Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
1.
Small ; 20(8): e2305994, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37821409

RESUMEN

Copolymers of 5-amino-2-naphthalenesulfonic acid (ANS) and o-aminophenol (oAP) are electropolymerized on carbon cloth substrate from aqueous solutions, and the electropolymerization process is investigated using electrochemical quartz-crystal microbalance. The surface of the copolymer (PANS-co-oAP) appears rough and is capable to store charge as the battery-type electrode in 1 m H2 SO4 (102.9 mAh g-1 at 1 A g-1 ) or in 1 m ZnSO4 (79.75 mAh g-1 at 1 A g-1 ) aqueous solutions. Compared with PANS and PoAP, the high specific capacity of the PANS-co-oAP is originated from the increased number of electrochemically active sites and increased diffusion rates of ions. Evidence of amino/imino and hydroxyl/carbonyl groups redox processes and cation insertion and extraction are given by ex situ X-ray photoelectron spectroscopy. When used as the electrode material in the flexible solid-state supercapacitors, the specific capacitance is at 37.9 F g-1 which does not significantly alter with the bending angle. The flexible solid-state supercapacitor shows a specific energy of 5.4 Wh kg-1 and a power density of 250.3 W kg-1 at 0.5 A g-1 , and a high capacitance retention (88.2%) after 3000 cycles at 5 A g-1 is achieved.

2.
Small ; 20(4): e2306071, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37706574

RESUMEN

The lack of acid-proof high-potential cathode largely limits the development and competitiveness of proton batteries. Herein, the authors systematically investigated six dihydroxynaphthalenes (DHNs) and found that 2,6-DHN delivered the best cathode performance in proton battery with the highest redox potential (0.84 V, vs SHE) and a specific capacity of 91.6 mAh g-1 at 1 A g-1 . In situ solid-state electropolymerization of DHNs is responsible for the voltage and capacity fading of DHNs, and 2,6-DHN's excellent electrochemical performance is derived from its high polymerization energy barrier. By compounding with rGO, the 2,6-DHN/rGO electrode can maintain a specific capacity of 89 mAh g-1 even after 12 000 cycles at 5 A g-1 . When it is paired with the 2,6-dihydroxyanthraquinone (DHAQ) anode, the assembled rocking-chair all-organic proton battery exhibited a high cell voltage of 0.85 V, and excellent energy/power densities (70.8 Wh kg-1 /850 W kg-1 ). This study showcases a new-type high-potential proton-containing organic cathode and paves the way for constructing a high-voltage rocking-chair proton battery. Also, in situ solid-state electropolymerization will inspire the further study of phenol-based small-molecule electrodes.

3.
Chemistry ; 30(22): e202304268, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38335035

RESUMEN

High-quality conjugated microporous polymer (CMP) films with orientation and controlled structure are extremely desired for applications. Here, we report the effective construction of CMP 3D composite films (pZn/PTPCz) with a controlled porosity structure and preferred orientation using the template-assisted electropolymerization (EP) approach for the first time. The structure of pZn/PTPCz composite thin films and nitrophenol sensing performance were thoroughly studied. When compared to the control CMP film made on flat indium tin oxide (ITO) substrates, the as-prepared pZn/PTPCz composite films showed significantly enhanced fluorescent intensity and much better sensing performance for the model explosive. This was attributed to the metal-enhanced fluorescence (MEF) of porous nanostructured zinc (pZn) and the additional macroporosity of the pZn/PTPCz composite films. This work provides a feasible approach for creating oriented 3D CMP-based thin films for advanced applications.

4.
Chemistry ; 30(58): e202401752, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-38900538

RESUMEN

Choline chloride (ChCl) based binary and ternary deep eutectic solvents (DES) were evaluated for methylene green electropolymerization with oxalic acid (OA) and ethylene glycol (EG) as hydrogen bond donors. Binary DES ChCl : OA in molar ratios 1 : 1 and 2 : 1 and ChCl : EG 1 : 2 and ternary DES (tDES) in different molar ratios and percentages of water were evaluated. The highest polymer growth was in ChCl : OA : EG-tDES with 13% added water, that had a lower viscosity and higher ionic conductivity when associated with HCl as dopant. This enhanced the formation of more cation radicals and, consequently, more polymer formation. The PMG/MWCNT/GCE-tDES sensor was successfully applied to the simultaneous determination of 5-aminosalicylic acid (5-ASA) and acetaminophen (APAP) by differential pulse voltammetry in the concentration range 1 µM-200 µM, with detection limits of 0.37 µM and 0.49 µM for 5-ASA and APAP, respectively. The sensor demonstrated good repeatability, reproducibility and stability, and was successfully applied in pharmaceutical formulations.

5.
Anal Biochem ; 696: 115676, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307447

RESUMEN

Norepinephrine (NE) is the primary catecholamine (CA) of interest in the medical field, as it plays a key role in regulating the hormonal and neurological systems. Some NE concentration dysfunction can lead to a number of serious physical conditions. As a result, quick and sensitive NE detection is most critical in medical technology. Thus, in this research, a molecularly imprinted polymer (MIP) was used to create an electrochemical sensor for the selective detection of NE. Prior to this, functional monomers were chosen through molecular modeling utilizing molecular mechanics and quantum mechanics computations. According to these studies, the 3-aminophenylboronic acid (3-APBA) functional monomer produces the most stable complex with NE in molecular modeling calculations. Based on this, by electropolymerizing 3-APBA in the presence of the template molecule NE, an imprinting polymer film is formed on the screen-printed carbon electrode (SPCE) surface. Stepwise fabrication of imprinted polymer films was examined through differential pulse voltammetry (DPV), cyclic voltammetry (CV), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). The performance of the electrochemical NE sensor removal and rebinding levels of the template was studied and optimized. The selectivity for NE was confirmed by using interference studies of small molecules like dopamine, tyrosine, and serotonin. Under optimum levels, the fabricated MIP sensor had a broad linear range over NE concentrations of 0.1 pM-5 pM; sensitivity: 0.004 mA pM-1; limit of detection: 0.03 pM. It is noteworthy that the newly created MIP sensor was effectively validated for NE detection in plasma samples.

6.
Anal Biochem ; 687: 115451, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38154624

RESUMEN

Herein this study, a facile, efficient and disposable electrochemical sensor has been prepared by electropolymerization of glycine (poly(GLY)) on the surface of pencil graphite electrode (PGE). The surface topology of the equipped poly(GLY) modified pencil graphite electrode (poly(GLY)/PGE) and bare pencil graphite electrode (BPGE) has been characterized by the scanning electron microscopy (SEM) combined with energy dispersive x-ray analysis (EDX) and charge transfer behaviour was measured by electron impedance spectroscopy (EIS) method. The voltammetric behaviour of anticancer, 5-fluorouracil (5-FU) in the presence of theophylline (THP) has been carried out in 0.1 M phosphate buffer solution (PBS) of physiological pH 7.0 using different techniques such as cyclic voltammetry (CV), linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV). The proposed poly(GLY)/PGE shows augmented peak current for 5-FU at lower potential side over the BPGE due to the electrocatalytic behaviour of modifier layers wrapped on the electrode surface. The kinetic behaviour of 5-FU at modified electrode surface was studied by varying different parameters such as pH, scan rate and concentration study in 0.1 M PBS used as a supporting electrolyte. The limit of detection (LOD) for 5-FU was attained using DPV method with different concentrations (1.0-13.0 µM) and it was found to be 0.012 µM. The possible electrochemical reaction of 5-FU was proposed and it was incorporated by two electrons and two protons mechanism at modified electrode surface. The voltammetric response of poly(GLY)/PGE towards the determination of 5-FU was unaffected in the presence of some excipients in addition to the remarkable stability and reproducibility. The applicability of the proposed sensor has been performed by real sample investigation of 5-FU with a substantial percentage of recovery results in all optimized conditions.


Asunto(s)
Antineoplásicos , Grafito , Grafito/química , Fluorouracilo , Teofilina , Reproducibilidad de los Resultados , Técnicas Electroquímicas/métodos , Electrodos , Glicina
7.
Macromol Rapid Commun ; 45(11): e2300744, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38480512

RESUMEN

Highly porous light absorbers are fabricated based on polypyrrole (PPy)-coated carbon nanotube (CNT). Carbon nanotube sponge (CNTS) or carbon nanotube array (CNTA) with three-dimensional (3D) network structure is the framework of porous light absorbers. Both PPy@CNTS and PPy@CNTA composites exhibit excellent light absorption of the full solar spectrum. The CNTS and CNTA with porous structures have extremely large effective surface area for light absorption and for water evaporation that has great practical benefit to the solar-driven vapor generation. The PPy layer on CNT sidewalls significantly improves the hydrophilicity of porous CNTS and CNTA. The good wettability of water on CNT sidewalls makes water transport in porous CNT materials highly efficient. The PPy@CNTS and PPy@CNTA light absorbers achieve high water evaporation rates of 3.35 and 3.41 kg m-2 h-1, respectively, under 1-sun radiation. The orientation of nano channels in CNTA-based light absorbers also plays an important role in the solar-driven vapor generation. The water transport and vapor escape are more efficient in CNTA-based light absorbers as compared to the CNTS-based light absorbers due to the relatively short path for the water transport and the vapor escape in CNTA-based light absorbers.


Asunto(s)
Nanotubos de Carbono , Polímeros , Pirroles , Nanotubos de Carbono/química , Polímeros/química , Pirroles/química , Energía Solar , Luz Solar , Porosidad , Agua/química , Propiedades de Superficie , Tamaño de la Partícula
8.
Environ Res ; 245: 117369, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827372

RESUMEN

Using poly (vanillin-co-chitosan)/functionalized MWCNTs/GCE (PV-CS/f-MWCNTs/GCE) as a polymeric nanocomposite modified electrode, the present investigation has been conducted on the electrochemical detection of α-lipoic acid (α-LA) to prevent the activation of microglia inflammation of the nervous system. The manufacture of modified polymeric nanocomposite electrodes was carried out using the established electropolymerization process. Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analyses of structure revealed that the electropolymerization of poly (vanillin-co-chitosan) on the surface of the f-MWCNTs modified electrode was successful. Vanillin-co-chitosan electropolymerization on f-MWCNTs as electroactive sheets can enhance the signal for α-LA electrochemical sensors, according to research on the electrochemical characteristics utilizing cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methodologies. The PV-CS/f-MWCNTs/GCE demonstrated that it had a sensitivity of 0.04664 µA/µM, a detection limit of 0.012 µM, and an excellent response, linear range, and wide linear range to α-LA from 0 to 3000 µM. The results of the application of PV-CS/f-MWCNTs/GCE for determining the concentration of α-LA in a prepared real sample of human serum by DPV and human lipoic acid ELISA Kit analyses via standard addition method illustrated the substantial conformity between the findings of both assays. The results of the DPV analyses resulted in acceptable recovery values (97.60%-99.10%) and appropriate values of the Relative Standard Deviation (RSD) (3.58%-5.07%), which demonstrated the great applicability and accuracy of the results of PV-CS/f-MWCNTs/GCE for determining α-LA concentration in biological fluids and pharmaceutical specimens.


Asunto(s)
Benzaldehídos , Quitosano , Nanocompuestos , Ácido Tióctico , Humanos , Quitosano/química , Enfermedades Neuroinflamatorias , Nanocompuestos/química , Electrodos
9.
Luminescence ; 39(8): e4843, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39129388

RESUMEN

Photoelectric functional materials with electrochemical reversible activity and fluorescence intensities have attracted significant interest due to their wide range of applications in optoelectronic devices. In this work, a series of photoresponsive and electroactive monomers based on thieno[3.4-c]pyrrole-4,6-dione (TPD) are synthesized and characterized. They possess planar geometry with smaller dihedral angles owing to the existence of a noncovalent conformation lock coming from the S atoms and the O atoms. Crystallographic, spectroscopic, and computational results reveal that the introduction of the TPD unit can endow the monomers with aggregation-induced emission (AIE), reduced energy levels, and increased electrochemical activity. The monomers were successfully polymerized through the electrochemical method, and the corresponding polymers displayed reversible electrochemical activity and stability. Moreover, polymer films based on 3,3-dimethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine (ProE)-TPD have electrochromic properties in the near-infrared field with a high value of optical contrast ratio (∆T) of 27.1% at 1000 nm.


Asunto(s)
Técnicas Electroquímicas , Polimerizacion , Pirroles , Pirroles/química , Pirroles/síntesis química , Estructura Molecular , Polímeros/química , Polímeros/síntesis química
10.
Mikrochim Acta ; 191(5): 230, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565804

RESUMEN

A novel molecularly imprinted electrochemical sensor is presented based on one-dimensional ultrathin manganese oxide nanowires/two-dimensional molybdenum titanium carbide MXene (MnO2NWs@Mo2TiC2 MXene) for fenitrothion (FEN) determination. After the synthesis of MnO2NWs@Mo2TiC2 MXene ionic nanocomposite was successfully completed with a facile hydrothermal and the pillaring methods, a new type molecular imprinted electrochemical sensor based on MnO2NWs@Mo2TiC2 MXene was constructed with cyclic voltammetry (CV) polymerization including pyrrole monomer and FEN target molecule. After the characterization studies including spectroscopic, electrochemical and microscopic methods, the analytical applications of the prepared sensor were performed. A linearity of 1.0×10-9-2.0×10-8 mol L-1 was obtained and the values of the quantification limit (LOQ) and the detection limit (LOD) were 1.0×10-9 mol L-1 and 3.0×10-10 mol L-1, respectively. The studies of selectivity, stability and reproducibility of the constructed sensor based on MnO2NWs@Mo2TiC2 nanocomposite and molecularly imprinting polymer (MIP) were carried out in detail. Finally, the developed sensor was applied to white flour samples with the values close to 100%.

11.
Mikrochim Acta ; 191(11): 660, 2024 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-39387910

RESUMEN

A simple method for highly selective and sensitive prostate-specific antigen (PSA) detection using a molecularly imprinted electrochemical sensor is presented. The sensor was developed through an epitope imprinted strategy combined with electrochemical measurement techniques. An epitope molecularly imprinted polymer (EMIP) film was constructed on a AuNPs-coated gold electrode surface through electropolymerization, utilizing the C-terminus epitope of PSA (KWIKDTIVANP) as the template molecular and o-phenylenediamine as the functional monomer. The characteristics of EMIP film were investigated by using a scanning electron microscope and electrochemical test methods, including electrochemical impedance spectroscopy and cyclic voltammetry. Key parameters such as electropolymerization cycles, elution and rebinding times, and the molar ratio of template molecular to functional monomer were systematically optimized. The sensor demonstrated a detection limit (LOD) of 0.31 fg/mL and exhibited an excellent linear response towards PSA concentration ranging from 1.0 fg/mL to 0.1 µg/mL. Furthermore, the EMIP sensor showed excellent selectivity against other biological macromolecules, such as bovine serum albumin, human serum albumin, alpha-fetoprotein, and carcinoembryonic antigen. With recoveries between 95.89 and 106.04% for PSA detection in human serums the EMIP/AuNPs/AuE electrochemical sensor showed great potential in real sample analysis.


Asunto(s)
Técnicas Electroquímicas , Epítopos , Oro , Límite de Detección , Nanopartículas del Metal , Antígeno Prostático Específico , Antígeno Prostático Específico/sangre , Antígeno Prostático Específico/inmunología , Antígeno Prostático Específico/análisis , Humanos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Oro/química , Nanopartículas del Metal/química , Epítopos/química , Epítopos/inmunología , Electrodos , Impresión Molecular , Polímeros Impresos Molecularmente/química , Masculino , Fenilendiaminas/química , Técnicas Biosensibles/métodos
12.
Mikrochim Acta ; 191(5): 270, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630200

RESUMEN

A comparative analysis of molecularly imprinted polymers based on different synthesis techniques was performed for the recognition of molnupiravir (MOL). The polymerizations were performed with 3-thienyl boronic acid (3-TBA) as a functional monomer by electropolymerization (EP) and with guanine methacrylate (GuaM) as a functional monomer by photopolymerization (PP). Morphological and electrochemical characterizations of the developed sensors were investigated to verify the constructed sensors. Moreover, quantum chemical calculations were used to evaluate changes on the electrode surface at the molecular and electronic levels. The dynamic linear range of both designed sensors under optimized experimental conditions was found to be 7.5 × 10-12-2.5 × 10-10 M and 7.5 × 10-13-2.5 × 10-11 M for EP and PP, respectively. The effect of various interfering agents on MOL peak current was assessed for the selectivity of the study. In the presence of 100 times more interfering agents, the RSD and recovery values were determined. The RSD values of GuaM/MOL@MIP/GCE and poly(Py-co-3-PBA)/MOL@MIP/GCE sensors were found to be 1.99% and 1.72%, respectively. Furthermore, the recovery values of the MIP-based sensors were 98.18-102.69% and 98.05-103.72%, respectively. In addition, the relative selectivity coefficient (k') of the proposed sensor was evaluated, and it exhibited good selectivity for MOL with respect to the NIP sensor. The prepared sensor was successfully applied to determine MOL in commercial serum samples and capsule form. In conclusion, the developed sensors provided excellent reproducibility, repeatability, high sensitivity, and selectivity against the MOL molecule.


Asunto(s)
Ácidos Borónicos , Citidina/análogos & derivados , Hidroxilaminas , Polímeros Impresos Molecularmente , Reproducibilidad de los Resultados , Electrodos , Guanina , Metacrilatos
13.
Mikrochim Acta ; 191(6): 338, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780645

RESUMEN

A novel electrochemical sensor, MIP/Cu-MOF/rGO/AuNPs/GCE, was developed by depositing gold nanoparticles, coating Cu-MOF/GO on the surface of glassy carbon electrode (GCE) before electroreducing graphene oxide (GO) to rGO and covering molecularly imprinted membrane by electropolymerization for highly sensitive detection of electroneutral organophosphorus pesticide residues in agricultural product. Cyclic voltammetry, differential pulse voltametry, scanning electron microscopy, energy-dispersive spectroscopy, and atomic force microscopy were used to characterize the imprinted sensor. Several key factors such as chitosan concentration, suspension volume, pH of polymerization solution, and polymerization scanning rate during preparation of the imprinted sensor were optimized in detail. When electroneutral phosmet was used as a template, the linear range of MIP/Cu-MOF/rGO/AuNPs/GCE for detecting phosmet was 1.00 × 10-14-5.00 × 10-7 mol/L with the limit of detection of 7.20 × 10-15 mol/L at working potentials of - 0.2 to 0.6 V. The selectivity, reproducibility, and repeatability of MIP/Cu-MOF/rGO/AuNPs/GCE were all acceptable. The recoveries of this method for determining phosmet in real samples ranged from 94.2 to 106.5%. The MIP/Cu-MOF/rGO/AuNPs/GCE sensor could be applied to detect electroneutral pesticide residues in organisms and agricultural products.

14.
Molecules ; 29(18)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39339464

RESUMEN

The azomethine TPA-(BTZ)3-TPA with a donor-acceptor-acceptor-acceptor-donor structure has been synthesized and characterized. Azomethine TPA-(BTZ)3-TPA exhibited luminescence properties and a positive solvatochromic effect. Electropolymerization on terminated triphenylamine groups was used to obtain a thin layer of the polyazomethine poly-[TPA-(BTZ)3-TPA]. Further investigation of oxidation/reduction properties of poly-[TPA-(BTZ)3-TPA] via cyclic voltammetry showed that the polymer undergoes two reversible oxidation/reduction processes due to the presence of tetraphenylbenzidine moieties. Electrochromic properties of the polyazomethine poly-[TPA-(BTZ)3-TPA] were investigated via spectroelectrochemistry. It was observed that the polymer in its neutral state is orange, and the color changes to green upon electro-oxidation. The stability of the polymer during multiple oxidation/reduction cycles, response times, and coloration efficiency were also investigated.

15.
Molecules ; 29(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39203050

RESUMEN

In the first part of this study, the electrochemical polymerization of two compounds, 3,5-dihydroxybenzoic acid and 2',6'-dihydroxyacetophenone, was compared in dimethyl sulfoxide solvent on platinum and glassy carbon electrodes. The voltammograms obtained showed remarkable differences between the two monomers and between the two electrode materials. The acetophenone derivative formed electropolymer remnants at the electrodes, while in the case of the benzoic acid derivative, practically no passivation occurred, and the scanning electron microscopic results reinforced this. A few stackings adsorbed only after electropolymerization from a highly concentrated solution of dihydroxybenzoic acid. As a modifying layer on the platinum and glassy carbon electrodes, the prepared films from 2',6'-dihydroxyacetophenone were tested for tributylamine in acetonitrile and in an aqueous solution of a redox-active compound, hydroquinone, during the stirring of the solution. More stable amperometric current signals could be reached with modified platinum than with glassy carbon, and the significant influence of the organic washing liquid after deposition was established via the study of noise level. In this respect, acetone was the best choice. The amperometric signals with the modified platinum obtained upon the addition of aliquots of the stock solution resulted in a 3.29 µM detection limit.

16.
Molecules ; 29(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38338477

RESUMEN

The photoelectrochemical cells (PECs) performing high-efficiency conversions of solar energy into both electricity and high value-added chemicals are highly desirable but rather challenging. Herein, we demonstrate that a PEC using the oxidatively electropolymerized film of a heteroleptic Ru(II) complex of [Ru(bpy)(L)2](PF6)2Ru1 {bpy and L stand for 2,2'-bipyridine and 1-phenyl-2-(4-vinylphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline respectively}, polyRu1, as a working electrode performed both efficient in situ synthesis of hydrogen peroxide and photocurrent generation/switching. Specifically, when biased at -0.4 V vs. saturated calomel electrode and illuminated with 100 mW·cm-2 white light, the PEC showed a significant cathodic photocurrent density of 9.64 µA·cm-2. Furthermore, an increase in the concentrations of quinhydrone in the electrolyte solution enabled the photocurrent polarity to switch from cathodic to anodic, and the anodic photocurrent density reached as high as 11.4 µA·cm-2. Interestingly, in this single-compartment PEC, the hydrogen peroxide yield reached 2.63 µmol·cm-2 in the neutral electrolyte solution. This study will serve as a guide for the design of high-efficiency metal-complex-based molecular systems performing photoelectric conversion/switching and photoelectrochemical oxygen reduction to hydrogen peroxide.

17.
Angew Chem Int Ed Engl ; 63(21): e202400230, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38520070

RESUMEN

Hydrogels hold great promise as electrolytes for emerging aqueous batteries, for which establishing a robust electrode-hydrogel interface is crucial for mitigating side reactions. Conventional hydrogel electrolytes fabricated by ex situ polymerization through either thermal stimulation or photo exposure cannot ensure complete interfacial contact with electrodes. Herein, we introduce an in situ electropolymerization approach for constructing hydrogel electrolytes. The hydrogel is spontaneously generated during the initial cycling of the battery, eliminating the need of additional initiators for polymerization. The involvement of electrodes during the hydrogel synthesis yields well-bonded and deep infiltrated electrode-electrolyte interfaces. As a case study, we attest that, the in situ-formed polyanionic hydrogel in Zn-MnO2 battery substantially improves the stability and kinetics of both Zn anode and porous MnO2 cathode owing to the robust interfaces. This research provides insight to the function of hydrogel electrolyte interfaces and constitutes a critical advancement in designing highly durable aqueous batteries.

18.
Small ; 19(47): e2303919, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37488691

RESUMEN

Lithium-sulfur (Li-S) batteries hold great promise for widespread application on account of their high theoretical energy density (2600 Wh kg-1 ) and the advantages of sulfur. Practical use, however, is impeded by the shuttle effect of polysulfides along with sluggish cathode kinetics. it is reported that such deleterious issues can be overcome by using a composite film (denoted as V-CMP@MWNT) that consists of a conjugated microporous polymer (CMP) embedded with vanadium single-atom catalysts (V SACs) and a network of multi-walled carbon nanotubes (MWNTs). V-CMP@MWNT films are fabricated by first electropolymerizing a bidentate ligand designed to coordinate to V metals on self-standing MWNT films followed by treating the CMP with a solution containing V ions. Li-S cells containing a V-CMP@MWNT film as interlayer exhibit outstanding performance metrics including a high cycling stability (616 mA h g-1 at 0.5 C after 1000 cycles) and rate capability (804 mA h g-1 at 10 C). An extraordinary area-specific capacity of 13.2 mA h cm-2 is also measured at a high sulfur loading of 12.2 mg cm-2 . The underlying mechanism that enables the V SACs to promote cathode kinetics and suppress the shuttle effect is elucidated through a series of electrochemical and spectroscopic techniques.

19.
J Mol Recognit ; 36(10): e3053, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37605442

RESUMEN

This research shows the exact detection of riboflavin (RF), dopamine (DA), and L-tryptophan (Trp) through molecularly imprinted polymer (MIP) based on the electropolymerization method. MIP was placed on the surface of the glassy carbon electrode (GCE) by electropolymerization of monomers such as catechol and para-aminophenol, in the presence of all three analytes. The introduced sensor was investigated using field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR), and electrochemical methods, for example, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV). The MIP/GCE performs well in terms of selectivity, reproducibility, repeatability, and stability. This sensor revealed good linear ranges of 0.005-500 µM for RF, 0.05-500 µM for DA, and 0.1-250 µM for Trp with limits of detection (LOD) as 0.0016 µM, 0.016 µM, and 0.03 µM for RF, DA, and Trp, respectively. The modified GCE was successfully applied to detect RF, DA, and Trp in serum and milk samples with satisfactory results.


Asunto(s)
Dopamina , Triptófano , Reproducibilidad de los Resultados , Polímeros , Polímeros Impresos Molecularmente , Riboflavina , Carbono
20.
Chemistry ; 29(63): e202302215, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37565655

RESUMEN

Light-responsive surfaces are attracting increasing interest, not least because their physicochemical properties can be selectively and temporally controlled by a non-invasive stimulus. Most existing immobilization strategies involve the chemical attachment of light-responsive moieties to the surface, although this approach often suffers from a low surface concentration of active species or a high inhomogeneity of applied coatings. Herein, electropolymerization of carbazoles as a facile and rapid approach for preparing light-responsive azo-based surface coatings is presented. The electrochemical oxidative polymerization of bis-carbazole containing azo-monomers yields stable films, in which the photochemical properties and specific pH sensitivity of azo molecular switches are retained. Moreover, the molecular design enables electrocatalytic control over Z→E azo double bond isomerization facilitated by the conductive polycarbazole backbone. Ultimately, the high degree of control over macromolecular properties yields conductive surface coatings responsive to a range of stimuli, showing great promise as a strategy for versatile application in organic electronics.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda