RESUMEN
Lead (Pb) poisoning and CO2-induced global warming represent two exemplary environmental and energy issues threatening humanity. Various biomass-derived materials are reported to take up Pb and convert CO2 electrochemically into low-valent carbon species, but these works address the problems separately rather than settle the issues simultaneously. In this work, cheap, natural ellagic acid (EA) extracted from common plants is adopted to assemble a stable metal-organic framework (MOF), EA-Pb, by effective capture of Pb2+ ions in an aqueous medium (removal rate close to 99%). EA-Pb represents the first structurally well-defined Pb-based MOF showing selective electrocatalytic CO2-to-HCOO- conversion with Faradaic efficiency (FE) of 95.37% at -1.08 V versus RHE. The catalytic mechanism is studied by 13CO2 labeling, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and theoretical calculation. The use of EA-Pb as an electrocatalyst for CO2 reduction represents a 2-in-1 solution of converting detrimental wastes (Pb2+) as well as natural resources (EA) into wealth (electrocatalytic EA-Pb) for addressing the global warming issue.
RESUMEN
Renewable energy-driven conversion of CO2 to value-added fuels and chemicals via electrochemical CO2 reduction reaction (CO2RR) technology is regarded as a promising strategy with substantial environmental and economic benefits to achieve carbon neutrality. Because of its sluggish kinetics and complex reaction paths, developing robust catalytic materials with exceptional selectivity to the targeted products is one of the core issues, especially for extensively concerned Cu-based materials. Manipulating Cu species by anionic coordination is identified as an effective way to improve electrocatalytic performance, in terms of modulating active sites and regulating structural reconstruction. This review elaborates on recent discoveries and progress of Cu-based CO2RR catalytic materials enhanced by anionic coordination control, regarding reaction paths, functional mechanisms, and roles of different non-metallic anions in catalysis. Finally, the review concludes with some personal insights and provides challenges and perspectives on the utilization of this strategy to build desirable electrocatalysts.
RESUMEN
Due to the higher value of deeply-reduced products, electrocatalytic CO2 reduction reaction (CO2 RR) to multi-electron-transfer products has received more attention. One attractive strategy is to decouple individual steps within the complicated pathway via multi-component catalysts design in the concept of tandem catalysts. Here, a composite of Cu@BIF-144(Zn) (BIF = boron imidazolate framework) is synthesized by using an anion framework BIF-144(Zn) as host to impregnate Cu2+ ions that are further reduced to Cu nanoparticles (NPs) via in situ electrochemical transformation. Due to the microenvironment modulation by functional BH(im)3 - on the pore surfaces, the Cu@BIF-144(Zn) catalyst exhibits a perfect synergetic effect between the BIF-144(Zn) host and the Cu NP guest during CO2 RR. Electrochemistry results show that Cu@BIF-144(Zn) catalysts can effectively enhance the selectivity and activity for the CO2 reduction to multi-electron-transfer products, with the maximum FECH4 value of 41.8% at -1.6 V and FEC2H4 value of 12.9% at -1.5 V versus RHE. The Cu@BIF-144(Zn) tandem catalyst with CO-rich microenvironment generated by the Zn catalytic center in the BIF-144(Zn) skeleton enhanced deep reduction on the incorporated Cu NPs for the CO2 RR to multi-electron-transfer products.
RESUMEN
Conversion of CO2 into value-added products by electrocatalysis provides a promising way to mitigate energy and environmental problems. However, it is greatly limited by the scaling relationship between the adsorption strength of intermediates. Herein, Mn and Ni single-atom catalysts, homonuclear dual-atom catalysts (DACs), and heteronuclear DACs are synthesized. Aberration-corrected annular dark-field scanning transmission electron microscopy (ADF-STEM) and X-ray absorption spectroscopy characterization uncovered the existence of the MnâNi pair in MnâNi DAC. X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy reveal that Mn donated electrons to Ni atoms in MnâNi DAC. Consequently, MnâNi DAC displays the highest CO Faradaic efficiency of 98.7% at -0.7 V versus reversible hydrogen electrode (vs RHE) with CO partial current density of 16.8 mA cm-2. Density functional theory calculations disclose that the scaling relationship between the binding strength of intermediates is broken, resulting in superior performance for ECR to CO over MnâNiâNC catalyst.
RESUMEN
Electrocatalytic carbon-dioxide reduction reactions (ECO2 RR) are one of the most rational techniques to control one's carbon footprint. The desired product formation depends on deliberate reaction kinetics and a choice of electron-proton contribution. Herein the usage of novel CuS active centers decorated over stable 1T metallic N-WS2 /WO3 nanohybrids as an efficient selective formate conversion electrocatalyst with regard to ECO2 RR is reported. The preferred reaction pathway is identified as *OCHO, which is reduced (by gaining H+ + e- ) to HCOO- (HCOO- path) as the primary product. More significantly, at -1.3 V versus RHE yield of FEHCOO - is 55.6% ± 0.5 with a Jgeo of -125.05 mA cm-2 for CuS@1T-N-WS2 /WO3 nanohybrids. In addition, predominant catalytic activity, selectivity, and stability properties are observed; further post-mortem analysis demonstrates the choice of material importance. The present work describes an impressive approach to develop highly active electrocatalysts for selective ECO2 RR applications.
RESUMEN
The electrocatalytic CO2 reduction (ECR) to produce valuable fuel is a promising process for addressing atmospheric CO2 emissions and energy shortages. In this study, Cl-anion doped cadmium sulfide structures were directly fabricated on a nickel foam surface (Cl/CdS-NF) using an inâ situ hydrothermal method. The Cl-anion doping could significantly improve ECR activity for CO production in ionic liquid and acetonitrile mixed solution, compared to pristine CdS. The highest Faradaic efficiency of CO is 98.1 % on a Cl/CdS-NF-2 cathode with an excellent current density of 137.0â mA cm-2 at -2.25â V versus ferrocene/ferrocenium (Fc/Fc+ , all potentials are versus Fc/Fc+ in this study). In particular, CO Faradaic efficiencies remained above 80 % in a wide potential range of -2.05â V to -2.45â V and a maximum partial current density (192.6â mA cm-2 ) was achieved at -2.35â V. The Cl/CdS-NF-2, with appropriate Cl anions, displayed abundant active sites and a suitable electronic structure, resulting in outstanding ECR activity. Density functional theory calculations further demonstrated that Cl/CdS is beneficial for increasing the adsorption capacities of *COOH and *H, which can enhance the activity of the ECR toward CO and suppress the hydrogen evolution reaction.
RESUMEN
In the process of electroreduction of carbon dioxide (eCO2RR) to multi-carbon (C2+) products, it is imperative to enhance the concentration of key intermediate species on the catalyst surface. The utilization of micro-nano reactors to achieve confinement effects has been widely observed in various catalytic reactions, yet it has seldom been employed in eCO2RR. Here, we present a novel nanoreactor composed of stacked CuS nanosheets for eCO2RR to C2+ products. In comparison to catalyst comprising of nanosheet with open space, the C-C coupling within this confined nanospace is significantly enhanced, resulting in the increase of Faraday efficiency (FE) of C2+ products to 53 %. In situ infrared (IR) spectroscopy reveals the confinement and enrichment of key intermediate by the nanoreactor. Our research findings demonstrate that a meticulously designed nanoreactor can elevate the selectivity of C2+ products, thereby aiding in the design of eCO2RR catalysts.
RESUMEN
Crafting vacancies offers an efficient route to upgrade the selectivity and productivity of nanomaterials for CO2 electroreduction. However, defective nanoelectrocatalysts bear catalytically active vacancies mostly on their surface, with the rest of the interior atoms adiaphorous for CO2-to-product conversion. Herein, taking nanosilver as a prototype, we arouse the catalytic ability of internal atoms by creating homogeneous vacancies realized via electrochemical reconstruction of silver halides. The homogeneous vacancies-rich nanosilver, compared to the surface vacancies-dominated counterpart, features a more positive d-band center to trigger an intensified hybridization of the Ag_d orbital with the C_P orbital of the *COOH intermediate, leading to an accelerated CO2-to-CO transformation. These structural and electronic merits allow a large-area (9 cm-2) electrode to generate nearly pure CO with a CO/H2 Faradaic efficiency ratio of 6932 at an applied current of 7.5 A. These findings highlight the potential of designing new-type defects in realizing the industrialization of electrocatalytic CO2 reduction.
RESUMEN
Two-dimensional (2D) bismuthene is predicted to possess intriguing physical properties, but its preparation remains challenging due to the high surface energy constraint. Herein, we report a sandwiched epitaxy growth strategy for the controllable preparation of 2D bismuthene between a Cu foil substrate and a h-BN covering layer. The top h-BN layer plays a crucial role in suppressing the structural transformation of bismuthene and compensating for the charge transfer from the bismuthene to the Cu(111) surface. The bismuthene nanoflakes present a superior thermal stability up to 500 °C in air, attributed to the passivation effect of the h-BN layer. Moreover, the bismuthene nanoflakes demonstrate an ultrahigh faradaic efficiency of 96.3% for formate production in the electrochemical CO2 reduction reaction, which is among the highest reported for Bi-based electrocatalysts. This study offers a promising approach to simultaneously synthesize and protect 2D bismuthene nanoflakes, which can be extended to other 2D materials with a high surface energy.
RESUMEN
The electrocatalytic CO2 reduction reaction (CO2RR) is a sustainable route for converting CO2 into value-added fuels and feedstocks, advancing a carbon-neutral economy. The electrolyte critically influences CO2 utilization, reaction rate and product selectivity. While typically conducted in neutral/alkaline aqueous electrolytes, the CO2RR faces challenges due to (bi)carbonate formation and its crossover to the anolyte, reducing efficiency and stability. Acidic media offer promise by suppressing these processes, but the low Faradaic efficiency, especially for multicarbon (C2+) products, and poor electrocatalyst stability persist. The effective regulation of the reaction environment at the cathode is essential to favor the CO2RR over the competitive hydrogen evolution reaction (HER) and improve long-term stability. This review examines progress in the acidic CO2RR, focusing on reaction environment regulation strategies such as electrocatalyst design, electrode modification and electrolyte engineering to promote the CO2RR. Insights into the reaction mechanisms via in situ/operando techniques and theoretical calculations are discussed, along with critical challenges and future directions in acidic CO2RR technology, offering guidance for developing practical systems for the carbon-neutral community.
RESUMEN
Zn-based catalysts hold great potential to replace the noble metal-based ones for CO2 reduction reaction (CO2 RR). Undercoordinated Zn (Znδ+ ) sites may serve as the active sites for enhanced CO production by optimizing the binding energy of *COOH intermediates. However, there is relatively less exploration into the dynamic evolution and stability of Znδ+ sites during CO2 reduction process. Herein, we present ZnO, Znδ+ /ZnO and Zn as catalysts by varying the applied reduction potential. Theoretical studies reveal that Znδ+ sites could suppress HER and HCOOH production to induce CO generation. And Znδ+ /ZnO presents the highest CO selectivity (FECO 70.9 % at -1.48â V vs. RHE) compared to Zn and ZnO. Furthermore, we propose a CeO2 nanotube with confinement effect and Ce3+ /Ce4+ redox to stabilize Znδ+ species. The hollow core-shell structure of the Znδ+ /ZnO/CeO2 catalyst enables to extremely expose electrochemically active area while maintaining the Znδ+ sites with long-time stability. Certainly, the target catalyst affords a FECO of 76.9 % at -1.08â V vs. RHE and no significant decay of CO selectivity in excess of 18â h.
RESUMEN
The acidic electrocatalytic conversion of CO2 to multi-carbon (C2+) oxygenates is of great importance in view of enhancing carbon utilization efficiency and generating products with high energy densities, but suffering from low selectivity and activity. Herein, we synthesized Ag-Cu alloy catalyst with highly rough surface, by which the selectivity to C2+ oxygenates can be greatly improved. In a strongly acidic condition (pH=0.75), the maximum C2+ products Faradaic efficiency (FE) and C2+ oxygenates FE reach 80.4 % and 56.5 % at -1.9â V versus reversible hydrogen electrode, respectively, with a ratio of FEC2+ oxygenates to FEethylene up to 2.36. At this condition, the C2+ oxygenates partial current density is as high as 480â mA cm-2. The in situ spectra, control experiments and theoretical calculations indicate that the high generation of C2+ oxygenates over the catalyst originates from its large surface roughness and Ag alloying.
RESUMEN
How to achieve CO2 electroreduction in high efficiency is a current challenge with the mechanism not well understood yet. The metal-organic cages with multiple metal sites, tunable active centers, and well-defined microenvironments may provide a promising catalyst model. Here, we report self-assembly of Ag4L4 type cuboctahedral cages from coordination dynamic Ag+ ion and triangular imidazolyl ligand 1,3,5-tris(1-benzylbenzimidazol-2-yl) benzene (Ag-MOC-X, X=NO3, ClO4, BF4) via anion template effect. Notably, Ag-MOC-NO3 achieves the highest CO faradaic efficiency in pH-universal electrolytes of 86.1 % (acidic), 94.1 % (neutral) and 95.3 % (alkaline), much higher than those of Ag-MOC-ClO4 and Ag-MOC-BF4 with just different counter anions. In situ attenuated total reflection Fourier transform infrared spectroscopy observes formation of vital intermediate *COOH for CO2-to-CO conversion. The density functional theory calculations suggest that the adsorption of CO2 on unsaturated Ag-site is stabilized by C-Hâ â â O hydrogen-bonding of CO2 in a microenvironment surrounded by three benzimidazole rings, and the activation of CO2 is dependent on the coordination dynamics of Ag-centers modulated by the hosted anions through Agâ â â X interactions. This work offers a supramolecular electrocatalytic strategy based on Ag-coordination geometry and host-guest interaction regulation of MOCs as high-efficient electrocatalysts for CO2 reduction to CO which is a key intermediate in chemical industry process.
RESUMEN
The catalyst-reconstruction makes it challenging to clarify the practical active sites and unveil the actual reaction mechanism during the CO2 electroreduction reaction (CO2 RR). However, currently the impact of the electrolyte microenvironment in which the electrolyte is in contact with the catalyst is overlooked and might induce a chemical evolution, thus confusing the reconstruction process and mechanism. In this work, the carbonate adsorption properties of metal oxides were investigated, and the mechanism of how the electrolyte carbonate affect the chemical evolution of catalysts were discussed. Notably, Bi2 O3 with weak carbonate adsorption underwent a chemical reconstruction to form the Bi2 O2 CO3 /Bi2 O3 heterostructure. Furthermore, in situ and ex situ characterizations unveiled the formation mechanism of the heterostructure. The in situ formed Bi2 O2 CO3 /Bi2 O3 heterostructure with strong electron interaction served as the highly active structure for CO2 RR, achieving a formate Faradaic efficiency of 98.1 % at -0.8 Vvs RHE . Theoretical calculations demonstrate that the significantly tuned p-orbit electrons of the Bi sites in Bi2 O2 CO3 /Bi2 O3 optimized the adsorption of the intermediate and lowered the energy barrier for the formation of *OCHO. This work elucidates the mechanism of electrolyte microenvironment for affecting catalyst reconstruction, which contributes to the understanding of reconstruction process and clarification of the actual catalytic structure.
RESUMEN
Breaking the D4h symmetry in the square-planar M-N4 configuration of macrocycle molecular catalysts has witnessed enhanced electrocatalytic activity, but at the expense of electrochemical stability. Herein, we hypothesize that the lability of the active Cu-N3 motifs in the N-confused copper (II) tetraphenylporphyrin (CuNCP) could be overcome by applying pulsed potential electrolysis (PPE) during electrocatalytic carbon dioxide reduction. We find that applying PPE can indeed enhance the CH4 selectivity on CuNCP by 3 folds to reach the partial current density of 170â mA cm-2 at >60 % Faradaic efficiency (FE) in flow cell. However, combined ex situ X-ray diffraction (XRD), transmission electron microscope (TEM), and in situ X-ray absorption spectroscopy (XAS), infrared (IR), Raman, scanning electrochemical microscopy (SECM) characterizations reveal that, in a prolonged time scale, the decomplexation of CuNCP is unavoidable, and the promoted water dissociation under high anodic bias with lowered pH and enriched protons facilitates successive hydrogenation of *CO on the irreversibly reduced Cu nanoparticles, leading to the improved CH4 selectivity. As a key note, this study signifies the adaption of electrolytic protocol to the catalyst structure for tailoring local chemical environment towards efficient CO2 reduction.
RESUMEN
Owing to the significant attention directed toward alloy metal nanoclusters, it is crucial to explore the relationship between their structures and their performance during the electrocatalytic CO2 reduction reaction (eCO2RR) and discover potential synergistic effects for the design of novel functional nanoclusters. However, a lack of suitable analogs makes this investigation challenging. In this study, we synthesized a well-defined pair of structural analogs, [Au8Cu1(SAdm)4(Dppm)3Cl]2+ and [Au8Ag1(SAdm)4(Dppm)3Cl]2+ (Au8Cu1 and Au8Ag1, respectively), and characterized them. Single-crystal X-ray diffraction analysis revealed that Au8M1 (M=Cu/Ag) consists of a tetrahedral Au3M1 core capped by three (Dppm)Au staples, one Au2(SR)3 staple, one lone SR ligand, and a terminal Cl ligand. Ag and Cu were doped at the same site in the Au8M1 nanoclusters, which has rarely been reported. Au8Cu1 exhibited a significantly higher CO Faradaic efficiency (FECO; ~82.2 %) during eCO2RR than that of Au8Ag1 (FECO; ~33.1 %). Density functional theory calculations demonstrated that *COOH is the key intermediate in the reduction of CO2 to CO. The formation of *COOH on Au8Cu1 is more thermodynamically stable than on Au8Ag1, and Au8Cu1 shows a smaller *CO formation energy than that on Au8Ag1, which promotes the reduction of CO2. We believe that the structural analogs Au8Cu1 and Au8Ag1 offer a suitable template for the in-depth investigation of structure-property correlations at the atomic level.
RESUMEN
2D functional porous frameworks offer a platform for studying the structure-activity relationships during electrocatalytic CO2 reduction reaction (CO2RR). Yet challenges still exist to breakthrough key limitations on site configuration (typical M-O4 or M-N4 units) and product selectivity (common CO2-to-CO conversion). Herein, a novel 2D metal-organic framework (MOF) with planar asymmetric N/O mixed coordinated Cu-N1O3 unit is constructed, labeled as BIT-119. When applied to CO2RR, BIT-119 could reach a CO2-to-C2 conversion with C2 partial current density ranging from 36.9 to 165.0â mA cm-2 in flow cell. Compared to the typical symmetric Cu-O4 units, asymmetric Cu-N1O3 units lead to the re-distribution of local electron structure, regulating the adsorption strength of several key adsorbates and the following catalytic selectivity. From experimental and theoretical analyses, Cu-N1O3 sites could simultaneously couple the atop-type (on Cu site) and bridge-type (on Cu-N site) adsorption of *C1 species to reach the CO2-to-C2 conversion. This work broadens the feasible C-C coupling mechanism on 2D functional porous frameworks.
RESUMEN
Single atomic catalysts (SACs) offer a superior platform for studying the structure-activity relationships during electrocatalytic CO2 reduction reaction (CO2RR). Yet challenges still exist to obtain well-defined and novel site configuration owing to the uncertainty of functional framework-derived SACs through calcination. Herein, a novel Bi-N2O2 site supported on the (1 1 0) plane of hydrogen-bonded organic framework (HOF) is reported directly for CO2RR. In flow cell, the target catalyst Bi1-HOF maintains a faradaic efficiency (FE) HCOOH of over 90 % at a wide potential window of 1.4â V. The corresponding partial current density ranges from 113.3 to 747.0â mA cm-2. And, Bi1-HOF exhibits a long-term stability of over 30â h under a successive potential-step test with a current density of 100-400â mA cm-2. Density function theory (DFT) calculations illustrate that the novel Bi-N2O2 site supported on the (1 1 0) plane of HOF effectively induces the oriented electron transfer from Bi center to CO2 molecule, reaching an enhanced CO2 activation and reduction. Besides, this study offers a versatile method to reach series of M-N2O2 sites with regulable metal centers via the same intercalation mechanism, broadening the platform for studying the structure-activity relationships during CO2RR.
RESUMEN
Optimizing the coordination structure and microscopic reaction environment of isolated metal sites is promising for boosting catalytic activity for electrocatalytic CO2 reduction reaction (CO2 RR) but is still challenging to achieve. Herein, a newly electrostatic induced self-assembly strategy for encapsulating isolated Ni-C3 N1 moiety into hollow nano-reactor as I-Ni SA/NHCRs is developed, which achieves FECO of 94.91% at -0.80 V, the CO partial current density of ≈-15.35 mA cm-2 , superior to that with outer Ni-C2 N2 moiety (94.47%, ≈-12.06 mA cm-2 ), or without hollow structure (92.30%, ≈-5.39 mA cm-2 ), and high FECO of ≈98.41% at 100 mA cm-2 in flow cell. COMSOL multiphysics finite-element method and density functional theory (DFT) calculation illustrate that the excellent activity for I-Ni SA/NHCRs should be attributed to the structure-enhanced kinetics process caused by its hollow nano-reactor structure and unique Ni-C3 N1 moiety, which can enrich electron on Ni sites and positively shift d-band center to the Fermi level to accelerate the adsorption and activation of CO2 molecule and *COOH formation. Meanwhile, this strategy also successfully steers the design of encapsulating isolated iron and cobalt sites into nano-reactor, while I-Ni SA/NHCRs-based zinc-CO2 battery assembled with a peak power density of 2.54 mW cm--2 is achieved.
RESUMEN
The precise self-assembly of building blocks at atomic level provides the opportunity to achieve clusters with advanced catalytic properties. However, most of the current self-assembled materials are fabricated by 1/2D assembly of blocks. High dimensional (that is, 3D) assembly is widely believed to improve the performance of cluster. Herein, the effect of 3D assembly on the activity for electrocatalytic CO2 reduction reaction (CO2 RR) is investigated by using a range of clusters (Au8 Ag55 , Au8 Ag57 , Au12 Ag60 ) based on 3D assembly of M13 unit as models. Although three clusters have almost the same sizes and geometric structures, Au8 Ag55 exhibits the best CO2 RR performance due to the strong CO2 adsorption capacity and effective inhibition of H2 evolution competition reaction. The deep insight into the superior activity of Au8 Ag55 is the unique electronic structure attributed to the charge segregation. This study not only demonstrates that the assembly mode greatly affects the catalytic activity, but also offers an idea for rational designing and precisely constructing catalysts with controllable activities.