the pyro-phototronic effect inside the CdS layer significantly improves the dual-polarity photocurrents with the maximum enhancement factors of 120%, 343%, 1167%, 1577%, and 1896% at 405, 450, 532, 650, and 808 nm, respectively. Furthermore, the dual-polarity signal ratio tends to 1:1 due to different degrees of the enhancement. This work provides a novel design strategy for dual-polarity response PDs with a simple working principle and improved performance, which can supply a substitution for two traditional PDs in the filterless visible light communication (VLC) system.

2.
ACS Appl Mater Interfaces ; 15(39): 45970-45980, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37733606

RESUMEN

Self-powered operation and multifunctionality have significantly oriented the development of photodetectors (PDs), which could be realized through nanoarchitecture construction and energy band structure design. Herein, a self-powered wavelength-dependent dual-polarity response PD based on (CdS@PEDOT:PSS@Au) sandwich-structured core-shell nanorod arrays (NRAs) is proposed. The synthesis approach of this three-layer heterostructure consists of a hydrothermal reaction, spin coating, and thermal evaporation. The n-CdS/p-PEDOT:PSS junction and the PEDOT:PSS/Au Schottky junction at the interfaces provide two photocurrent driving forces in opposite directions, and their contribution to the net photocurrent is controlled by the incident light wavelength due to the different light absorption ranges of the CdS core and the PEDOT:PSS shell. As a result, the polarity of the photocurrent switches from negative to positive as the wavelength increases. In addition, the response speed of negative photocurrents (∼10 ms) is faster than that of positive photocurrents (∼100 ms), which is consistent with the underlying mechanism of the dual-polarity response. Furthermore, color discrimination and imaging capabilities are demonstrated by deploying the PDs as sensing pixels and recognizing green and red patterns. The sandwich-structured core-shell NRA heterojunction system introduces a novel idea for dual-polarity response PDs.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda