Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Angew Chem Int Ed Engl ; 63(27): e202403264, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38659076

RESUMEN

In situ cyclized polyacrylonitrile (CPAN) is developed to replace n-type metal oxide semiconductors (TiO2 or SnO2) as an electron selective layer (ESL) for highly efficient and stable n-i-p perovskite solar cells (PSCs). The CPAN layer is fabricated via facile in situ cyclization reaction of polyacrylonitrile (PAN) coated on a conducting glass substrate. The CPAN layer is robust and insoluble in common solvents, and possesses n-type semiconductor properties with a high electron mobility of 4.13×10-3 cm2 V-1 s-1. With the CPAN as an ESL, the PSC affords a power conversion efficiency (PCE) of 23.12 %, which is the highest for the n-i-p PSCs with organic ESLs. Moreover, the device with the CPAN layer holds superior operational stability, maintaining over 90 % of their initial efficiency after 500 h continuous light soaking. These results confirm that the CPAN layer would be a desirable low-cost and efficient ESL for n-i-p PSCs and other photoelectronic devices with high performance and stability.

2.
Small ; 13(2)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28060468

RESUMEN

Despite the rapid increase of efficiency, perovskite solar cells (PSCs) still face some challenges, one of which is the current-voltage hysteresis. Herein, it is reported that yttrium-doped tin dioxide (Y-SnO2 ) electron selective layer (ESL) synthesized by an in situ hydrothermal growth process at 95 °C can significantly reduce the hysteresis and improve the performance of PSCs. Comparison studies reveal two main effects of Y doping of SnO2 ESLs: (1) it promotes the formation of well-aligned and more homogeneous distribution of SnO2 nanosheet arrays (NSAs), which allows better perovskite infiltration, better contacts of perovskite with SnO2 nanosheets, and improves electron transfer from perovskite to ESL; (2) it enlarges the band gap and upshifts the band energy levels, resulting in better energy level alignment with perovskite and reduced charge recombination at NSA/perovskite interfaces. As a result, PSCs using Y-SnO2 NSA ESLs exhibit much less hysteresis and better performance compared with the cells using pristine SnO2 NSA ESLs. The champion cell using Y-SnO2 NSA ESL achieves a photovoltaic conversion efficiency of 17.29% (16.97%) when measured under reverse (forward) voltage scanning and a steady-state efficiency of 16.25%. The results suggest that low-temperature hydrothermal-synthesized Y-SnO2 NSA is a promising ESL for fabricating efficient and hysteresis-less PSC.

3.
Nanomaterials (Basel) ; 10(1)2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31968629

RESUMEN

The recently introduced perovskite solar cell (PSC) technology is a promising candidate for providing low-cost energy for future demands. However, one major concern with the technology can be traced back to morphological defects in the electron selective layer (ESL), which deteriorates the solar cell performance. Pinholes in the ESL may lead to an increased surface recombination rate for holes, if the perovskite absorber layer is in contact with the fluorine-doped tin oxide (FTO) substrate via the pinholes. In this work, we used sol-gel-derived mesoporous TiO2 thin films prepared by block co-polymer templating in combination with dip coating as a model system for investigating the effect of ESL pinholes on the photovoltaic performance of planar heterojunction PSCs. We studied TiO2 films with different porosities and film thicknesses, and observed that the induced pinholes only had a minor impact on the device performance. This suggests that having narrow pinholes with a diameter of about 10 nm in the ESL is in fact not detrimental for the device performance and can even, to some extent improve their performance. A probable reason for this is that the narrow pores in the ordered structure do not allow the perovskite crystals to form interconnected pathways to the underlying FTO substrate. However, for ultrathin (~20 nm) porous layers, an incomplete ESL surface coverage of the FTO layer will further deteriorate the device performance.

4.
ACS Appl Mater Interfaces ; 11(21): 19638-19646, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31094504

RESUMEN

The high-efficiency photocarrier collection at the interfaces plays an important role in improving the performance of perovskite solar cells (PSCs) because the photocarrier effective diffusion lengths in the lead halide perovskite absorbers usually surpass the incident depths of light. Developing the electron selective layer (ESL) that has good interfaces with photoactive perovskite and current collector layer-like fluorine-doped tin oxide (FTO) is actively pursued. Here, an unusual dense film of faceted rutile TiO2 single crystals with a gradient of the Sn4+ dopant grown heteroepitaxially on the FTO layer is obtained by a hydrothermal route and subsequent thermal treatment. Owing to the global features including low concentration of defects, atomically smooth coherent interface with FTO, and gradient doping-induced built-in electric field to promote the collection of photoelectrons in it, an optimal PSC with such a film as the ESL exhibits an efficiency of 17.2% with an open-circuit voltage of 1.1 V and fill factor of 76.1%, which are among the highest values of the PSCs with rutile TiO2 films as ESLs.

5.
Polymers (Basel) ; 10(7)2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-30960650

RESUMEN

In this work, an efficient inverted organic solar cell (OSC) based on the non-fullerene PBDB-T:IT-M blend system is demonstrated by using an aqueous solution processed ZnO electron-selective layer with the whole process temperature ≤150 °C and a thermally evaporated MoO3 hole-selective layer The ZnO selective layer is deposited by aqueous solution and prepared in a low-temperature process, so that it can be compatible with the roll-to-roll process. The proposed device achieves an enhanced power conversion efficiency (PCE) of 9.33% compared with the device based on the high-temperature sol-gel-processed ZnO selective layer, which achieves a PCE of 8.62%. The inverted device also shows good stability, keeping more than 82% of its initial PCE after being stored under ambient air conditions and a humidity of around 40% without any encapsulation for 240 h. The results show the potential for the fabrication of efficient non-fullerene OSCs with low-temperature metal oxide selective layers.

6.
ACS Appl Mater Interfaces ; 9(44): 38373-38380, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29027466

RESUMEN

Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic-inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on the cross section of SnO2-based PS solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having an identical device structure: (1) cells with PS deposited directly on bare fluorine-doped SnO2 (FTO)-coated glass; (2) cells with an intrinsic SnO2 thin layer on the top of FTO as an effective ESL; and (3) cells with the SnO2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO < SnO2-ESL < SnO2 + SAM; this sequence explains the improvements of the fill factor (FF) and open-circuit voltage (Voc). The improvement of the FF from the FTO to SnO2-ESL cells may result from the reduction in voltage loss at the PS/HSL back interface and the improvement of Voc from the prevention of hole recombination at the ESL/PS front interface. The further improvements with adding an SAM is caused by the defect passivation at the ESL/PS interface, and hence, improvement of the junction quality. These nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO2-based ESL material quality and the ESL/PS interface.

7.
ACS Appl Mater Interfaces ; 9(39): 33810-33818, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28884580

RESUMEN

Although some kinds of semiconductor metal oxides (SMOs) have been applied as electron selective layers (ESLs) for planar perovskite solar cells (PSCs), electron transfer is still limited by low electron mobility and defect film formation of SMO ESLs fabricated via low-temperature solution process. Herein, the C70 interlayer between TiO2 and (HC(NH2)2PbI3)x(CH3NH3PbCl3)1-x is prepared by spin-coating and low-temperature annealing for planar n-i-p PSCs. The resultant TiO2/C70 ESL shows good surface morphology, efficient electron extraction, and facilitation of high-quality perovskite film formation, which can be attributed to the suitable nanosize and the superior electronic property of C70 molecules. In comparison with pristine TiO2-based PSCs, the efficiency and hysteresis index are, respectively, enhanced 28% and reduced 76% by adding the C70 interlayer between TiO2 and perovskite on the basis of statistical data of more than 50 cells. With the main advantages of low-temperature process and optimized interface, the champion efficiency of PSCs on flexible substrates could exceed 12% in contrast with the above 18% on rigid substrate.

8.
ACS Appl Mater Interfaces ; 8(13): 8460-6, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-26996215

RESUMEN

Indium oxide (In2O3) as a promising n-type semiconductor material has been widely employed in optoelectronic applications. In this work, we applied low-temperature solution-processed In2O3 nanocrystalline film as an electron selective layer (ESL) in perovskite solar cells (PSCs) for the first time. By taking advantages of good optical and electrical properties of In2O3 such as high mobility, wide band gap, and high transmittance, we obtained In2O3-based PSCs with a good efficiency exceeding 13% after optimizing the concentration of the precursor solution and the annealing temperature. Furthermore, to enhance the performance of the In2O3-based PSCs, a phenyl-C61-butyric acid methyl ester (PCBM) layer was introduced to modify the surface of the In2O3 film. The PCBM film could fill up the pinholes or cracks along In2O3 grain boundaries to passivate the defects and make the ESL extremely compact and uniform, which is conducive to suppressing the charge recombination. As a result, the efficiency of the In2O3-based PSC was improved to 14.83% accompanied with V(OC), J(SC), and FF being 1.08 V, 20.06 mA cm(-2), and 0.685, respectively.

9.
J Phys Chem Lett ; 6(5): 755-9, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-26262648

RESUMEN

The electron-selective layer (ESL) is an indispensable component of perovskite solar cells (PSCs) and is responsible for the collection of photogenerated electrons. Preparing ESL at a low temperature is significant for future fabrication of flexible PSCs. In this work, solution-processed amorphous WO(x) thin film was prepared facilely at low temperature and used as ESL in PSCs. Results indicated that a large quantity of nanocaves were observed in the WO(x) thin film. In comparison with the conventional TiO2 ESL, the WO(x) ESL exhibited comparable light transmittance but higher electrical conductivity. Compared with the TiO2-based PSCs, PSCs that use WO(x) ESL exhibited comparable photoelectric conversion efficiency, larger short-circuit current density, but lower open-circuit voltage. Electrochemical characterization indicated that the unsatisfied open-circuit voltage and fill factor were caused by the inherent charge recombination. This study demonstrated that this material is an excellent candidate for ESL.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda