Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mult Scler ; 28(12): 1973-1982, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35735004

RESUMEN

BACKGROUND: Cognitive impairment occurs in the earliest stages of multiple sclerosis (MS) together with altered functional connectivity (FC). OBJECTIVE: The aim of this study was to investigate the evolution of dynamic FC states in early MS and their role in shaping cognitive decline. METHODS: Overall, 32 patients were enrolled after their first neurological episode suggestive of MS and underwent cognitive evaluation and resting-state functional MRI (fMRI) over 5 years. In addition, 28 healthy controls were included at baseline. RESULTS: Cognitive performance was stable during the first year and declined after 5 years.At baseline, the number of transitions between states was lower in MS compared to controls (p = 0.01). Over time, frequency of high FC states decreased in patients (p = 0.047) and increased in state with low FC (p = 0.035). Cognitive performance at Year 5 was best predicted by the mean connectivity of high FC state at Year 1. CONCLUSION: Patients with early MS showed reduced functional network dynamics at baseline. Longitudinal changes showed longer time spent in a state of low FC but less time spent and more connectivity disturbance in more integrative states with high within- and between-network FC. Disturbed FC within this more integrative state was predictive of future cognitive decline.


Asunto(s)
Disfunción Cognitiva , Esclerosis Múltiple , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen
2.
Brain Topogr ; 33(6): 720-732, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32803623

RESUMEN

The default mode network (DMN) reflects spontaneous activity in the resting human brain. Previous studies examined the difference in static functional connectivity (sFC) of the DMN between eyes-closed (EC) and eyes-open (EO) using the resting-state functional magnetic resonance imaging (rs-fMRI) data. However, it remains unclear about the difference in dynamic FC (dFC) of the DMN between EC and EO. To this end, we acquired rs-fMRI data from 19 subjects in two different statues (EC and EO) and selected a seed region-of-interest (ROI) at the posterior cingulate cortex (PCC) to generate the sFC map. We identified the DMN consisting of ten clusters that were significantly correlated with the PCC. By using a sliding-window approach, we analyzed the dFC of the DMN. Then, the Newman's modularity algorithm was applied to identify dFC states based on nodal total connectivity strength in each sliding-window. In addition, graph-theory based network analysis was applied to detect dynamic topological properties of the DMN. We identified three group-level dFC states (State1, 2 and 3) that reflects the strength of dFC within the DMN between EC and EO in different time. The following results were reached: (1) no significant difference in sFC between EC and EO, (2) dFC was lower in State2 but higher in State3 in EC than in EO, (3) lower clustering coefficient, local efficiency, and global efficiency, but higher characteristic path length in State2 in EC than in EO, and (4) lower nodal strength in the precuneus (PCUN), PCC, angular gyrus (ANG), middle temporal gyrus (MTG) and medial prefrontal cortex (MPFC) in State3 in EC. These results suggested different resting statuses, EC and EO, may induce different time-varying neural activity in the DMN.


Asunto(s)
Mapeo Encefálico , Red en Modo Predeterminado , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Descanso
3.
Hum Brain Mapp ; 40(9): 2771-2786, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30864248

RESUMEN

Neurobiological models to explain vulnerability of major depressive disorder (MDD) are scarce and previous functional magnetic resonance imaging studies mostly examined "static" functional connectivity (FC). Knowing that FC constantly evolves over time, it becomes important to assess how FC dynamically differs in remitted-MDD patients vulnerable for new depressive episodes. Using a recently developed method to examine dynamic FC, we characterized re-emerging FC states during rest in 51 antidepressant-free MDD patients at high risk of recurrence (≥2 previous episodes), and 35 healthy controls. We examined differences in occurrence, duration, and switching profiles of FC states after neutral and sad mood induction. Remitted MDD patients showed a decreased probability of an FC state (p < 0.005) consisting of an extensive network connecting frontal areas-important for cognitive control-with default mode network, striatum, and salience areas, involved in emotional and self-referential processing. Even when this FC state was observed in patients, it lasted shorter (p < 0.005) and was less likely to switch to a smaller prefrontal-striatum network (p < 0.005). Differences between patients and controls decreased after sad mood induction. Further, the duration of this FC state increased in remitted patients after sad mood induction but not in controls (p < 0.05). Our findings suggest reduced ability of remitted-MDD patients, in neutral mood, to access a clinically relevant control network involved in the interplay between externally and internally oriented attention. When recovering from sad mood, remitted recurrent MDD appears to employ a compensatory mechanism to access this FC state. This study provides a novel neurobiological profile of MDD vulnerability.


Asunto(s)
Corteza Cerebral/fisiopatología , Conectoma , Trastorno Depresivo Mayor/fisiopatología , Función Ejecutiva/fisiología , Neostriado/fisiopatología , Red Nerviosa/fisiopatología , Adulto , Anciano , Corteza Cerebral/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neostriado/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Inducción de Remisión
4.
Neuroimage ; 160: 84-96, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28343985

RESUMEN

Over the last decade, we have observed a revolution in brain structural and functional Connectomics. On one hand, we have an ever-more detailed characterization of the brain's white matter structural connectome. On the other, we have a repertoire of consistent functional networks that form and dissipate over time during rest. Despite the evident spatial similarities between structural and functional connectivity, understanding how different time-evolving functional networks spontaneously emerge from a single structural network requires analyzing the problem from the perspective of complex network dynamics and dynamical system's theory. In that direction, bottom-up computational models are useful tools to test theoretical scenarios and depict the mechanisms at the genesis of resting-state activity. Here, we provide an overview of the different mechanistic scenarios proposed over the last decade via computational models. Importantly, we highlight the need of incorporating additional model constraints considering the properties observed at finer temporal scales with MEG and the dynamical properties of FC in order to refresh the list of candidate scenarios.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Modelos Neurológicos , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Humanos
5.
Neuroimage ; 163: 437-455, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28916180

RESUMEN

Resting-state functional connectivity is a powerful tool for studying human functional brain networks. Temporal fluctuations in functional connectivity, i.e., dynamic functional connectivity (dFC), are thought to reflect dynamic changes in brain organization and non-stationary switching of discrete brain states. However, recent studies have suggested that dFC might be attributed to sampling variability of static FC. Despite this controversy, a detailed exposition of stationarity and statistical testing of dFC is lacking in the literature. This article seeks an in-depth exploration of these statistical issues at a level appealing to both neuroscientists and statisticians. We first review the statistical notion of stationarity, emphasizing its reliance on ensemble statistics. In contrast, all FC measures depend on sample statistics. An important consequence is that the space of stationary signals is much broader than expected, e.g., encompassing hidden markov models (HMM) widely used to extract discrete brain states. In other words, stationarity does not imply the absence of brain states. We then expound the assumptions underlying the statistical testing of dFC. It turns out that the two popular frameworks - phase randomization (PR) and autoregressive randomization (ARR) - generate stationary, linear, Gaussian null data. Therefore, statistical rejection can be due to non-stationarity, nonlinearity and/or non-Gaussianity. For example, the null hypothesis can be rejected for the stationary HMM due to nonlinearity and non-Gaussianity. Finally, we show that a common form of ARR (bivariate ARR) is susceptible to false positives compared with PR and an adapted version of ARR (multivariate ARR). Application of PR and multivariate ARR to Human Connectome Project data suggests that the stationary, linear, Gaussian null hypothesis cannot be rejected for most participants. However, failure to reject the null hypothesis does not imply that static FC can fully explain dFC. We find that first order AR models explain temporal FC fluctuations significantly better than static FC models. Since first order AR models encode both static FC and one-lag FC, this suggests the presence of dynamical information beyond static FC. Furthermore, even in subjects where the null hypothesis was rejected, AR models explain temporal FC fluctuations significantly better than a popular HMM, suggesting the lack of discrete states (as measured by resting-state fMRI). Overall, our results suggest that AR models are not only useful as a means for generating null data, but may be a powerful tool for exploring the dynamical properties of resting-state fMRI. Finally, we discuss how apparent contradictions in the growing dFC literature might be reconciled.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Modelos Neurológicos , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos
6.
Neuroimage Clin ; 37: 103332, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36708666

RESUMEN

BACKGROUND AND PURPOSE: Stroke may lead to widespread functional and structural reorganization in the brain. Several studies have reported a potential correlation between functional network changes and structural network changes after stroke. However, it is unclear how functional-structural relationships change dynamically over the course of one resting-state fMRI scan in patients following a stroke; furthermore, we know little about their relationships with the severity of motor dysfunction. Therefore, this study aimed to investigate dynamic functional and structural connectivity (FC-SC) coupling and its relationship with motor function in subcortical stroke from the perspective of network dynamics. METHODS: Resting-state functional magnetic resonance imaging and diffusion tensor imaging were obtained from 39 S patients (19 severe and 20 moderate) and 22 healthy controls (HCs). Brain structural networks were constructed by tracking fiber tracts in diffusion tensor imaging, and structural network topology metrics were calculated using a graph-theoretic approach. Independent component analysis, the sliding window method, and k-means clustering were used to calculate dynamic functional connectivity and to estimate different dynamic connectivity states. The temporal patterns and intergroup differences of FC-SC coupling were analyzed within each state. We also calculated dynamic FC-SC coupling and its relationship with functional network efficiency. In addition, the correlation between FC-SC coupling and the Fugl-Meyer assessment scale was analyzed. RESULTS: For SC, stroke patients showed lower global efficiency than HCs (all P < 0.05), and severely affected patients had a higher characteristic path length (P = 0.003). For FC and FC-SC coupling, stroke patients predominantly showed lower local efficiency and reduced FC-SC coupling than HCs in state 2 (all P < 0.05). Furthermore, severely affected patients also showed lower local efficiency (P = 0.031) and reduced FC-SC coupling (P = 0.043) in state 3, which was markedly linked to the severity of motor dysfunction after stroke. In addition, FC-SC coupling was correlated with functional network efficiency in state 2 in moderately affected patients (r = 0.631, P = 0.004) but not significantly in severely affected patients. CONCLUSIONS: Stroke patients show abnormal dynamic FC-SC coupling characteristics, especially in individuals with severe injuries. These findings may contribute to a better understanding of the anatomical functional interactions underlying motor deficits in stroke patients and provide useful information for personalized rehabilitation strategies.


Asunto(s)
Imagen de Difusión Tensora , Accidente Cerebrovascular , Humanos , Imagen de Difusión Tensora/métodos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Mapeo Encefálico/métodos
7.
Front Neurol ; 14: 1284227, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107647

RESUMEN

Background: Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) are characterized by abnormal functional connectivity (FC) of default-mode network (DMN), salience network (SN), and central executive network (CEN). Static FC (sFC) and dynamic FC (dFC) combined with triple network model can better study the dynamic and static changes of brain networks, and improve its potential diagnostic value in the diagnosis of AD spectrum disorders. Methods: Differences in sFC values and dFC variability patterns among the three brain networks of the three groups (53 AD patients, 40 aMCI patients, and 40 NCs) were computed by ANOVA using Gaussian Random Field theory (GRF) correction. The correlation between FC values (sFC values and dFC variability) in the three networks and cognitive scores (MMSE and MoCA) in AD and aMCI groups was analyzed separately. Results: Within the DMN network, there were significant differences of sFC values in right/left medial superior frontal gyrus and dFC variability in left opercular part inferior frontal gyrus and right dorsolateral superior frontal gyrus among the three groups. Within the CEN network, there were significant differences of sFC values in left superior parietal gyrus. Within the SN network, there were significant differences of dFC variability in right Cerebelum_7b and left opercular part inferior frontal gyrus. In addition, there was a significant negative correlation between FC values (sFC values of CEN and dFC variability of SN) and MMSE and MoCA scores. Conclusion: It suggests that sFC, dFC combined with triple network model can be considered as potential biomarkers for AD and aMCI.

8.
Front Neural Circuits ; 14: 570583, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33071760

RESUMEN

Brain function depends on the flexible and dynamic coordination of functional subsystems within distributed neural networks operating on multiple scales. Recent progress has been made in the characterization of functional connectivity (FC) at the whole-brain scale from a dynamic, rather than static, perspective, but its validity for cognitive sciences remains under debate. Here, we analyzed brain activity recorded with functional Magnetic Resonance Imaging from 71 healthy participants evaluated for depressive symptoms after a relationship breakup based on the conventional Major Depression Inventory (MDI). We compared both static and dynamic FC patterns between participants reporting high and low depressive symptoms. Between-group differences in static FC were estimated using a standard pipeline for network-based statistic (NBS). Additionally, FC was analyzed from a dynamic perspective by characterizing the occupancy, lifetime, and transition profiles of recurrent FC patterns. Recurrent FC patterns were defined by clustering the BOLD phase-locking patterns obtained using leading eigenvector dynamics analysis (LEiDA). NBS analysis revealed a brain subsystem exhibiting significantly lower within-subsystem correlation values in more depressed participants (high MDI). This subsystem predominantly comprised connections between regions of the default mode network (i.e., precuneus) and regions outside this network. On the other hand, LEiDA results showed that high MDI participants engaged more in a state connecting regions of the default mode, memory retrieval, and frontoparietal network (p-FDR = 0.012); and less in a state connecting mostly the visual and dorsal attention systems (p-FDR = 0.004). Although both our analyses on static and dynamic FC implicate the role of the precuneus in depressive symptoms, only including the temporal evolution of BOLD FC helped to disentangle over time the distinct configurations in which this region plays a role. This finding further indicates that a holistic understanding of brain function can only be gleaned if the temporal dynamics of FC is included.


Asunto(s)
Encéfalo/diagnóstico por imagen , Depresión/diagnóstico por imagen , Adolescente , Adulto , Encéfalo/fisiopatología , Red en Modo Predeterminado/diagnóstico por imagen , Red en Modo Predeterminado/fisiopatología , Depresión/fisiopatología , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Visuales/diagnóstico por imagen , Vías Visuales/fisiopatología , Adulto Joven
9.
Front Neurol ; 9: 448, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29963004

RESUMEN

Time-varying connectivity analyses have indicated idiopathic generalized epilepsy (IGE) could cause significant abnormalities in dynamic connective pattern within and between resting-state sub-networks (RSNs). However, previous studies mainly focused on the IGE-induced dynamic changes of functional connectivity (FC) in specific frequency band (0.01-0.08 Hz or 0.01-0.15 Hz), ignoring the changes across different frequency bands. Here, 24 patients with IGE characterized by juvenile myoclonic epilepsy (JME) and 24 matched healthy controls were studied using a data-driven frequency decomposition approach and a sliding window approach. The RSN dynamics, including intra-RSN dynamics and inter-RSN dynamics, was further calculated to investigate dynamic FC changes within and between RSNs in JME patients in each decomposed frequency band. Compared to healthy controls, JME patients not only showed frequency-dependent decrease in intra-RSN dynamics within multiple RSNs but also exhibited fluctuant alterations in inter-RSN dynamics among several RSNs over different frequency bands especially in the ventral/dorsal attention network and the subcortical network. Additionally, the disease severity had significantly negative correlations with both intra-RSN dynamics within the subcortical network and inter-RSN dynamics between the subcortical network and the default network at the lower frequency band (0.0095-0.0195 Hz). These results suggested that abnormal dynamic FC within and between RSNs in JME occurs at multiple frequency bands and the lower frequency band (0.0095-0.0195 Hz) was probably more sensitive to JME-caused dynamic FC abnormalities. The frequency subdivision and selection are potentially helpful for detecting particular changes of dynamic FC in JME.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda