Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Exp Biol ; 225(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35994028

RESUMEN

Elasmobranch fishes (sharks, skates and rays) consume prey of a variety of sizes and properties, and the feeding mechanism typically reflects diet. Spotted ratfish, Hydrolagus colliei (Holocephali, sister group of elasmobranchs), consume both hard and soft prey; however, the morphology of the jaws does not reflect the characteristics typical of durophagous elasmobranchs. This study investigated the mechanical properties and morphological characteristics of the jaws of spotted ratfish over ontogeny, including strain, stiffness and second moment of area, to evaluate the biomechanical function of the feeding structures. Compressive stiffness of the jaws (E=13.51-21.48 MPa) is similar to that of silicone rubber, a very flexible material. In Holocephali, the upper jaw is fused to the cranium; we show that this fusion reduces deformation experienced by the upper jaw during feeding. The lower jaw resists bending primarily in the posterior half of the jaw, which occludes with the region of the upper jaw that is wider and flatter, thus potentially providing an ideal location for the lower jaw to crush or crack prey. The mechanical properties and morphology of the feeding apparatus of spotted ratfish suggest that while the low compressive stiffness is a material limit of the jaw cartilage, spotted ratfish, and perhaps all holocephalans, evolved structural solutions (i.e. fused upper jaw, shape variation along lower jaw) to meet the demands of a durophagous diet.


Asunto(s)
Tiburones , Rajidae , Animales , Fenómenos Biomecánicos , Conducta Alimentaria , Peces , Maxilares/anatomía & histología , Tiburones/anatomía & histología , Rajidae/anatomía & histología
2.
J Afr Earth Sci ; 187: 104440, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35111270

RESUMEN

The first articulated dentition of †Ptychodus from Africa is described herein. The specimen, likely coming from the Turonian of the Asfla area (Goulmima region, southeastern Morocco), exhibits a well-preserved lower dental plate of a second-level predator. A new species, †P. maghrebianus sp. nov., is erected herein based on this durophagous dentition characterised by imbricated cuspidate teeth. We employed for the first time in †Ptychodus multiple quantitative analyses and statistical parametric and non-parametric tests to process biometrical data taken from articulated, associated and isolated teeth. The quantitative approach (morphospace analysis) is exploited herein to support the traditional taxonomic identification (qualitative examination) of †P. maghrebianus sp. nov. and to separate it from the similar cuspidate species, †P. mortoni. Morphospace reconstructions confirm a marked lower dental heterodonty (mesio-distal patterns) for both species. The analysis protocol employed here also allows assigning indeterminate teeth as belonging to †P. mortoni. The reconstruction of the entire lower dental plate of †P. maghrebianus sp. nov. shows a cuspidate dentition probably able to reduce tooth damages when crushing thin-shelled prey. Both dental morphologies and tooth wear patterns suggest a peculiar food processing and a diet mainly consisting of bivalves, decapods and small fish for this durophagous predator. Trophic reconstructions of the Turonian ichthyofauna inhabiting the middle to outer ramp environment of the Asfla area emphasize that †P. maghrebianus sp. nov. and the batoid †Tingitanius most likely represented second-level consumers, whereas the sclerorhynchiforms †Asflapristis and †Ptychotrygon represented third-level predators. Top positions within the food web were occupied by larger predaceous elasmobranchs (e.g., †Squalicorax).

3.
Proc Biol Sci ; 288(1943): 20202075, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33499790

RESUMEN

Durophagy arose in the Cambrian and greatly influenced the diversification of biomineralized defensive structures throughout the Phanerozoic. Spinose gnathobases on protopodites of Cambrian euarthropod limbs are considered key innovations for shell-crushing, yet few studies have demonstrated their effectiveness with biomechanical models. Here we present finite-element analysis models of two Cambrian trilobites with prominent gnathobases-Redlichia rex and Olenoides serratus-and compare these to the protopodites of the Cambrian euarthropod Sidneyia inexpectans and the modern American horseshoe crab, Limulus polyphemus. Results show that L. polyphemus, S. inexpectans and R. rex have broadly similar microstrain patterns, reflecting effective durophagous abilities. Conversely, low microstrain values across the O. serratus protopodite suggest that the elongate gnathobasic spines transferred minimal strain, implying that this species was less well-adapted to masticate hard prey. These results confirm that Cambrian euarthropods with transversely elongate protopodites bearing short, robust gnathobasic spines were likely durophages. Comparatively, taxa with shorter protopodites armed with long spines, such as O. serratus, were more likely restricted to a soft food diet. The prevalence of Cambrian gnathobase-bearing euarthropods and their various feeding specializations may have accelerated the development of complex trophic relationships within early animal ecosystems, especially the 'arms race' between predators and biomineralized prey.


Asunto(s)
Artrópodos , Fósiles , Animales , Evolución Biológica , Ecosistema , Extremidades/anatomía & histología , Masticación
4.
J Hum Evol ; 141: 102742, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32179368

RESUMEN

Antemortem enamel chipping in living and fossil primates is often interpreted as evidence of hard-object feeding (i.e., 'durophagy'). Laboratory analyses of tooth fracture have modeled the theoretical diets and loading conditions that may produce such chips. Previous chipping studies of nonhuman primates tend to combine populations into species samples, despite the fact that species can vary significantly in diet across their ranges. Chipping is yet to be analyzed across population-specific species samples for which long-term dietary data are available. Here, we test the association between enamel chipping and diet in a community of cercopithecid primates inhabiting the Taï Forest, Ivory Coast. We examined fourth premolars and first molars (n = 867) from naturally deceased specimens of Cercocebus atys, Colobus polykomos, Piliocolobus badius,Procolobus verus, and three species of Cercopithecus. We found little support for a predictive relationship between enamel chipping and diet across the entire Taï monkey community. Cercocebus atys, a dedicated hard-object feeder, exhibited the highest frequencies of (1) chipped teeth and (2) chips of large size; however, the other monkey with a significant degree of granivory, Co. polykomos, exhibited the lowest chip frequency. In addition, primates with little evidence of mechanically challenging or hard-food diets-such as Cercopithecus spp., Pi. badius, and Pr. verus-evinced higher chipping frequencies than expected. The equivocal and stochastic nature of enamel chipping in the Taï monkeys suggests nondietary factors contribute significantly to chipping. A negative association between canopy preference and chipping suggests a role of exogenous particles in chip formation, whereby taxa foraging closer to the forest floor encounter more errant particulates during feeding than species foraging in higher strata. We conclude that current enamel chipping models may provide insight into the diets of fossil primates, but only in cases of extreme durophagy. Given the role of nondietary factors in chip formation, our ability to reliably reconstruct a range of diets from a gradient of chipping in fossil taxa is likely weak.


Asunto(s)
Antropología , Cercopithecinae/fisiología , Colobinae/fisiología , Esmalte Dental/fisiología , Dieta/veterinaria , Paleontología , Animales , Diente Premolar/fisiología , Côte d'Ivoire , Conducta Alimentaria , Fósiles , Diente Molar/fisiología
5.
J Fish Biol ; 97(1): 163-171, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32278332

RESUMEN

Dietary specialization on hard prey items, such as mollusks and crustaceans, is commonly observed in a diverse array of fish species. Many fish consume these types of prey by crushing the shell to consume the soft tissue within, but a few fishes extricate the soft tissue without breaking the shell using a method known as oral shelling. Oral shelling involves pulling a mollusc from its shell and it may be a way to subvert an otherwise insurmountable shell defence. However, the biomechanical requirements and potential adaptations for oral shelling are unknown. Here, we test the hypothesis that a novel nasal protrusion is an adaptation for oral shelling in the durophagous pupfish (Cyprinodon brontotheroides). We first demonstrate oral shelling in this species and then predict that a larger nasal protrusion would allow pupfish to consume larger snails. Durophagous pupfish are found within an endemic radiation of pupfish on San Salvador Island, Bahamas. We took advantage of closely related sympatric species and outgroups to test: (a) whether durophagous pupfish shell and consume more snails than other species, (b) if F1 and F2 durophagous hybrids consume similar amounts of snails as purebred durophagous pupfish, and (c) if nasal protrusion size in parental and hybrid populations increases the maximum size of consumed snails. We found that durophagous pupfish and their hybrids consumed the most snails, but did not find a strong association between nasal protrusion size and maximum snail size consumed within the parental or F2 hybrid population, suggesting that the size of their novel nasal protrusion does not provide a major benefit in oral shelling. Instead, we suggest that the nasal protrusion may increase feeding efficiency, act as a sensory organ, or is a sexually selected trait, and that a strong feeding preference may be most important for oral shelling.


Asunto(s)
Adaptación Fisiológica , Distribución Animal , Conducta Alimentaria/fisiología , Peces Killi/anatomía & histología , Peces Killi/fisiología , Animales , Bahamas , Simpatría
6.
Proc Biol Sci ; 285(1889)2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30355715

RESUMEN

The biology of the American horseshoe crab, Limulus polyphemus, is well documented-including its dietary habits, particularly the ability to crush shell with gnathobasic walking appendages-but virtually nothing is known about the feeding biomechanics of this iconic arthropod. Limulus polyphemus is also considered the archetypal functional analogue of various extinct groups with serial gnathobasic appendages, including eurypterids, trilobites and other early arthropods, especially Sidneyia inexpectans from the mid-Cambrian (508 Myr) Burgess Shale of Canada. Exceptionally preserved specimens of S. inexpectans show evidence suggestive of durophagous (shell-crushing) tendencies-including thick gnathobasic spine cuticle and shelly gut contents-but the masticatory capabilities of this fossil species have yet to be compared with modern durophagous arthropods. Here, we use advanced computational techniques, specifically a unique application of 3D finite-element analysis (FEA), to model the feeding mechanics of L. polyphemus and S. inexpectans: the first such analyses of a modern horseshoe crab and a fossil arthropod. Results show that mechanical performance of the feeding appendages in both arthropods is remarkably similar, suggesting that S. inexpectans had similar shell-crushing capabilities to L. polyphemus This biomechanical solution to processing shelly food therefore has a history extending over 500 Myr, arising soon after the first shell-bearing animals. Arrival of durophagous predators during the early phase of animal evolution undoubtedly fuelled the Cambrian 'arms race' that involved a rapid increase in diversity, disparity and abundance of biomineralized prey species.


Asunto(s)
Artrópodos/anatomía & histología , Artrópodos/fisiología , Dieta , Fósiles , Animales , Fenómenos Biomecánicos , Colombia Británica , Biología Computacional , Extremidades/anatomía & histología , Extremidades/fisiología , Conducta Alimentaria , Fósiles/anatomía & histología , Cangrejos Herradura/anatomía & histología , Cangrejos Herradura/fisiología
7.
J Anat ; 232(2): 173-185, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29161774

RESUMEN

Dietary partitioning often accompanies the increased morphological diversity seen during adaptive radiations within aquatic systems. While such niche partitioning would be expected in older radiations, it is unclear how significant morphological divergence occurs within a shorter time period. Here we show how differential growth in key elements of the feeding mechanism can bring about pronounced functional differences among closely related species. An incredibly young adaptive radiation of three Cyprinodon species residing within hypersaline lakes in San Salvador Island, Bahamas, has recently been described. Characterized by distinct head shapes, gut content analyses revealed three discrete feeding modes in these species: basal detritivory as well as derived durophagy and lepidophagy (scale-feeding). We dissected, cleared and stained, and micro-CT scanned species to assess functionally relevant differences in craniofacial musculoskeletal elements. The widespread feeding mode previously described for cyprinodontiforms, in which the force of the bite may be secondary to the requisite dexterity needed to pick at food items, is modified within both the scale specialist and the durophagous species. While the scale specialist has greatly emphasized maxillary retraction, using it to overcome the poor mechanical advantage associated with scale-eating, the durophage has instead stabilized the maxilla. In all species the bulk of the adductor musculature is composed of AM A1. However, the combined masses of both adductor mandibulae (AM) A1 and A3 in the scale specialist were five times that of the other species, showing the importance of growth in functional divergence. The scale specialist combines plesiomorphic jaw mechanisms with both a hypertrophied AM A1 and a slightly modified maxillary anatomy (with substantial functional implications) to generate a bite that is both strong and allows a wide range of motion in the upper jaw, two attributes that normally tradeoff mechanically. Thus, a significant feeding innovation (scale-eating, rarely seen in fishes) may evolve based largely on allometric changes in ancestral structures. Alternatively, the durophage shows reduced growth with foreshortened jaws that are stabilized by an immobile maxilla. Overall, scale specialists showed the most divergent morphology, suggesting that selection for scale-biting might be stronger or act on a greater number of traits than selection for either detritivory or durophagy. The scale specialist has colonized an adaptive peak that few lineages have climbed. Thus, heterochronic changes in growth can quickly produce functionally relevant change among closely related species.


Asunto(s)
Evolución Biológica , Conducta Alimentaria , Maxilares/anatomía & histología , Peces Killi/anatomía & histología , Animales , Fenotipo
8.
J Exp Biol ; 221(Pt 11)2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29903746

RESUMEN

Many predators fracture strong mollusk shells, requiring specialized weaponry and behaviors. The current shell fracture paradigm is based on jaw- and claw-based predators that slowly apply forces (high impulse, low peak force). However, predators also strike shells with transient intense impacts (low impulse, high peak force). Toward the goal of incorporating impact fracture strategies into the prevailing paradigm, we measured how mantis shrimp (Neogonodactylus bredini) impact snail shells, tested whether they strike shells in different locations depending on prey shape (Nerita spp., Cenchritis muricatus, Cerithium spp.) and deployed a physical model (Ninjabot) to test the effectiveness of strike locations. We found that, contrary to their formidable reputation, mantis shrimp struck shells tens to hundreds of times while targeting distinct shell locations. They consistently struck the aperture of globular shells and changed from the aperture to the apex of high-spired shells. Ninjabot tests revealed that mantis shrimp avoid strike locations that cause little damage and that reaching the threshold for eating soft tissue is increasingly difficult as fracture progresses. Their ballistic strategy requires feed-forward control, relying on extensive pre-strike set-up, unlike jaw- and claw-based strategies that can use real-time neural feedback when crushing. However, alongside this pre-processing cost to impact fracture comes the ability to circumvent gape limits and thus process larger prey. In sum, mantis shrimp target specific shell regions, alter their strategy depending on shell shape, and present a model system for studying the physics and materials of impact fracture in the context of the rich evolutionary history of predator-prey interactions.


Asunto(s)
Exoesqueleto/anatomía & histología , Crustáceos/fisiología , Cadena Alimentaria , Exoesqueleto/fisiología , Animales , Fenómenos Biomecánicos , Conducta Alimentaria , Conducta Predatoria , Caracoles/anatomía & histología , Especificidad de la Especie
9.
J Fish Biol ; 92(4): 1177-1182, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29465164

RESUMEN

A palatal organ, possibly used for food sorting and processing, has previously been identified among the vomerine toothplates of the chimaeroid Chimaera monstrosa. In this study, the palatal organ was described in six additional species, confirming it is a widespread trait among holocephalans. It is proposed that this palatal structure, which appears to differ in shape according to each chimaeroid's degree of durophagy and is not homologous to the palatal structure described in teleosts, be hereby referred to as Vacchi's organ.


Asunto(s)
Peces/anatomía & histología , Hueso Paladar/anatomía & histología , Estructuras Animales/anatomía & histología , Animales , Fenotipo
10.
J Hum Evol ; 112: 1-14, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29037412

RESUMEN

Afropithecus turkanensis (17-17.5 Ma; Kalodirr, Buluk, Locherangan, Moruorot, Nabwal Hills; Kenya) and Morotopithecus bishopi (20.6 Ma; Moroto II; Uganda) are both large-bodied catarrhines from the early Miocene of eastern Africa with relatively primitive cranial and postcanine dental morphology. They are primarily differentiated by a temporal separation of ∼3.6 million years and by postcranial samples suggesting that M. bishopi was capable of orthograde postures and below-branch arboreality, while A. turkanensis was most likely a pronograde quadruped. Several researchers dispute the validity of the postcranial and dating evidence and argue that M. bishopi and A. turkanensis may be congeneric or even conspecific. Although A. turkanensis possesses a derived suite of specialized anterior dentognathic characters that are functionally convergent with extant pitheciins and associated with sclerocarp foraging and maxillary canine dietary function, a similar analysis of M. bishopi anterior dentognathic anatomy is presently lacking. The current study addresses this shortcoming via a detailed morphometric analysis of relevant A. turkanensis and M. bishopi specimens preserving the anterior palate, maxillary canines and incisors. Results indicate that the anterior dentognathic morphologies of A. turkanensis and M. bishopi are distinct and represent significantly dissimilar feeding adaptations. Specifically, M. bishopi lacks the elongated and anteriorly narrow premaxilla, lateral incisors that are more posterior and mesially positioned relative to the central incisors, and pronounced yet evenly distributed mesial curvature of the maxillary canine that are shared by A. turkanensis and extant pitheciins. Given that A. turkanensis anterior dentognathic morphology is functionally convergent with extant pitheciins to the exclusion of M. bishopi, it is likely that M. bishopi and A. turkanensis have dissimilar feeding adaptations. Although a systematic analysis is required to verify these species at the generic and species level, the absence of any substantial morphological similarity in their anterior dentognathic anatomy is most consistent with the interpretation that M. bishopi and A. turkanensis represent, at the least, different species.


Asunto(s)
Adaptación Biológica , Catarrinos/anatomía & histología , Diente Canino/anatomía & histología , Fósiles/anatomía & histología , Incisivo/anatomía & histología , Hueso Paladar/anatomía & histología , África Oriental , Animales , Dieta , Femenino , Masculino
11.
J Exp Biol ; 220(Pt 24): 4703-4710, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29074703

RESUMEN

Sea otters represent an interesting model for studies of mammalian feeding evolution. Although they are marine mammals, sea otters returned to the sea relatively recently and feed at the surface. Therefore, they represent a transitional stage of aquatic adaptation. Currently no feeding performance studies of sea otters have been conducted. The main objective of this study was to characterize the feeding kinematic profile in sea otters. It was hypothesized that sea otters would exhibit a terrestrial feeding behavior and that they forcefully crush hard prey at large gapes. As a result, biting kinematics would be congruent with biting behavior reported for their terrestrial ancestors, thus providing additional evidence that raptorial biting is a conserved behavior even in recently aquatic mammals. Sea otters consistently used a durophagous raptorial biting mode characterized by large gapes, large gape angles and lack of lateral gape occlusion. The shorter skulls and mandibles of sea otters, along with increased mechanical advantages of the masseter and increased bite force, form a repertoire of functional traits for durophagy. Here we consider durophagy to be a specialized raptorial biting feeding mode. A comparison of feeding kinematics of wild versus captive sea otters showed no significant differences in lateral kinematic profiles, and only minor differences in three frontal kinematic profiles, which included a slower maximum opening gape velocity, a slower maximum gape opening velocity, and a slower maximum closing gape velocity in captive sea otters. Data indicate functional innovations for producing large bite forces at wide gape and gape angles.


Asunto(s)
Conducta Alimentaria , Nutrias/fisiología , Animales , Fenómenos Biomecánicos , Fuerza de la Mordida
13.
J Fish Biol ; 89(3): 1551-69, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27349202

RESUMEN

Teleocichla preta nov. sp. inhabits the rapids along the Rio Xingu and lower portion of the Rio Iriri. It is the largest species in the genus, reaching 121·3 mm standard length (LS ) while others do not reach more than 87·8 mm LS . Teleocichla preta is distinguished from all other species of Teleocichla by the unique blackish (in live specimens) or dark brown (preserved specimens) overall colouration of the body, which masks the faint vertical bars or zig-zag pattern of blotches on the flanks. Teleocichla preta also has a deeper body and a deep laterally compressed caudal peduncle, unlike any other congener, as well as a stout lower pharyngeal tooth plate bearing molariform teeth on its median area.


Asunto(s)
Cíclidos/clasificación , Animales , Brasil , Femenino , Masculino , Ríos
14.
Proc Biol Sci ; 282(1804): 20142490, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25716785

RESUMEN

Amazonia contains one of the world's richest biotas, but origins of this diversity remain obscure. Onset of the Amazon River drainage at approximately 10.5 Ma represented a major shift in Neotropical ecosystems, and proto-Amazonian biotas just prior to this pivotal episode are integral to understanding origins of Amazonian biodiversity, yet vertebrate fossil evidence is extraordinarily rare. Two new species-rich bonebeds from late Middle Miocene proto-Amazonian deposits of northeastern Peru document the same hyperdiverse assemblage of seven co-occurring crocodylian species. Besides the large-bodied Purussaurus and Mourasuchus, all other crocodylians are new taxa, including a stem caiman-Gnatusuchus pebasensis-bearing a massive shovel-shaped mandible, procumbent anterior and globular posterior teeth, and a mammal-like diastema. This unusual species is an extreme exemplar of a radiation of small caimans with crushing dentitions recording peculiar feeding strategies correlated with a peak in proto-Amazonian molluscan diversity and abundance. These faunas evolved within dysoxic marshes and swamps of the long-lived Pebas Mega-Wetland System and declined with inception of the transcontinental Amazon drainage, favouring diversification of longirostrine crocodylians and more modern generalist-feeding caimans. The rise and demise of distinctive, highly productive aquatic ecosystems substantially influenced evolution of Amazonian biodiversity hotspots of crocodylians and other organisms throughout the Neogene.


Asunto(s)
Caimanes y Cocodrilos/anatomía & histología , Caimanes y Cocodrilos/fisiología , Evolución Biológica , Fósiles , Especiación Genética , Humedales , Caimanes y Cocodrilos/clasificación , Animales , Biodiversidad , Perú , Filogenia
15.
J Anat ; 227(3): 341-51, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26183820

RESUMEN

Growth affects the performance of structure, so the pattern of growth must influence the role of a structure and an organism. Because animal performance is linked to morphological specialization, ontogenetic change in size may influence an organism's biological role. High bite force generation is presumably selected for in durophagous taxa. Therefore, these animals provide an excellent study system for investigating biomechanical consequences of growth on performance. An ontogenetic series of 27 cownose rays (Rhinoptera bonasus) were dissected in order to develop a biomechanical model of the feeding mechanism, which was then compared with bite forces measured from live rays. Mechanical advantage of the feeding apparatus was generally conserved throughout ontogeny, while an increase in the mass and cross-sectional area of the jaw adductors resulted in allometric gains in bite force generation. Of primary importance to forceful biting in this taxon is the use of a fibrocartilaginous tendon associated with the insertion of the primary jaw adductor division. This tendon may serve to redirect muscle forces anteriorly, transmitting them within the plane of biting. Measured bite forces obtained through electrostimulation of the jaw adductors in live rays were higher than predicted, possibly due to differences in specific tension of actual batoid muscle and that used in the model. Mass-specific bite forces in these rays are the highest recorded for elasmobranchs. Cownose rays exemplify a species that, through allometric growth of bite performance and morphological novelties, have expanded their ecological performance over ontogeny.


Asunto(s)
Maxilares , Músculos Masticadores , Rajidae , Animales , Fenómenos Biomecánicos , Fuerza de la Mordida , Conducta Alimentaria , Maxilares/anatomía & histología , Maxilares/fisiología , Masticación/fisiología , Músculos Masticadores/anatomía & histología , Músculos Masticadores/fisiología , Modelos Biológicos , Rajidae/anatomía & histología , Rajidae/fisiología , Tendones/anatomía & histología , Tendones/fisiología
16.
J Exp Biol ; 218(Pt 17): 2705-11, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26139660

RESUMEN

In addition to breaking hard prey items, the teeth of durophagous predators must also resist failure under high loads. To understand the effects of morphology on tooth resistance to failure, finite element models were used to examine differences in total strain energy (J), first principal strain and the distribution of strains in a diversity of canonical durophagous tooth morphologies. By changing the way loads were applied to the models, I was also able to model the effects of large and small prey items. Tooth models with overall convex morphologies have higher in-model strains than those with a flat or concave occlusal surface. When a cusp is added to the tooth model, taller or thinner cusps increase in-model strain. While there is little difference in the relationships between tooth morphology and strain measurements for most models, there is a marked difference between effects of the large and small prey loads on the concave and flat tooth morphologies. Comparing these data with measurements of force required by these same morphologies to break prey items illustrates functional trade-offs between the need to prevent tooth failure under high loads by minimizing in-tooth strain versus the drive to reduce the total applied force.


Asunto(s)
Modelos Anatómicos , Diente/anatomía & histología , Diente/fisiología , Adaptación Biológica , Animales , Fenómenos Biomecánicos/fisiología , Fuerza de la Mordida , Análisis de Elementos Finitos , Dureza , Conducta Predatoria , Estrés Mecánico , Vertebrados/anatomía & histología , Vertebrados/fisiología
17.
J Exp Biol ; 218(Pt 22): 3658-70, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26417016

RESUMEN

The swimming crab Portunus trituberculatus is a durophagous brachyuran. Right-handed crabs are predominant, but left-handed crabs are also found in nature. Left-handedness may arise from loss of the right crusher. We examined whether heterochely (morphology) was correlated with differences in closing force (physical property) and handedness (behaviour). The closing force was stronger in larger chela with greater apodeme height and handedness resided in the chela with stronger closing force. With loss of the right chela (autotomy), handedness transitioned from the right to left chela, and all crabs were left-handed thereafter. Reversed handedness was accompanied with a reduction of size and closing force in the regenerated right chela, and growth of the original left chela. After handedness reversal, dentition on the left dactylus of the newly-converted crusher was close to that of the original right crusher, but did not attain the same shape, even after 10 moults. Left-handed crabs were significantly worse than right-handed crabs at crushing hard-shelled prey. Chela formation was symmetrical in the zoea, and heterochely and right-handedness started in the megalopa, regardless of maternal handedness. Since the left chela is capable of being the crusher, heterochely may be caused by differences in morphogenetic velocity between the right and left chelae, under a signal discriminating right from left. Right-handedness is an attribute of P. trituberculatus, that would be inheritable across generations. It is probable that right-handedness was used in the earliest durophagous crabs, and this trend has been succeeded to extant species.


Asunto(s)
Braquiuros/fisiología , Animales , Braquiuros/crecimiento & desarrollo , Extremidades/crecimiento & desarrollo , Extremidades/fisiología , Femenino , Lateralidad Funcional , Larva/crecimiento & desarrollo , Larva/fisiología , Masculino , Morfogénesis
18.
J Anat ; 224(5): 603-13, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24517163

RESUMEN

The placodonts of the Triassic period (~252-201 mya) represent one of the earliest and most extreme specialisations to a durophagous diet of any known reptile group. Exceptionally enlarged crushing tooth plates on the maxilla, dentary and palatine cooperated to form functional crushing areas in the buccal cavity. However, the extreme size of these teeth, combined with the unusual way they occluded, constrained how replacement occurred. Using an extensive micro-computed tomographic dataset of 11 specimens that span all geographic regions and placodont morphotypes, tooth replacement patterns were investigated. In addition, the previously undescribed dental morphologies and formulae of Chinese taxa are described for the first time and incorporated into the analysis. Placodonts have a unique tooth replacement pattern and results follow a phylogenetic trend. The plesiomorphic Placodus species show many replacement teeth at various stages of growth, with little or no discernible pattern. On the other hand, the more derived cyamodontoids tend to have fewer replacement teeth growing at any one time, replacing teeth unilaterally and/or in functional units, thus maintaining at least one functional crushing area at all times. The highly derived placochelyids have fewer teeth and, as a result, only have one or two replacement teeth in the upper jaw. This supports previous suggestions that these taxa had an alternative diet to other placodonts. Importantly, all specimens show at least one replacement tooth growing at the most posterior palatine tooth plates, indicating increased wear at this point and thus the most efficient functional crushing area.


Asunto(s)
Reptiles/crecimiento & desarrollo , Diente/crecimiento & desarrollo , Animales , Evolución Biológica , Dentición , Microtomografía por Rayos X
19.
Biol Lett ; 10(4): 20140203, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24759373

RESUMEN

Cougars (Puma concolor) are one of only two large cats in North America to have survived the Late Pleistocene extinction (LPE), yet the specific key(s) to their relative success remains unknown. Here, we compare the dental microwear textures of Pleistocene cougars with sympatric felids from the La Brea Tar Pits in southern California that went extinct at the LPE (Panthera atrox and Smilodon fatalis), to clarify potential dietary factors that led to the cougar's persistence through the LPE. We further assess whether the physical properties of food consumed have changed over time when compared with modern cougars in southern California. Using dental microwear texture analysis (DMTA), which quantifies surface features in three dimensions, we find that modern and Pleistocene cougars are not significantly different from modern African lions in any DMTA attributes, suggesting moderate durophagy (i.e. bone processing). Pleistocene cougars from La Brea have significantly greater complexity and textural fill volume than Panthera atrox (inferred to have primarily consumed flesh from fresh kills) and significantly greater variance in complexity values than S. fatalis. Ultimately, these results suggest that cougars already used or adopted a more generalized dietary strategy during the Pleistocene that may have been key to their subsequent success.


Asunto(s)
Conducta Alimentaria , Puma/fisiología , Animales , Dieta , Extinción Biológica , Imagenología Tridimensional , Paleodontología , Puma/anatomía & histología , Propiedades de Superficie , Diente/anatomía & histología
20.
Am J Phys Anthropol ; 154(3): 413-23, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24810136

RESUMEN

We present information on food hardness and monthly dietary changes in female sooty mangabeys (Cercocebus atys) in Tai Forest, Ivory Coast to reassess the hypothesis that thick molar enamel is parsimoniously interpreted as a response to consumption of hard foods during fallback periods. We demonstrate that the diet of sooty mangabeys varies seasonally, but that one food--Sacoglottis gabonensis--is the most frequently consumed food every month and year round. This food is the hardest item in the sooty diet. Given that this species has among the thickest enamel within the primate order, a plausible conclusion is that thick enamel in this taxon evolved not in response to seasonally critical function or fallback foods, but rather to the habitual, year round processing of a mechanically protected foodstuff. These data serve as a caution against de rigueur interpretations that reliance on fallback foods during lean periods primarily explains the evolution of thick enamel in primates.


Asunto(s)
Adaptación Fisiológica/fisiología , Cercocebus atys , Esmalte Dental , Conducta Alimentaria/fisiología , Animales , Cercocebus atys/anatomía & histología , Cercocebus atys/fisiología , Côte d'Ivoire , Esmalte Dental/anatomía & histología , Esmalte Dental/química , Esmalte Dental/fisiología , Femenino , Dureza
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda