Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
EMBO J ; 41(16): e110581, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35822879

RESUMEN

Hepatitis C virus mRNA contains an internal ribosome entry site (IRES) that mediates end-independent translation initiation, requiring a subset of eukaryotic initiation factors (eIFs). Biochemical studies revealed that direct binding of the IRES to the 40S ribosomal subunit places the initiation codon into the P site, where it base pairs with eIF2-bound Met-tRNAiMet forming a 48S initiation complex. Subsequently, eIF5 and eIF5B mediate subunit joining, yielding an elongation-competent 80S ribosome. Initiation can also proceed without eIF2, in which case Met-tRNAiMet is recruited directly by eIF5B. However, the structures of initiation complexes assembled on the HCV IRES, the transitions between different states, and the accompanying conformational changes have remained unknown. To fill these gaps, we now obtained cryo-EM structures of IRES initiation complexes, at resolutions up to 3.5 Å, that cover all major stages from the initial ribosomal association, through eIF2-containing 48S initiation complexes, to eIF5B-containing complexes immediately prior to subunit joining. These structures provide insights into the dynamic network of 40S/IRES contacts, highlight the role of IRES domain II, and reveal conformational changes that occur during the transition from eIF2- to eIF5B-containing 48S complexes and prepare them for subunit joining.


Asunto(s)
Hepacivirus , Hepatitis C , Factor 2 Eucariótico de Iniciación/metabolismo , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatitis C/metabolismo , Humanos , Sitios Internos de Entrada al Ribosoma , Biosíntesis de Proteínas , ARN Viral/genética , ARN Viral/metabolismo , Ribosomas/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(15): e2301081120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011204

RESUMEN

Ribosome biogenesis is essential for protein synthesis in gene expression. Yeast eIF5B has been shown biochemically to facilitate 18S ribosomal RNA (rRNA) 3' end maturation during late-stage 40S ribosomal subunit assembly and gate the transition from translation initiation to elongation. But the genome-wide effects of eIF5B have not been studied at the single-nucleotide resolution in any organism, and 18S rRNA 3' end maturation is poorly understood in plants. Arabidopsis HOT3/eIF5B1 was found to promote development and heat stress acclimation by translational regulation, but its molecular function remained unknown. Here, we show that HOT3 is a late-stage ribosome biogenesis factor that facilitates 18S rRNA 3' end processing and is a translation initiation factor that globally impacts the transition from initiation to elongation. By developing and implementing 18S-ENDseq, we revealed previously unknown events in 18S rRNA 3' end maturation or metabolism. We quantitatively defined processing hotspots and identified adenylation as the prevalent nontemplated RNA addition at the 3' ends of pre-18S rRNAs. Aberrant 18S rRNA maturation in hot3 further activated RNA interference to generate RDR1- and DCL2/4-dependent risiRNAs mainly from a 3' portion of 18S rRNA. We further showed that risiRNAs in hot3 were predominantly localized in ribosome-free fractions and were not responsible for the 18S rRNA maturation or translation initiation defects in hot3. Our study uncovered the molecular function of HOT3/eIF5B1 in 18S rRNA maturation at the late 40S assembly stage and revealed the regulatory crosstalk among ribosome biogenesis, messenger RNA (mRNA) translation initiation, and siRNA biogenesis in plants.


Asunto(s)
Arabidopsis , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Interferencia de ARN , Ribosomas/metabolismo , Biosíntesis de Proteínas , Saccharomyces cerevisiae/metabolismo , Precursores del ARN/genética
3.
Proc Natl Acad Sci U S A ; 117(3): 1429-1437, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31900355

RESUMEN

Translation initiation controls protein synthesis by regulating the delivery of the first aminoacyl-tRNA to messenger RNAs (mRNAs). In eukaryotes, initiation is sophisticated, requiring dozens of protein factors and 2 GTP-regulated steps. The GTPase eIF5B gates progression to elongation during the second GTP-regulated step. Using electron cryomicroscopy (cryo-EM), we imaged an in vitro initiation reaction which is set up with purified yeast components and designed to stall with eIF5B and a nonhydrolyzable GTP analog. A high-resolution reconstruction of a "dead-end" intermediate at 3.6 Šallowed us to visualize eIF5B in its ribosome-bound conformation. We identified a stretch of residues in eIF5B, located close to the γ-phosphate of GTP and centered around the universally conserved tyrosine 837 (Saccharomyces cerevisiae numbering), that contacts the catalytic histidine of eIF5B (H480). Site-directed mutagenesis confirmed the essential role that these residues play in regulating ribosome binding, GTP hydrolysis, and translation initiation both in vitro and in vivo. Our results illustrate how eIF5B transmits the presence of a properly delivered initiator aminoacyl-tRNA at the P site to the distant GTPase center through interdomain communications and underscore the importance of the multidomain architecture in translation factors to sense and communicate ribosomal states.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Guanosina Trifosfato/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Sitios de Unión , Microscopía por Crioelectrón , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Hidrólisis , Mutagénesis Sitio-Dirigida , Unión Proteica , Ribosomas/metabolismo , Saccharomyces cerevisiae
4.
BMC Cancer ; 21(1): 1022, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34525951

RESUMEN

BACKGROUND: Eukaryotic translation initiation factors (eIFs) are the key factors to synthesize translation initiation complexes during the synthesis of eukaryotic proteins. Besides, eIFs are especially important in regulating the immune function of tumor cells. However, the effect mechanism of eIFs in prostate cancer remains to be studied, which is precisely the purpose of this study. METHODS: In this study, three groups of prostate cancer cells were investigated. One group had its eIF5B gene knocked down; another group had its Programmed death 1 (PD-L1) overexpressed; the final group had its Wild-type p53-induced gene 1 (Wig1) overexpressed. Genetic alterations of the cancer cells were performed by plasmid transfection. The expression of PD-L1 mRNA was detected by quantitative real-time PCR (qRT-PCR), and the expressions of PD-L1 and eIF5B proteins were observed by western blot assays. Cell Counting Kit-8 (CCK-8), flow cytometry, Transwell and Transwell martrigel were used to investigated cell proliferation, apoptosis, migration and invasion, respectively. The effect of peripheral blood mononuclear cells (PBMCs) on tumor cells was observed, and the interaction between eIF5B and Wig1 was revealed by co-immunoprecipitation (CoIP) assay. Finally, the effects of interference with eIF5B expression on the growth, morphology, and immunity of the tumor, as well as PD-L1 expression in the tumor, were verified by tumor xenograft assays in vivo. RESULTS: Compared with normal prostate epithelial cells, prostate cancer cells revealed higher expressions of eIF5B and PD-L1 interference with eIF-5B expression can inhibit the proliferation, migration, invasion and PD-L1 expression of prostate cancer cells. Meanwhile, the cancer cell group with interference with eIF5B expression also demonstrated greater, apoptosis and higher vulnerability to PBMCs. CoIP assays showed that Wig1 could bind to eIF5B in prostate cancer cells, and its overexpression can inhibit the proliferation, migration, invasion and PD-L1 expression of cancer cells while promoting apoptosis. Moreover, interference with eIF5B expression can inhibit tumor growth, destroy tumor morphology, and suppress the proliferation of tumor cells. CONCLUSION: eIF5B can promote the expression of PD-L1 by interacting with Wig1. Besides, interference with eIF5B expression can inhibit the proliferation, migration, invasion and immunosuppressive response of prostate cancer cells. This study proposes a new target, eIF5B, for immunotherapy of prostate cancer.


Asunto(s)
Antígeno B7-H1/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Apoptosis/genética , Antígeno B7-H1/inmunología , Biomarcadores de Tumor/metabolismo , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Factores Eucarióticos de Iniciación/genética , Citometría de Flujo , Silenciador del Gen , Genes p53/fisiología , Humanos , Inmunoprecipitación , L-Lactato Deshidrogenasa/metabolismo , Leucocitos Mononucleares/inmunología , Linfocitos Infiltrantes de Tumor , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica/genética , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/patología , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Transfección/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Biochem Cell Biol ; 98(6): 647-652, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31671279

RESUMEN

Glioblastoma multiforme (GBM) is among the deadliest cancers, owing in part to complex inter- and intra-tumor heterogeneity and the presence of a population of stem-like cells called brain tumour stem cells (BTSCs/BTICs). These cancer stem cells survive treatment and confer resistance to the current therapies - namely, radiation and the chemotherapeutic, temozolomide (TMZ). TMZ induces cell death by alkylating DNA, and BTSCs resist this mechanism via a robust DNA damage response. Hence, recent studies aimed to sensitize BTSCs to TMZ using combination therapy, such as inhibition of DNA repair machinery. We have previously demonstrated in established GBM cell lines that eukaryotic initiation factor 5B (eIF5B) promotes the translation of pro-survival and anti-apoptotic proteins. Consequently, silencing eIF5B sensitizes these cells to TRAIL-induced apoptosis. However, established cell lines do not always recapitulate the features of human glioma. Therefore, we investigated this mechanism in patient-derived BTSCs. We show that silencing eIF5B leads to increased TMZ sensitivity in two BTSC lines: BT25 and BT48. Depletion of eIF5B decreases the levels of anti-apoptotic proteins in BT48 and sensitizes these cells to TMZ-induced activation of caspase-3, cleavage of PARP, and apoptosis. We suggest that eIF5B represents a rational target to sensitize GBM tumors to the current standard-of-care.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Temozolomida/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Factores Eucarióticos de Iniciación/genética , Humanos , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/patología
6.
Cell Mol Life Sci ; 75(23): 4287-4300, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30019215

RESUMEN

The initiator tRNA (Met-tRNA i Met ) at the P site of the small ribosomal subunit plays an important role in the recognition of an mRNA start codon. In bacteria, the initiator tRNA carrier, IF2, facilitates the positioning of Met-tRNA i Met on the small ribosomal subunit. Eukarya contain the Met-tRNA i Met carrier, eIF2 (unrelated to IF2), whose carrier activity is inhibited under stress conditions by the phosphorylation of its α-subunit by stress-activated eIF2α kinases. The stress-resistant initiator tRNA carrier, eIF2A, was recently uncovered and shown to load Met-tRNA i Met on the 40S ribosomal subunit associated with a stress-resistant mRNA under stress conditions. Here, we report that eIF2A interacts and functionally cooperates with eIF5B (a homolog of IF2), and we describe the functional domains of eIF2A that are required for its binding of Met-tRNA i Met , eIF5B, and a stress-resistant mRNA. The results indicate that the eukaryotic eIF5B-eIF2A complex functionally mimics the bacterial IF2 containing ribosome-, GTP-, and initiator tRNA-binding domains in a single polypeptide.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , ARN de Transferencia de Metionina/metabolismo , eIF-2 Quinasa/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Factor 2 Eucariótico de Iniciación/genética , Factores Eucarióticos de Iniciación/genética , Células HEK293 , Humanos , Mutación , Unión Proteica , Interferencia de ARN , ARN de Transferencia de Metionina/genética , Homología de Secuencia de Aminoácido , eIF-2 Quinasa/genética
7.
Int J Mol Sci ; 20(3)2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30700020

RESUMEN

The rising demand for powerful oncolytic virotherapy agents has led to the identification of Maraba virus, one of the most potent oncolytic viruses from Rhabdoviridae family which displays high selectivity for killing malignant cells and low cytotoxicity in normal cells. Although the virus is readied to be used for clinical trials, the interactions between the virus and the host cells is still unclear. Using a newly developed interferon-sensitive mutant Maraba virus (MG1), we have identified two key regulators of global translation (4E-BP1 and eIF2α) as being involved in the regulation of protein synthesis in the infected cells. Despite the translational arrest upon viral stress, we showed an up-regulation of anti-apoptotic Bcl-xL protein that provides a survival benefit for the host cell, yet facilitates effective viral propagation. Given the fact that eIF5B canonically regulates 60S ribosome subunit end joining and is able to replace the role of eIF2 in delivering initiator tRNA to the 40S ribosome subunit upon the phosphorylation of eIF2α we have tested whether eIF5B mediates the translation of target mRNAs during MG1 infection. Our results show that the inhibition of eIF5B significantly down-regulates the level of Bcl-xL steady-state mRNA, thus indirectly attenuates viral propagation.


Asunto(s)
Virus Oncolíticos/fisiología , Factor 2 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Viroterapia Oncolítica , Fosforilación , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteína bcl-X/metabolismo
8.
Int J Mol Sci ; 19(12)2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30551605

RESUMEN

A variety of cellular stresses lead to global translation attenuation due to phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2), which decreases the availability of the eIF2-GTP-Met-tRNAi ternary complex. However, a subset of mRNAs continues to be translated by non-canonical mechanisms under these conditions. In fact, although translation initiation of activating transcription factor 4 (ATF4) is normally repressed by an upstream open reading frame (uORF), a decreased availability of ternary complex leads to increased translation of the main ATF4-coding ORF. We show here that siRNA-mediated depletion of eIF5B-which can substitute for eIF2 in delivering Met-tRNAi-leads to increased levels of ATF4 protein in mammalian cells. This de-repression is not due to phosphorylation of eIF2α under conditions of eIF5B depletion. Although eIF5B depletion leads to a modest increase in the steady-state levels of ATF4 mRNA, we show by polysome profiling that the depletion of eIF5B enhances ATF4 expression primarily at the level of translation. Moreover, eIF5B silencing increases the expression of an ATF4-luciferase translational reporter by a mechanism requiring the repressive uORF2. Further experiments suggest that eIF5B cooperates with eIF1A and eIF5, but not eIF2A, to facilitate the uORF2-mediated repression of ATF4 translation.


Asunto(s)
Factor de Transcripción Activador 4/genética , Endonucleasas/metabolismo , Factor 1 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Factor de Transcripción Activador 4/metabolismo , Línea Celular , Células HEK293 , Humanos , Factores de Iniciación de Péptidos/genética , Fosforilación , Polirribosomas/metabolismo , Biosíntesis de Proteínas , ARN Interferente Pequeño/farmacología , Proteínas de Unión al ARN/genética , Factor 5A Eucariótico de Iniciación de Traducción
9.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 12): 3090-8, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25478828

RESUMEN

eIF5B and eIF1A are two translation-initiation factors that are universally conserved among all kingdoms. They show a unique interaction in eukaryotes which is important for ribosomal subunit joining. Here, the structures of two isolated forms of yeast eIF5B and of the eIF5B-eIF1A complex (eIF1A and eIF5B do not contain the respective N-terminal domains) are reported. The eIF5B-eIF1A structure shows that the C-terminal tail of eIF1A binds to eIF5B domain IV, while the core domain of eIF1A is invisible in the electron-density map. Although the individual domains in all structures of eIF5B or archaeal IF5B (aIF5B) are similar, their domain arrangements are significantly different, indicating high structural flexibility, which is advantageous for conformational change during ribosomal subunit joining. Based on these structures, models of eIF5B, eIF1A and tRNAi(Met) on the 80S ribosome were built. The models suggest that the interaction between the eIF1A C-terminal tail and eIF5B helps tRNAi(Met) to bind to eIF5B domain IV, thus preventing tRNAi(Met) dissociation, stabilizing the interface for subunit joining and providing a checkpoint for correct ribosome assembly.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Factores Eucarióticos de Iniciación/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Cristalografía por Rayos X , Factor 1 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Modelos Moleculares , Conformación Proteica , Ribosomas/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
J Microbiol Biotechnol ; 34(6): 1348-1355, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38755008

RESUMEN

The eukaryotic translation initiation factor eIF5B is a bacterial IF2 ortholog that plays an important role in ribosome joining and stabilization of the initiator tRNA on the AUG start codon during the initiation of translation. We identified the fluorophenyl oxazole derivative 2,2-dibromo-1-(2-(4-fluorophenyl)benzo[d]oxazol-5-yl)ethanone quinolinol as an inhibitor of fungal protein synthesis using an in vitro translation assay in a fungal system. Mutants resistant to this compound were isolated in Saccharomyces cerevisiae and were demonstrated to contain amino acid substitutions in eIF5B that conferred the resistance. These results suggest that eIF5B is a target of potential antifungal compound and that mutation of eIF5B can confer resistance. Subsequent identification of 16 other mutants revealed that primary mutations clustered mainly on domain 2 of eIF5B and secondarily mainly on domain 4. Domain 2 has been implicated in the interaction with the small ribosomal subunit during initiation of translation. The tested translation inhibitor could act by weakening the functional contact between eIF5B and the ribosome complex. This data provides the basis for the development of a new family of antifungals.


Asunto(s)
Antifúngicos , Factores Eucarióticos de Iniciación , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Factores Eucarióticos de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/genética , Antifúngicos/farmacología , Mutación , Biosíntesis de Proteínas/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/farmacología , Sustitución de Aminoácidos
11.
Biochimie ; 217: 31-41, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36773835

RESUMEN

In eukaryotes and in archaea late steps of translation initiation involve the two initiation factors e/aIF5B and e/aIF1A. These two factors are also orthologous to the bacterial IF2 and IF1 proteins, respectively. Recent cryo-EM studies showed how e/aIF5B and e/aIF1A cooperate on the small ribosomal subunit to favor the binding of the large ribosomal subunit and the formation of a ribosome competent for elongation. In this review, pioneering studies and recent biochemical and structural results providing new insights into the role of a/eIF5B in archaea and eukaryotes will be presented. Recent structures will also be compared to orthologous bacterial initiation complexes to highlight domain-specific features and the evolution of initiation mechanisms.


Asunto(s)
Factor 1 Eucariótico de Iniciación , Factores de Iniciación de Péptidos , Factor 1 Eucariótico de Iniciación/análisis , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/metabolismo , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/análisis , Factores de Iniciación de Péptidos/química , Bacterias/metabolismo , Ribosomas/metabolismo
12.
Cell Rep ; 42(10): 113283, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37862172

RESUMEN

Cells activate stress response pathways to survive adverse conditions. Such responses involve the inhibition of global cap-dependent translation. This inhibition is a block that essential transcripts must escape via alternative methods of translation initiation, e.g., an internal ribosome entry site (IRES). IRESs have distinct structures and generally require a limited repertoire of translation factors. Cellular IRESs have been identified in many critical cellular stress response transcripts. We previously identified cellular IRESs in the murine insulin receptor (Insr) and insulin-like growth factor 1 receptor (Igf1r) transcripts and demonstrated their resistance to eukaryotic initiation factor 4F (eIF4F) inhibition. Here, we find that eIF5B preferentially promotes Insr, Igf1r, and hepatitis C virus IRES activity through a non-canonical mechanism that requires its highly charged and disordered N terminus. We find that the N-terminal region of eIF5B can drive cytoplasmic granule formation. This eIF5B granule is triggered by cellular stress and is sufficient to specifically promote IRES activity.


Asunto(s)
Hepatitis C , Sitios Internos de Entrada al Ribosoma , Animales , Ratones , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Factor 4F Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas
13.
Oncol Res ; 30(2): 77-87, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37305324

RESUMEN

In this study, we investigated the functional role of eukaryotic initiation factor 5B (EIF5B) in hepatocellular carcinoma (HCC) and the underlying mechanisms. Bioinformatics analysis demonstrated that the EIF5B transcript and protein levels as well as the EIF5Bcopy number were significantly higher in the HCC tissues compared with the non-cancerous liver tissues. Down-regulation of EIF5B significantly decreased proliferation and invasiveness of the HCC cells. Furthermore, EIF5B knockdown suppressed epithelial-mesenchymal transition (EMT) and the cancer stem cell (CSC) phenotype. Down-regulation of EIF5B also increased the sensitivity of HCC cells to 5-fluorouracil (5-FU). In the HCC cells, activation of the NF-kappa B signaling pathway and IkB phosphorylation was significantly reduced by EIF5B silencing. IGF2BP3 increased the stability of the EIF5B mRNA in an m6A-dependent manner. Our data suggested that EIF5B is a promising prognostic biomarker and therapeutic target in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Línea Celular , Biología Computacional , Fluorouracilo
14.
Cell Stress Chaperones ; 26(1): 253-264, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33123915

RESUMEN

During the integrated stress response (ISR), global translation initiation is attenuated; however, noncanonical mechanisms allow for the continued translation of specific transcripts. Eukaryotic initiation factor 5B (eIF5B) has been shown to play a critical role in canonical translation as well as in noncanonical mechanisms involving internal ribosome entry site (IRES) and upstream open reading frame (uORF) elements. The uORF-mediated translation regulation of activating transcription factor 4 (ATF4) mRNA plays a pivotal role in the cellular ISR. Our recent study confirmed that eIF5B depletion removes uORF2-mediated repression of ATF4 translation, which results in the upregulation of growth arrest and DNA damage-inducible protein 34 (GADD34) transcription. Accordingly, we hypothesized that eIF5B depletion may reprogram the transcriptome profile of the cell. Here, we employed genome-wide transcriptional analysis on eIF5B-depleted cells. Further, we validate the up- and downregulation of several transcripts from our RNA-seq data using RT-qPCR. We identified upregulated pathways including cellular response to endoplasmic reticulum (ER) stress, and mucin-type O-glycan biosynthesis, as well as downregulated pathways of transcriptional misregulation in cancer and T cell receptor signaling. We also confirm that depletion of eIF5B leads to activation of the c-Jun N-terminal kinase (JNK) arm of the mitogen-activated protein kinase (MAPK) pathway. This data suggests that depletion of eIF5B reprograms the cellular transcriptome and influences critical cellular processes such as ER stress and ISR.


Asunto(s)
Estrés del Retículo Endoplásmico , Factores Eucarióticos de Iniciación/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Interferencia de ARN , Transcriptoma , Activación Enzimática , Células HEK293 , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , ARN Interferente Pequeño/genética
15.
Front Genet ; 12: 737433, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512736

RESUMEN

Translational control (TC) is one the crucial steps that dictate gene expression and alter the outcome of physiological process like programmed cell death, metabolism, and proliferation in a eukaryotic cell. TC occurs mainly at the translation initiation stage. The initiation factor eIF5B tightly regulates global translation initiation and facilitates the expression of a subset of proteins involved in proliferation, inhibition of apoptosis, and immunosuppression under stress conditions. eIF5B enhances the expression of these survival proteins to allow cancer cells to metastasize and resist chemotherapy. Using eIF5B as a biomarker or drug target could help with diagnosis and improved prognosis, respectively. To achieve these goals, it is crucial to understand the role of eIF5B in translational regulation. This review recapitulates eIF5B's regulatory roles in the translation initiation of viral mRNA as well as the cellular mRNAs in cancer and stressed eukaryotic cells.

16.
Cell Rep ; 22(1): 17-26, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29298419

RESUMEN

The eukaryotic translation initiation factor 5B (eIF5B) is a homolog of IF2, an ancient translation factor that enables initiator methionine-tRNAiMet (met-tRNAiMet) loading on prokaryotic ribosomes. While it can be traced back to the last universal common ancestor, eIF5B is curiously dispensable in modern aerobic yeast and mammalian cells. Here, we show that eIF5B is an essential element of the cellular hypoxic cap-dependent protein synthesis machinery. System-wide interrogation of dynamic translation machineries by MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) demonstrated augmented eIF5B activity in hypoxic translating ribosomes. Global translatome studies revealed central carbon metabolism, cellular hypoxic adaptation, and ATF4-mediated stress response as major eIF5B-dependent pathways. These primordial processes rely on eIF5B even in the presence of oxygen and active eIF2, the canonical recruiter of met-tRNAiMet in eukaryotes. We suggest that aerobic eukarya retained eIF5B/IF2 to remodel anaerobic pathways during episodes of oxygen deficiency.


Asunto(s)
Carbono/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Oxígeno/metabolismo , Biosíntesis de Proteínas , Células A549 , Factor de Transcripción Activador 4/metabolismo , Aerobiosis , Hipoxia de la Célula , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Células MCF-7
17.
Oncotarget ; 7(38): 62327-62339, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27694689

RESUMEN

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide. Despite the therapeutic advances that have been achieved during the past decade, the molecular pathogenesis underlying HCC remains poorly understood. In this study, we discovered that increased expression eukaryotic translation initiation factor 5B (eIF5B) was significantly correlated with aggressive characteristics and associated with shorter recurrence-free survival (RFS) and overall survival (OS) in a large cohort. We also found that eIF5B promoted HCC cell proliferation and migration in vitro and in vivo partly through increasing ASAP1 expression. Our findings strongly suggested that eIF5B could promote HCC progression and be considered a prognostic biomarker for HCC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Carcinoma Hepatocelular/genética , Factores Eucarióticos de Iniciación/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Supervivencia sin Enfermedad , Estudios de Seguimiento , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Hígado/patología , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Pronóstico , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Análisis de Matrices Tisulares , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Translation (Austin) ; 1(1): e24419, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-26824019

RESUMEN

Current literature using biochemical assays, structural analyses and genetic manipulations has reported that the key factors associated with the faithful matching of the initiator met-tRNA to the start codon AUG are eIF1, eIF1A and eIF5. However, these findings were in each case based upon the utilization of a single mRNA, perhaps with variations. In an effort to evaluate this general finding, we tested six different mRNAs. Our results confirm that these three proteins are important for start site selection. However, two additional findings would not have been predicted. The first is that eIF1 plays a major role in selecting against start codons that are in close proximity to the 5' end of the mRNA (i.e., less than 21 nucleotides). Second, the addition of eIF5B had nearly the same affect as the addition of eIF5. This is unexpected given the different roles that eIF5 and eIF5B have been proposed to play in the 80S initiation pathway. Finally, although many of the mRNAs appear to respond qualitatively in a similar manner, the quantitative differences noted suggest that there is still some mRNA specific character to our findings. This character may be the length of the 5' UTR, involvement of an IRES element, secondary structure either 5' or 3' of the start codon or specific sequence/structure elements that interact with RNA binding proteins or the ribosome.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda