Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
1.
Nano Lett ; 24(13): 4002-4011, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38525900

RESUMEN

Empowering robots with tactile perception and even thinking as well as judgment capabilities similar to those of humans is an inevitable path for the development of future robots. Here, we propose a biomimetic electronic skin (BES) that truly serves and applies to robots to achieve superior dynamic-static perception and material cognition functionalities. First, the microstructured triboelectric and piezoresistive layers are fabricated by a facile template method followed by selected self-polymerization treatment, enabling BES with high sensitivity and a wide detection range. Further, through laminated-independent triboelectric and piezoresistive parts for perceiving dynamic and static pressures simultaneously, the BES is capable of supporting the robot hand to monitor the entire process during object grasping. Most importantly, by further combining a neural network model, an intelligent cognition system is constructed for real-time cognition of the object material species via one touch of the robot hand under arbitrary pressures, which goes beyond the human cognition ability.


Asunto(s)
Ácidos Alcanesulfónicos , Robótica , Dispositivos Electrónicos Vestibles , Humanos , Biomimética , Cognición , Percepción
2.
Small ; 20(8): e2305925, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37821402

RESUMEN

Highly sensitive self-powered stretchable electronic skins with the capability of detecting broad-range dynamic and static pressures are urgently needed with the increasing demands for miniaturized wearable electronics, robots, artificial intelligence, etc. However, it remains a great challenge to achieve this kind of electronic skins. Here, unprecedented battery-type all-in-one self-powered stretchable electronic skins with a novel structure composed of pressure-sensitive elastic vanadium pentoxide (V2 O5 ) nanowire-based porous cathode, elastic porous polyurethane /carbon nanotube/polypyrrole anode, and polyacrylamide ionic gel electrolyte are reported. A new battery-type self-powered pressure sensing mechanism involving the output current variation caused by the resistance variation of the electrodes and electrolytes under external pressure is revealed. The battery-type self-powered electronic skins combining high sensitivity, broad response range (1.8 Pa-1.5 MPa), high fatigue resistance, and excellent stability against stretching (50% tensile strain) are achieved for the first time. This work provides a new and versatile battery-type sensing strategy for the design of next-generation all-in-one self-powered miniaturized sensors and electronic skins.

3.
Small ; 20(14): e2308127, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009787

RESUMEN

Developing electronic skins (e-skins) with extraordinary perception through bionic strategies has far-reaching significance for the intellectualization of robot skins. Here, an artificial intelligence (AI)-motivated all-fabric bionic (AFB) e-skin is proposed, where the overall structure is inspired by the interlocked bionics of the epidermis-dermis interface inside the skin, while the structural design inspiration of the dielectric layer derives from the branch-needle structure of conifers. More importantly, AFB e-skin achieves intuition sensing in proximity mode and tactile sensing in pressure mode based on the fringing and iontronic effects, respectively, and is simulated and verified through COMSOL finite element analysis. The proposed AFB e-skin in pressure mode exhibits maximum sensitivity of 15.06 kPa-1 (<50 kPa), linear sensitivity of 6.06 kPa-1 (50-200 kPa), and fast response/recovery time of 5.6 ms (40 kPa). By integrating AFB e-skin with AI algorithm, and with the support of material inference mechanisms based on dielectric constant and softness/hardness, an intelligent material perception system capable of recognizing nine materials with indistinguishable surfaces within one proximity-pressure cycle is established, demonstrating abilities that surpass human perception.


Asunto(s)
Biónica , Dispositivos Electrónicos Vestibles , Humanos , Inteligencia Artificial , Intuición , Inteligencia , Percepción
4.
Small ; : e2404080, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923218

RESUMEN

Functional fibers composed of textiles are considered a promising platform for constructing electronic skin (e-skin). However, developing robust electronic fibers with integrated multiple functions remains a formidable task especially when a complex service environment is concerned. In this work, a continuous and controllable strategy is demonstrated to prepare e-skin-oriented ceramic fibers via coaxial wet spinning followed by cold isostatic pressing. The resulting core-shell structured fiber with tightly compacted Al-doped ZnO nanoparticles in the core and highly ordered aramid nanofibers in the shell exhibit excellent tensile strength (316 MPa) with ultra-high elongation (33%). Benefiting from the susceptible contacts between conducting ceramic nanoparticles, the ceramic fiber shows both ultrahigh sensitivity (gauge factor = 2141) as a strain sensor and a broad working range up to 70 °C as a temperature sensor. Furthermore, the tunable core-shell structure of the fiber enables the optimization of impedance matching and attenuation of electromagnetic waves for the corresponding textile, resulting in a minimum reflection loss of -39.1 dB and an effective absorption bandwidth covering the whole X-band. Therefore, the versatile core-shell ceramic fiber-derived textile can serve as a stealth e-skin for monitoring the motion and temperature of robots under harsh conditions.

5.
Small ; : e2401201, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847560

RESUMEN

Flexible electronics, like electronic skin (e-skin), rely on stretchable conductive materials that integrate diverse components to enhance mechanical, electrical, and interfacial properties. However, poor biocompatibility, bacterial infections, and limited compatibility of functional additives within polymer matrices hinder healthcare sensors' performance. This study addresses these challenges by developing an antibacterial hydrogel using polyvinyl alcohol (PVA), konjac glucomannan (KGM), borax (B), and flower-shaped silver nanoparticles (F-AgNPs), referred as PKB/F-AgNPs hydrogel. The developed hydrogel forms a hierarchical network structure, with a tensile strength of 96 kPa, 83% self-healing efficiency within 60 minutes, and 128% cell viability in Cell Counting Kit-8 (CCK-8) assays, indicating excellent biocompatibility. It also shows strong antibacterial efficacy against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). Blue light irradiation enhances its antibacterial activity by 1.3-fold for E. coli and 2.2-fold for S. aureus. The hydrogel's antibacterial effectiveness is assessed by monitoring changes in electrical conductivity, providing a cost-effective alternative to traditional microbial culture assays. The PKB/F-AgNPs hydrogel's flexibility and electrical conductivity enable it to function as strain sensors for detecting body movements and facial expressions. This antibacterial hydrogel underscores its potential for future human-machine interfaces and wearable electronics.

6.
Small ; 20(19): e2308918, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38149504

RESUMEN

Bioinspired tactile devices can effectively mimic and reproduce the functions of the human tactile system, presenting significant potential in the field of next-generation wearable electronics. In particular, memristor-based bionic tactile devices have attracted considerable attention due to their exceptional characteristics of high flexibility, low power consumption, and adaptability. These devices provide advanced wearability and high-precision tactile sensing capabilities, thus emerging as an important research area within bioinspired electronics. This paper delves into the integration of memristors with other sensing and controlling systems and offers a comprehensive analysis of the recent research advancements in memristor-based bionic tactile devices. These advancements incorporate artificial nociceptors and flexible electronic skin (e-skin) into the category of bio-inspired sensors equipped with capabilities for sensing, processing, and responding to stimuli, which are expected to catalyze revolutionary changes in human-computer interaction. Finally, this review discusses the challenges faced by memristor-based bionic tactile devices in terms of material selection, structural design, and sensor signal processing for the development of artificial intelligence. Additionally, it also outlines future research directions and application prospects of these devices, while proposing feasible solutions to address the identified challenges.


Asunto(s)
Inteligencia Artificial , Biónica , Tacto , Humanos , Dispositivos Electrónicos Vestibles
7.
Nanotechnology ; 35(32)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38648780

RESUMEN

Flexible piezoresistive pressure sensors are gaining significant attention, particularly in the realm of flexible wearable electronic skin. Here, a flexible piezoresistive pressure sensor was developed with a broad sensing range and high sensitivity. We achieved this by curing polydimethylsiloxane (PDMS) on sandpaper, creating a PDMS film as the template with a micro-protrusion structure. The core sensing layer was formed using a composite of silver nanowires (AgNWs) and waterborne polyurethane (WPU) with a similar micro-protrusion structure. The sensor stands out with its exceptional sensitivity, showing a value of 1.04 × 106kPa-1with a wide linear range from 0 to 27 kPa. It also boasts a swift response and recovery time of 160 ms, coupled with a low detection threshold of 17 Pa. Even after undergoing more than 1000 cycles, the sensor continues to deliver stable performance. The flexible piezoresistive pressure sensor based on AgNWs/WPU composite film (AWCF) can detect small pressure changes such as pulse, swallowing, etc, which indicates that the sensor has great application potential in monitoring human movement and flexible wearable electronic skin.


Asunto(s)
Dimetilpolisiloxanos , Nanocables , Poliuretanos , Presión , Plata , Dispositivos Electrónicos Vestibles , Poliuretanos/química , Nanocables/química , Plata/química , Humanos , Dimetilpolisiloxanos/química , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Movimiento
8.
Angew Chem Int Ed Engl ; 63(26): e202406177, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38651494

RESUMEN

The development of electronic skin with dual stealth functionality is crucial for enabling devices to operate effectively in dynamic electromagnetic environments, thereby facilitating intelligent electromagnetic protection for autonomous perception. However, achieving compatibility between terahertz (THz) and infrared (IR) stealth technologies remains largely unexplored due to their inherent contradictions. Herein, inspired by natural corals, a novel coral-like multi-scale composite foam (CMSF) was proposed that ingeniously reconciles these contradictions. The design capitalizes on the conductive network and heat insulation properties of the foam skeleton, the loss effects and low infrared emission of metal particles, and the infrared transparency of magneto-optical materials. This approach leads to the realization of a THz-IR bi-stealth electronic skin concept. The CMSF exhibits a maximum reflection loss of 84.8 dB in the terahertz band, while its infrared stealth capability ensures environmental adaptability under varying temperatures. Furthermore, the electronic skin exhibits exceptional sensitivity and reliability as a wearable device for perceiving environmental changes. This advanced material, combining multispectral stealth with sensing capabilities, holds immense potential for applications ranging from camouflage technology to smart wearables.


Asunto(s)
Antozoos , Rayos Infrarrojos , Dispositivos Electrónicos Vestibles , Antozoos/química , Animales , Radiación Terahertz
9.
Small ; : e2309498, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084445

RESUMEN

Most exogenous electronic skins (e-skins) currently face challenges of complex structure and poor compatibility with the human body. Utilizing human secretions (e.g., sweat) to develop e-skins is an effective solution strategy. Here, a new kind of "sweat-driven" e-skin is proposed, which realizes energy-storage and thermal-management multifunctions. Through the layer-by-layer assembly of MXene-carbon nanotube (CNT) composite with paper, lightweight and versatile e-skins based on supercapacitors and actuators are fabricated. Long CNTs wrap and entangle MXene nanosheets, enhancing their long-distance conductivity. Furthermore, the CNT network overcomes the structural collapse of MXene in sweat, improving the energy-storage performance of e-skin. The "sweat-driven" all-in-one supercapacitor with a trilayer structure is patternable, which absorbs sweat as electrolyte and harnesses the ions therein to store energy, exhibiting an areal capacitance of 282.3 mF cm-2 and a high power density (2117.8 µW cm-2 ). The "sweat-driven" actuator with a bilayer structure can be driven by moisture (bending curvature of 0.9 cm-1 ) and sweat for personal thermal management. Therefore, the paper serves as a separator, actuating layer, patternable layer, sweat extractor, and reservoir. The "sweat-driven" MXene-CNT composite provides a platform for versatile e-skins, which achieve the interaction with humans and offer insights into the development of multifunctional wearable electronics.

10.
Small ; 19(41): e2304004, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37300351

RESUMEN

Multifunctional electronic skins (e-skins) that can sense various stimuli have demonstrated increasing potential in many fields. However, most e-skins are human-oriented that cannot work in hash environments such as high temperature, underwater, and corrosive chemicals, impairing their applications, especially in human-machine interfaces, intelligent machines, robotics, and so on. Inspired by the crack-shaped sensory organs of spiders, an environmentally robust and ultrasensitive multifunctional e-skin is developed. By developing a polyimide-based metal crack-localization strategy, the device has excellent environment adaptability since polyimide has high thermal stability and chemical durability. The localized cracked part serves as an ultrasensitive strain sensing unit, while the non-cracked serpentine part is solely responsible for temperature. Since the two units are made of the same material and process, the signals are decoupled easily. The proposed device is the first multifunctional e-skin that can be used in harsh environments, therefore is of great potential for both human and robot-oriented applications.


Asunto(s)
Robótica , Dispositivos Electrónicos Vestibles , Humanos , Piel , Atención a la Salud , Sensación
11.
Proc Natl Acad Sci U S A ; 117(41): 25352-25359, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32989151

RESUMEN

Electronic skins are essential for real-time health monitoring and tactile perception in robots. Although the use of soft elastomers and microstructures have improved the sensitivity and pressure-sensing range of tactile sensors, the intrinsic viscoelasticity of soft polymeric materials remains a long-standing challenge resulting in cyclic hysteresis. This causes sensor data variations between contact events that negatively impact the accuracy and reliability. Here, we introduce the Tactile Resistive Annularly Cracked E-Skin (TRACE) sensor to address the inherent trade-off between sensitivity and hysteresis in tactile sensors when using soft materials. We discovered that piezoresistive sensors made using an array of three-dimensional (3D) metallic annular cracks on polymeric microstructures possess high sensitivities (> 107 Ω â‹… kPa-1), low hysteresis (2.99 ± 1.37%) over a wide pressure range (0-20 kPa), and fast response (400 Hz). We demonstrate that TRACE sensors can accurately detect and measure the pulse wave velocity (PWV) when skin mounted. Moreover, we show that these tactile sensors when arrayed enabled fast reliable one-touch surface texture classification with neuromorphic encoding and deep learning algorithms.


Asunto(s)
Aprendizaje Automático , Dispositivos Electrónicos Vestibles , Humanos , Ciencia de los Materiales , Presión , Análisis de la Onda del Pulso
12.
Proc Natl Acad Sci U S A ; 117(21): 11314-11320, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32385155

RESUMEN

Compliance sensation is a unique feature of the human skin that electronic devices could not mimic via compact and thin form-factor devices. Due to the complex nature of the sensing mechanism, up to now, only high-precision or bulky handheld devices have been used to measure compliance of materials. This also prevents the development of electronic skin that is fully capable of mimicking human skin. Here, we developed a thin sensor that consists of a strain sensor coupled to a pressure sensor and is capable of identifying compliance of touched materials. The sensor can be easily integrated into robotic systems due to its small form factor. Results showed that the sensor is capable of classifying compliance of materials with high sensitivity allowing materials with various compliance to be identified. We integrated the sensor to a robotic finger to demonstrate the capability of the sensor for robotics. Further, the arrayed sensor configuration allows a compliance mapping which can enable humanlike sensations to robotic systems when grasping objects composed of multiple materials of varying compliance. These highly tunable sensors enable robotic systems to handle more advanced and complicated tasks such as classifying touched materials.

13.
Sensors (Basel) ; 23(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36772611

RESUMEN

Recent advancement in wearable and robot-assisted healthcare technology gives rise to the demand for smart interfaces that allow more efficient human-machine interaction. In this paper, a hydrogel-based soft sensor for subtle touch detection is proposed. Adopting the working principle of a biomedical imaging technology known as electrical impedance tomography (EIT), the sensor produces images that display the electrical conductivity distribution of its sensitive region to enable touch detection. The sensor was made from a natural gelatin hydrogel whose electrical conductivity is considerably less than that of human skin. The low conductivity of the sensor enabled a touch-detection mechanism based on a novel short-circuiting approach, which resulted in the reconstructed images being predominantly affected by the electrical contact between the sensor and fingertips, rather than the conventionally used piezoresistive response of the sensing material. The experimental results indicated that the proposed sensor was promising for detecting subtle contacts without the necessity of exerting a noticeable force on the sensor.


Asunto(s)
Tacto , Dispositivos Electrónicos Vestibles , Humanos , Tacto/fisiología , Impedancia Eléctrica , Hidrogeles , Tomografía Computarizada por Rayos X
14.
Molecules ; 28(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36838615

RESUMEN

Flexible sensors are the essential foundations of pressure sensing, microcomputer sensing systems, and wearable devices. The flexible tactile sensor can sense stimuli by converting external forces into electrical signals. The electrical signals are transmitted to a computer processing system for analysis, realizing real-time health monitoring and human motion detection. According to the working mechanism, tactile sensors are mainly divided into four types-piezoresistive, capacitive, piezoelectric, and triboelectric tactile sensors. Conventional silicon-based tactile sensors are often inadequate for flexible electronics due to their limited mechanical flexibility. In comparison, polymeric nanocomposites are flexible and stretchable, which makes them excellent candidates for flexible and wearable tactile sensors. Among the promising polymers, conjugated polymers (CPs), due to their unique chemical structures and electronic properties that contribute to their high electrical and mechanical conductivity, show great potential for flexible sensors and wearable devices. In this paper, we first introduce the parameters of pressure sensors. Then, we describe the operating principles of resistive, capacitive, piezoelectric, and triboelectric sensors, and review the pressure sensors based on conjugated polymer nanocomposites that were reported in recent years. After that, we introduce the performance characteristics of flexible sensors, regarding their applications in healthcare, human motion monitoring, electronic skin, wearable devices, and artificial intelligence. In addition, we summarize and compare the performances of conjugated polymer nanocomposite-based pressure sensors that were reported in recent years. Finally, we summarize the challenges and future directions of conjugated polymer nanocomposite-based sensors.


Asunto(s)
Nanocompuestos , Dispositivos Electrónicos Vestibles , Humanos , Polímeros , Inteligencia Artificial , Nanocompuestos/química , Tacto
15.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(6): 1062-1070, 2023 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-38151928

RESUMEN

Electronic skin has shown great application potential in many fields such as healthcare monitoring and human-machine interaction due to their excellent sensing performance, mechanical properties and biocompatibility. This paper starts from the materials selection and structures design of electronic skin, and summarizes their different applications in the field of healthcare equipment, especially current development status of wearable sensors with different functions, as well as the application of electronic skin in virtual reality. The challenges of electronic skin in the field of wearable devices and healthcare, as well as our corresponding strategies, are discussed to provide a reference for further advancing the research of electronic skin.


Asunto(s)
Realidad Virtual , Dispositivos Electrónicos Vestibles , Humanos
16.
Small ; 18(52): e2205643, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36328760

RESUMEN

Stretchable pressure sensors are important components of multimodal electronic skin needed for potentializing numerous Internet of Things applications. In particular, to use pressure sensors in various wearable/skin-attachable electronics, both high deformability and strain-independent sensitivity must be realized. However, previously reported stretchable pressure sensors cannot meet these standards because they exhibit limited stretchability and nonuniform sensitivity under deformation. Herein, inspired by the unique sensory organ of a crocodile, an omnidirectionally stretchable piezoresistive pressure sensor made of polydimethylsiloxane (PDMS)/silver nanowires (AgNWs) composites with microdomes and wrinkled surfaces is developed. The stretchable pressure sensor exhibits high sensitivity that changes negligibly even under uniaxial and biaxial tensile strains of 100% and 50%, respectively. This behavior is attributed to the microdomes responsible for detecting applied pressures being weakly affected by tensile strains, while the isotropic wrinkles between the microdomes deform to effectively reduce the external stress. In addition, because the device comprises all PDMS-based structures, it exhibits outstanding robustness under repeated mechanical stimuli. The device shows strong potential as a wearable pressure sensor and an artificial crocodile sensing organ, successfully detecting applied pressures in various scenarios. Therefore, the pressure sensor is expected to find applications in electronic skin for prosthetics and human-machine interface systems.


Asunto(s)
Caimanes y Cocodrilos , Nanocables , Dispositivos Electrónicos Vestibles , Animales , Humanos , Plata , Electrónica
17.
Small ; 18(7): e2103734, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34825473

RESUMEN

Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e-skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors with sole sensing function have already been reported since the concept of e-skin, that mimics the sensing features of human skin, was proposed about a decade ago, the ones with more sensing capacities as new emergences are urgently demanded. However, highly integrated and highly sensitive flexible sensors with multiresponsive functions are becoming a big thrust for the detection of human body motions, physiological signals (e.g., skin temperature, blood pressure, electrocardiograms (ECG), electromyograms (EMG), sweat, etc.) and environmental stimuli (e.g., light, magnetic field, volatile organic compounds (VOCs)), which are vital to real-time and all-round human health monitoring and management. Herein, this review summarizes the design, manufacturing, and application of multiresponsive flexible sensors and presents the future challenges of fabricating these sensors for the next-generation e-skin and wearable electronics.


Asunto(s)
Inteligencia Artificial , Dispositivos Electrónicos Vestibles , Electrónica , Humanos , Humedad , Sudor
18.
Philos Trans A Math Phys Eng Sci ; 380(2228): 20210017, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35762222

RESUMEN

Tactile feedback is relevant in a broad range of human-machine interaction systems (e.g. teleoperation, virtual reality and prosthetics). The available tactile feedback interfaces comprise few sensing and stimulation units, which limits the amount of information conveyed to the user. The present study describes a novel technology that relies on distributed sensing and stimulation to convey comprehensive tactile feedback to the user of a robotic end effector. The system comprises six flexible sensing arrays (57 sensors) integrated on the fingers and palm of a robotic hand, embedded electronics (64 recording channels), a multichannel stimulator and seven flexible electrodes (64 stimulation pads) placed on the volar side of the subject's hand. The system was tested in seven subjects asked to recognize contact positions and identify contact sliding on the electronic skin, using distributed anode configuration (DAC) and single dedicated anode configuration. The experiments demonstrated that DAC resulted in substantially better performance. Using DAC, the system successfully translated the contact patterns into electrotactile profiles that the subjects could recognize with satisfactory accuracy ([Formula: see text] for static and [Formula: see text] for dynamic patterns). The proposed system is an important step towards the development of a high-density human-machine interfacing between the user and a robotic hand. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.


Asunto(s)
Retroalimentación Sensorial , Dispositivos Electrónicos Vestibles , Estimulación Eléctrica/métodos , Electrodos , Retroalimentación , Retroalimentación Sensorial/fisiología , Humanos
19.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36015884

RESUMEN

The paper describes the semi-automatised calibration procedure of an electronic skin comprising screen-printed graphene-based sensors intended to be used for robotic applications. The variability of sensitivity and load characteristics among sensors makes the practical use of the e-skin extremely difficult. As the number of active elements forming the e-skin increases, this problem becomes more significant. The article describes the calibration procedure of multiple e-skin array sensors whose parameters are not homogeneous. We describe how an industrial robot equipped with a reference force sensor can be used to automatise the e-skin calibration procedure. The proposed methodology facilitates, speeds up, and increases the repeatability of the e-skin calibration. Finally, for the chosen example of a nonhomogeneous sensor matrix, we provide details of the data preprocessing, the sensor modelling process, and a discussion of the obtained results.


Asunto(s)
Grafito , Robótica , Dispositivos Electrónicos Vestibles , Calibración , Robótica/métodos
20.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36015893

RESUMEN

Flexible pressure sensors are essential components for wearable smart devices and intelligent systems. Significant progress has been made in this area, reporting on excellent sensor performance and fascinating sensor functionalities. Nevertheless, geometrical and morphological engineering of pressure sensors is usually neglected, which, however, is significant for practical application. Here, we present a digitized manufacturing methodology to construct a new class of iontronic pressure sensors with optionally defined configurations and widely modulated performance. These pressure sensors are composed of self-defined electrode patterns prepared by a screen printing method and highly tunable pressure-sensitive microstructures fabricated using 3D printed templates. Importantly, the iontronic pressure sensors employ an iontronic capacitive sensing mechanism based on mechanically regulating the electrical double layer at the electrolyte/electrode interfaces. The resultant pressure sensors exhibit high sensitivity (58 kPa-1), fast response/recovery time (45 ms/75 ms), low detectability (6.64 Pa), and good repeatability (2000 cycles). Moreover, our pressure sensors show remarkable tunability and adaptability in device configuration and performance, which is challenging to achieve via conventional manufacturing processes. The promising applications of these iontronic pressure sensors in monitoring various human physiological activities, fabricating flexible electronic skin, and resolving the force variation during manipulation of an object with a robotic hand are successfully demonstrated.


Asunto(s)
Dispositivos Electrónicos Vestibles , Electrodos , Electrólitos , Humanos , Presión
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda